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Abstract

We study targeted energy transfers and nonlinear transitions in the damped dynamics of a two degree-of-freedom system
of coupled oscillators (a linear oscillator with a lightweight, essentially nonlinear, ungrounded attachment), caused by 1:1
resonance captures of the dynamics. Part I of this work deals with the underlying structure of the Hamiltonian dynamics of
the system, and demonstrates that, for sufficiently small values of viscous damping, the damped transitions are strongly
influenced by the underlying topological structure of periodic and quasiperiodic orbits of the corresponding Hamiltonian
system. Focusing exclusively on 1:1 resonance captures in the system, it is shown that the topology of these damped
transitions affect drastically the efficiency of passive energy transfer from the linear system to the nonlinear attachment.
Then, a detailed computational study of the different types of nonlinear transitions that occur in the weakly damped
system is presented, together with an analytical treatment of the nonlinear stability of certain families of periodic solutions
of the underlying Hamiltonian system that strongly influence the said transitions. As a result of these studies, conditions on
the system and forcing parameters that lead to effective or even optimal energy transfer from the linear system to the
nonlinear attachment are determined. In Part II of this work, direct analytical treatment of the governing strongly
nonlinear damped equations of motion is performed, in order to analytically model the dynamics in the region of optimal
energy transfer, and to determine the characteristic time scales of the dynamics that influence the capacity of the nonlinear
attachment to passively absorb and locally dissipate broadband energy from the linear oscillator.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The aim of this work is to study the complex transitions in the dynamics and targeted energy transfers
associated with the attraction of the transient dynamics of a two degrees- of- freedom (dof) strongly nonlinear
system into 1:1 resonance capture [1,2]. In particular, the transient dynamics of a linear damped oscillator
(labeled as primary system) with an essentially nonlinear, damped, lightweight attachment are investigated.
The complexity of the problem dictates an extensive series of numerical simulations, together with the
development of methodologies capable of analytically modeling both qualitatively and quantitatively the
transient, strongly nonlinear transitions.

As reported in earlier works [3,4] the two degrees of freedom system under consideration possesses
surprisingly complex dynamics. Moreover, at certain ranges of parameters and initial conditions passive
targeted energy transfer passive targeted energy transfer is possible, whereby vibration energy initially
localized in the linear oscillator (LO) gets passively transferred to the lightweight attachment in a one-way
irreversible fashion. Interesting features of passive targeted energy transfer in this system are the ability of the
attachment (labeled nonlinear energy sink—nonlinear energy sink) to irreversibly absorb broadband vibration
energy, and, in cases of multi-degree-of-freedom primary structures, to engage in a sequential resonance
captures with a set of modes of the primary structure, passively absorbing energy from each before engaging
the next [5]. In essence, the nonlinear energy sink acts as a passive, adaptive and broadband boundary
controller. As explained in the mentioned references, what enables the local nonlinear energy sink attachment
to affect the global dynamics of the primary structure is its lack of a preferential resonance frequency (since it
possesses an essentially nonlinear—nonlinearizable—stiffness nonlinearity), giving rise to degenerate, high-
codimension bifurcations of the underlying Hamiltonian dynamics. In recent studies passive targeted energy
transfer has been experimentally shown to exist and to be robust to small variations of parameters and initial
conditions [6].

Previous works examined targeted energy transfer in systems of coupled nonlinear oscillators through
energy exchanges between donor and acceptor discrete breathers due to nonlinear resonance [7-9]. In Ref. [10]
resonant interactions between monochromatic electromagnetic waves and charged particles were studied,
leading to chaotization of particles and transport in phase space. In Ref. [11] the processes governing energy
exchange between coupled Klein—Gordon oscillators were analyzed; the same weakly coupled system was
studied in Ref. [12], and it was shown that, under appropriate tuning, total energy transfer can be achieved for
coupling above a critical threshold. In related work, localization of modes in a periodic chain with a local
nonlinear disorder was analyzed [13]; transfer of energy between widely spaced modes in harmonically forced
beams was analytically and experimentally studied [14]; and a nonlinear dynamic absorber designed for a
nonlinear primary system was analyzed [15].

In Ref. [4] it was shown that there are (at least) three distinct mechanisms for passive targeted energy
transfer in the two-degree-of-freedom system under consideration herein: namely, fundamental passive
targeted energy transfer, subharmonic passive targeted energy transfer, and passive targeted energy transfer
through nonlinear beats followed by 1:1 resonance capture. The latter mechanism is the most efficient for
passive targeted energy transfer, as it permits a significant percentage of the vibration energy of the primary
system to be transferred and then locally dissipated by the nonlinear energy sink. It is the principal aim of the
current work to study in detail the complex nonlinear transitions associated with this passive targeted energy
transfer mechanism and to determine the conditions for strong (or even optimal) passive targeted energy
transfer in the two-degree-of-freedom system.

The first section of this work deals with the underlying structure of the Hamiltonian dynamics of the system
and demonstrates that, for sufficiently small values of viscous damping, the damped transitions are strongly
influenced by the underlying periodic and quasiperiodic orbits of the corresponding Hamiltonian system.
Then, a detailed computational study of the different types of nonlinear transitions that occur in the weakly
damped system is presented, together with an analytical treatment of the nonlinear stability of certain families
of periodic solutions of the underlying Hamiltonian system that strongly influence the said transitions. In a
companion paper, the second part of this work will be reported, focusing on direct analytical treatment of the
governing strongly nonlinear equations of motions, theoretical modeling, and interpretation of the
computational results.
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Consider the following two degrees- of- freedom nonlinear system of coupled oscillators:

W+ 26l + 26000 — 30) 0+ %Ea(yl -3 =0, (la)
ey + 2eo(7, — ) + Zea(yy — 1)’ =0, (1b)

viewed as a LO, described by y,, coupled to a nonlinear energy sink whose response is measured by y,, as
illustrated in Fig. 1. This system, with {; = 0, has also been the subject of the recent study by Manevitch,
Musienko and Lamarqu [16].

In the absence of damping the total energy E(¢) in the system is conserved and given as E(t) = E(t) + Ex(?),
where

£y = 110 110 (2a)
.0 X
Ex(0) = 720+ 2 040 (o) (2b)

The quantity E(¢) can be interpreted as the energy in the LO, while E,(¢) then represents the energy associated
with the attachment. The energy in each component can be scaled by the total initial energy in the system, so
that () = E«(t)/E£(0). Finally, the instantaneous fraction of the total energy in each component is identified
as hi(l) = E,(l)/E(t)

With direct impulsive forcing of the primary system, i.e., 7,(0) = Y#0, ,(0) = ,(0) =0, »,(0) = 0, the
possibility of passively transferring a significant fraction of the imparted energy to the nonlinear energy sink,
where it is coincidentally localized and dissipated, is examined. As an illustrative example, the response of
Egs. (1a) is computed with o = 1, ¢ = 0.05, {; = 0.00, {, = 0.10 for an intermediate level of initial energy,
Y =0.75. As seen in Fig. 2, the response of the system can be characterized by three different regimes of
motion. In the first interval, seen for > 10 in this simulation, a fraction of the energy, initially localized to the
LO, is rapidly transferred to the nonlinear energy sink. This is followed by a slow decay of the total energy in
the system characterized by large amplitude response of both the nonlinear energy sink as well as the LO,
exhibited here for 10 <7< 55. In addition, in this interval the energy is slowly localized to the nonlinear energy
sink as the energy decays. Finally, in the final regime of the motion for > 55 the energy is again transferred
back to the LO.

The response of the system is strongly dependent on the initial energy in the system. Fig. 3 depicts the
system response at low- (Y = 0.375), moderate- (Y = 0.50) and high-energy (Y = 1.00) levels, together with
the corresponding scaled energy in the system. Clearly, there are qualitative changes in the response of the
system as the initial energy level increases. In the low-energy regime, no interesting energy transfer occurs from
the LO to the nonlinear energy sink, and the response remains localized to the LO. As discussed in Refs. [3,4],
significant targeted energy transfer takes place only above a well-defined critical threshold of input energy.
Efficient passive targeted energy transfer to the nonlinear energy sink is triggered through the initial energy
transfer noted above for Y = 0.75 in the moderate-energy regime (Figs. 3c, d). Gendelman, Kerschen,
Vakakis, Bergman and McFarland [17] discuss the existence of impulsive periodic orbits in the underlying
Hamiltonian system that play the role of bridging orbits and channel a significant portion of the energy
initially localized in the LO to the nonlinear energy sink at a relatively fast time scale. As the initial energy is
further increased (Figs. 3e, f), the initial triggering of the passive targeted energy transfer still occurs, but its
effect on the overall energy dissipation in the system is diminished. As illustrated in Fig. 3, the nonlinear
energy sink is most effective for an intermediate level of energy.
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Fig. 1. Single degree-of-freedom oscillator coupled to an nonlinear energy sink (nondimensionalized).




D.D. Quinn et al. | Journal of Sound and Vibration 311 (2008) 1228—1248 1231

(a) (b)
1.0 & 1.0
s
-
. B .
< 05 I 05
L [ L
L v
- \\_. . -
0.0 0.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 25 50 75 100 0 25 50 75 100
t t

0 25 50 75 100

Fig. 2. Numerical simulations of Eq. (1), nqnlir}ear energy sink: solid line, LO: dashed line (Y =0.75, « =1, ¢ =0.05, {; = 0.00,
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Fig. 3. Damped numerical simulations, nonlinear energy sink: solid line, LO: dashed line; left column: time series; right column:
instantaneous scaled energy in each component (« = 1, ¢ = 0.05, {; = 0.00, {, = 0.10); (a, b) low-energy Y = 0.375, (c, d) moderate-energy
Y = 0.50, and (e, f) high-energy Y = 1.00. The dotted line in (b), (d), and (f) is the total scaled energy.
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Indeed, these different regimes in the response are clearly seen in the instantaneous fraction of the energy in
each component, 4;(¢), shown in Fig. 4. For the low-energy regime the energy remains localized in the LO and
passive targeted energy transfer does not occur. As the initial impulse is increased, seen in Fig. 4b, a significant
fraction of the energy is transferred to the nonlinear energy sink, which is then able to effectively dissipate the
response. Finally, for large initial energies, passive targeted energy transfer occurs but the initial triggering
transfers a smaller fraction of the energy. By the time the energy transfer to the nonlinear energy sink is
significant the total energy has decayed to a relatively small value, so that the effect of this efficient transfer on
the overall evolution of the system is less significant. Therefore the most effective passive targeted energy
transfer occurs when the initial triggering of the nonlinear energy sink is accompanied by a significant transfer
of energy to the nonlinear energy sink.

The efficiency of the passive targeted energy transfer can be evaluated as the initial impulse varies through
the maximum energy transferred to the nonlinear energy sink, /i max. As illustrated in Fig. 5, as the initial
energy in the system increases, the maximum energy transferred to the nonlinear energy sink undergoes a
sharp jump. In this figure this quantity is shown for several values of the damping ratio {,. In particular, we
note that the observed jump in the transferred energy even occurs in the absence of damping, shown as the
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Fig. 4. Instantaneous fraction of energy in each component, nonlinear energy sink: solid line, LO: dashed line (z = 1, ¢ = 0.05, {; = 0.00,
{, =0.10); (a) Y =0.375, (b) Y =0.50, (c) ¥ = 1.00.
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Fig. 5. Maximum energy transferred to the nonlinear energy sink (. = 1, ¢ = 0.05, {; = 0.00). Each curve corresponds to the damping in
the primary with {, =0.00 __ ,{ =0.01 _ ,{ =0.05 ...... ,(=010__ __
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Fig. 6. Damped transitions in the frequency-energy plane for the moderate-energy regime of Fig. 3 (Y = 0.75, o = 1, ¢ = 0.05, {; = 0.00,
{» = 0.01):(a) nonlinear energy sink and (b) LO.

solid line. Therefore, the properties of the irreversible energy transfer and dissipation are strongly dependent
on the dynamics of the underlying Hamiltonian system in the absence of damping.

In Refs. [3,4], the transient dynamics of the weakly damped system was studied and interpreted in terms of a
frequency-energy plane by comparing the response of the damped system to that of the underlying
Hamiltonian system. Such a representation is given in Fig. 6 for the moderate-energy regime of Fig. 3. In each
panel the solid curve represents the frequency of the periodic solutions in the underlying Hamiltonian system,
while the shading denotes the relative amplitude of the dominant harmonic components of the damped
motions, as computed through the Morlet wavelet transform. The plot clearly shows the correspondence of
the response of the damped system with that of the system in the absence of damping. In addition, this
frequency-energy plot clearly illustrates three regimes of motion—the initial transient, followed by the 1:1
resonant motion as the initial energy decays, so that the dominant frequency of the nonlinear energy sink and
LO are identical. Finally as the energy decreases near 102, this resonant state is lost, and the frequency of the
LO once again approaches unity, while that of the nonlinear energy sink remains low.

2. Slow flow

Analysis of the above system proceeds through the development of a reduced model via the method of
averaging. Thus, to this system the following transformations are applied:

»1(0) = aycos(t + 01(2),  y,(1) = az cos(t + 0(2)),
(D) = —arsin(t + 01(2)),  y,(1) = —az sin(z + 0:(2)). (3)

If a 1:1 resonance exists between y; and y, the difference between the phase variables, 0, — 0, = ¢, is, on
average, stationary. In contrast, non-resonant dynamics imply that ¢ is time-like. The resulting equations are
not in the correct form for the proper application of the method of averaging. However, the polar equations
are nonetheless formally averaged over ¢ € [0,27) while holding 6; and 0, constant, which reduces these
equations to

a; = —s{Clal + ((a) — ay cos ) + %(a? + a} — 2a1a; cos p)a, sin ¢}, (4a)

a = —{Cz(az —ajcos ) — %(af + a% — 2ay1a; cos ¢)a; sin d)}, (4b)

¢ = l — %(af + ag — 2aya; cos ¢) [(1 - ﬂcos d)) — 8(1 — ﬂcos qb)} - (ﬂ—k 8@> sin ¢. (4c)
2 2 a ai a ap

The response of these averaged equations are later compared to the response of the original equations of
motion to verify the predictions. Note that for {; = {, =0, the following conserved quantities can be
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identified:
a% + (Vewn)? = 12, (5a)
2 2,
%+e%+%(af+a§—2alazcos¢)2Eh (5b)

and the undamped system is integrable. Taking advantage of the first of the above integrals, the phase-like
variable {y can be identified as

Yy o\ a T
tan<2+4 N ‘pe[ 2’2}‘ ©)
With this, the equations for i and y become
. a1a; +eara . 2¢ . .
7=%, ¢=%(alaz—alaz), (7)
so that the equations of motion in terms of these new variables become
P= —g{eij](l +siny) + (1 + &) — (1 — g)siny — 24/ecos iy cos @]}, (8a)
; ar?
Y= ——=[(1+¢) — (1 —e)sinyy — 2/ cos cos ¢]sin ¢
2V
— el cosy + (1 — e)cosy — 24/esiny cos @], (8b)
. 1 .
¢ = E_Z[(l +¢) — (1 —¢)siny — 2/ecos i cos @]
sin i cos ¢ sin ¢
l—¢)—2/e————| =2 .
x (=) = 2Ve TR 2vat, (89
If the response is localized in the LO, so that a; = 0, the phase variable becomes {y = /2. In contrast, a
localized response in the nonlinear attachment (¢ = 0) implies that y = —x/2. In terms of the variables

(Y, ¢, r), in the absence of damping r is constant, and the topology of phase space is a sphere. For non-zero
damping the evolution of r is slow, so that phase space is again viewed on the sphere, with a slowly varying
radius. The work of Manvitch et al. [16] develops an analytical approximation for the evolution of r, which is
shown to qualitatively agree with the response of the original equations of motion.

In terms of these averaged coordinates, the amplitude of the relative displacement between the LO and
nonlinear energy sink, ||y, — »,|, is

131(t) = (DI* = & + a3 — 2aya; cos ¢,

=;—28{(1+e)—(1—s)sin¢—2ﬁcos¢cos¢}, (11)

2
= %(1 + &)1 — A(P) sin(y + y(¢))) (12)

)
Ag) = 1= L g = 2P (13)
(1+¢) l—¢

The use of the essentially nonlinear oscillator as an absorber implies that energy is initially localized in the LO
and then transferred to the nonlinear attachment. As shown by Lee et al. [3], this specific situation implies that
the system begins with the initial condition @,(0) = 0, or in terms of the spherical coordinates, /(0) = n/2. The
response of the damped system can be represented by two distinct phases of motion. The first corresponds to a
transient response by which the system rapidly approaches a nonlinear normal mode, after which the second
interval corresponds to the damped response of this nonlinear normal mode.

with
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3. Undamped system ({; = {, = 0)

As described above, in the absence of damping, that is, with {; = {, = 0, r is stationary and the slow flow
equations reduce to

F=0, (11a)
1}:—;:’/25[(1+s)—(1—s)sinw—2\/50051//cos¢]sin¢, (11b)
.1 . siny cos ¢
¢ _E—Z[(l +e)— (1 —e)siny —2ﬁcos¢cos¢][(l —&) — Zﬁw}. (11¢)

This resulting dynamical system on the sphere, described by (Y, ¢), is integrable, with the second integral of
motion, Eq. (5b), represented as
r ) ar? ) )
§{3 + siny +Z((l +¢) — (1 —¢)siny — 2/ecos i cos @) } =h. (12)
Therefore, for the undamped system, trajectories in the space (i, ¢) lie on level sets of this integral of motion.
Several representative phase portraits for this system are shown in Fig. 8 as the quantity r varies, which
serves as the bifurcation parameter. As described in Fig. 7, these figures project the spherical topology of phase
space onto the unit disk, so that the North pole at y = /2 lies at the center of the disk, while the South pole
(y = —n/2) is mapped to the unit circle. In this projection, trajectories that pass through the South pole
approach the unit circle at ¢ = 7/2 and are continued at ¢ = —n/2.
Equilibrium points are defined by sin ¢, = 0, so that ¢, = 0 or =, and

2
or .
(M lpeq - Z(l + 8)2(1 - Sln(lﬁeq + yeq)) Cos(lpeq + yeq) =0 (13)
with
2/¢cos ¢
tanyeq Z?Seq. (14)

In general, equilibrium points for which ¢, = 0 correspond to an in-phase motion and have been denoted as
S11+ by Kerschen et al. [4]. For ¢, = n the equilibrium point represents an out-of-phase motion in the
original dynamical system, denoted as S11—. In the projection of phase space shown in Fig. 8, S11+
equilibrium points with ¢ = 0 lie on the horizontal axis to the right of the origin. Likewise, S11— lies on the
horizontal axis to the left of the origin (¢ = n).

SP, ¢ =-—m/2

Fig. 7. Topology and representation of phase space: (a) spherical coordinates and (b) cylindrical projection.
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Fig. 8. Phase space projection (o« = 1.00: ¢ = 0.10); (a) r = 1.00, (b) r = 0.375 and, (c) r = 0.25.
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Fig. 9. Equilibrium locations (¢ = 1.00): (a) S11+ is shown as the dashed curve while S11— is shown as the solid curve (¢ = 0.05) and
(b) S11— branch as ¢ varies.

As the value of r varies, the equilibrium values of i, are shown in Fig. 9a with o = 1.00 and ¢ = 0.10. For
sufficiently large values of r, phase space possesses two equilibrium points with neutral stability, one at ¢, = 0
and the second with ¢, = 7, corresponding to S11+ and S11—, respectively. As r — oo, these equilibrium
points approach a value

Y., — arctan L-¢
e 2/ecos ey )

so that for e<1, Vg g1+ >0 and g, <0. Therefore as the energy increases the in-phase motion S11+ is
localized to the LO, while the out-of-phase motion S11— is localized to the nonlinear attachment. The degree
to which this localization takes place is controlled by the mass ratio ¢, and the oscillations are concentrated in
a single component as ¢ — 0.

For sufficiently small values of r the equilibrium equation for ¥, approaches

(15)

T

cosPeq > 0, Yoq — :I:2 (16)

Moreover, one can show that, for S11+, equilibrium points cannot exist in the interval (n/2 — Veqr T /2), and,
for S11—, equilibrium points cannot exist in the interval (—=7/2, —7/2 + |y¢q ). Therefore as r — 0

Y T
l//eq,s11+ - 3 ‘//eq,sn— - 7

(17)

The in-phase motion S11+4 becomes localized to the nonlinear oscillator while the out-of-phase motion S11—
is localized to the LO. However, unlike the response as r — oo described above, as r — 0 the localization is
complete in either the LO or nonlinear energy sink.
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For an intermediate level of r with ¢ = 0.05, the S11— branch undergoes a pair of saddle-node bifurcations.
For decreasing r the first bifurcation occurs at r~0.40, and a pair of equilibrium points are created near
Y =m/2. As the energy is further decreased a second saddle-node bifurcation occurs at r~0.35, and near
Yy = 0.00 the unstable equilibrium created in the previous bifurcation is annihilated with the branch of S11—
that existed for higher energies. In Fig. 9b, the S11— branch of equilibria is shown as the mass ratio ¢ varies. A
pair of saddle-node bifurcations occur in this branch for £¢<0.171 while for ¢ greater than this value the
equilibrium point corresponding to an out-of-phase state is unique. In contrast, the S114 branch (not shown
in the figure) does not undergo saddle-node bifurcation as r varies.

3.1. Impulsive orbits

When the initial energy in the system is localized to the LO, the transient phase of the response corresponds
to a trajectory with initial condition ¥(0) = 7/2. In terms of the spherical topology of phase space this corres-
ponds to a trajectory that initially lies at the North pole, and is referred to as an impulsive orbit. In Fig. 10
these impulsive orbits are shown as the quantity r varies. These figures also show the corresponding trajectory
passing through the South pole ((0) = —=/2). Finally, in Figs. 10c and d S11— a third isolated trajectory is
seen which lies at the same energy level as the trajectory passing through the North pole. In what follows the
subscript NP will refer to the impulsive orbit passing through the North pole while subscripts SP refer to the
trajectory passing through the South pole in phase space. Together, these trajectories are referred to as pole
trajectories.

In Fig. 10 two energy levels can be identified with bifurcations of the impulsive orbit. The first, at r~0.45
(occurring between Figs. 10g and h), corresponds to the impulsive orbit passing through both the North and
South poles. For this energy level, the energy is periodically transferred completely from the LO to the

b
(@) /2 b) /2 () /2
¢ ¢ ¢
7‘ . 0w o> 0™ O e 0
3w/2 3w/2 3 w2
(d) (e) (f)
/2 /2 /2
¢ ¢ ¢
ks (><: 0w On> 0™ G 0
37/2 37/2 37n/2
(9) (h) (i)
/2 /2 /2
¢ ¢ ¢
by 0w @ 0~ 0
3w/2 3w/2 3w/2

Fig. 10. Pole trajectories (¢ = 1.00, ¢ = 0.10). The impulsive orbit (/(0) = 7/2, thick line) passes through the North pole, located at the
origin in this projection, while the trajectory initially localized in the nonlinear energy sink (¥/(0) = —n/2, thin line) passes through the
South pole: (a) r = 0.25, (b) r = 0.36, (c) r = 0.37, (d) r = 0.386, (¢) r = 0.387, (f) r = 0.40, (g) r = 0.44, (h) r = 0.46, and (i) r = 0.50.
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nonlinear energy sink. However, the period of this orbit is finite, and the fraction of energy exchanged varies
continuously as r varies, reaching a maximum value at this point. (In this case the shift in the impulsive orbit
from the left to the right is an artifact of the projection.) In contrast, for a lower energy level, r~0.3865, the
impulsive orbit is coincident with a homoclinic connection in phase space. While the energy is not completely
exchanged in this case, as r passes through this critical value the fraction of energy continuously exchanged
between the LO and nonlinear energy sink is discontinuous—the impulsive orbit transitions from low- to high-
amplitude motion and enhances the energy pumping in the transient phase.

In the damped system the energy dissipation during the transient phase is related to the amplitude |[{/\pll =
|m/2 — Ynp| of the impulsive orbits. Further, this amplitude is related to the dynamics of the undamped
system. In Fig. 11 the amplitude of the impulsive orbit in the undamped system is shown as a function of r for
different values of e. In Figs. 11a—c this amplitude undergoes a jump as r varies. Viewed in phase space, this
discontinuity occurs when the impulsive orbit is coincident with the homoclinic orbit of the unstable S11—
equilibrium point. At this point, the period of the impulsive orbit is infinite. Note that, as shown previously,
the S11— branch undergoes no saddle-node bifurcations for ¢ = 0.25 so that the homoclinic orbit does not
exist as r varies. As a result, the amplitude shown in Fig. 11d is continuous in r. In Figs. 11c and d there also
exists a value of r for which the amplitude |ynpll = 7. At this value of r the energy is completely exchanged
between the LO and nonlinear energy sink. As described above, for this value of r the impulsive orbit passes
through both the North and South poles.

The jump in the amplitude can be understood in terms of the total energy / of the impulsive orbit in relation
to that of the unstable S11— equilibrium point and, hence, the homoclinic orbit associated with this point.
Likewise, the location at which the amplitude is maximal is related to the energy of the impulsive orbit and the
trajectory passing through the South pole. The energy of the impulsive orbit is simply

o eart
hnp ==+ —— 18
NP =3 + g (18)
while the energy of the trajectory passing through the South pole is
oot
hsp = —+—. 19
PTG TR (19)

As seen in Fig. 10, the extrema of trajectories passing through the North and South poles occurs for either
$eq = 0 or g = . Therefore, from the above expressions for inp and /sp the values of , at these energy
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Fig. 11. Amplitude of the impulsive orbit as r varies (« = 1.00): (a) ¢ = 0.01, (b) ¢ = 0.05, (c) ¢ = 0.10, and (d) e = 0.25.
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levels satisfy

2 2 2
NP: %(4 + o) = % {3 +sinyyp + %(1 + (1 — sin(Pp + yeq))z] , (20a)
}’2 otrz 7'2 . OU"2 2 . 2
SP: 0 24 - =3 3+ sinygp + E(l +&)7(1 — sin(Wgp + yeq)) (20b)
with
2./ecos @
tanveq Z?geq. (21)

The solutions to these equations are determined using a numerical root-finding continuation method and are
shown in Fig. 12 as the mass ratio ¢ varies. The thin curve represents the branch y/gp while the thicker curve
corresponds to the impulsive orbit y/p. Note that there always exists a branch of yp at 7 /2 while a branch of
Wgp always lies at —n/2. In these figures the dashed intervals indicate solutions of ¥ for ¢ = 0 while the solid
intervals of each branch correspond to ¢ = n. Therefore the energy level /# of the North and South poles
coincide only for intersections of the branches yyp and Ygp in Fig. 12 that occur between curves of the same
linestyle (solid or dashed). These two energies are equal for

ar? = 2¢e/(1 — &2). (22)

In Fig. 12 the amplitude of the impulsive orbit |[ynpll is measured as the distance from the North pole
(y = n/2). For ¢ = 0.25, shown in Fig. 12d, as r increases this amplitude simply increases continuously to a
value of 7 along the solid red curve before decreasing with further increases in r along the dashed interval of
Ynp- As expected, this is in complete agreement with the results shown in Fig. 10 obtained by numerical
integration of the equations of motion.

As the mass ratio is decreased to ¢ = 0.10, the yp branch contains two turning points, one of which corresponds
to the coincidence of the impulsive orbit and the homoclinic orbit of the unstable S11— solution described above.
For ¢ = 0.10 as r increases through this turning point the value of yyp jumps to the lower solution, increases to ©
and then decreases along the dashed interval of Y\p, as shown in Fig. 12c. However, as the mass ratio is further
decreased, as seen in Fig. 12a for ¢ = 0.05, as r increases and the impulsive orbit passes through the turning point,
the value of y\p jumps directly to the dashed interval and subsequently decreases with increasing r. Specifically,

%000 025 050 075 1.00 %000 025 050 075 1.00

r r

Fig. 12. Extent of the pole trajectories as r varies (¢ = 1.00). The amplitude of y\p is shown with the thick line while ygp is shown with the
thin curve. For the dashed (solid) intervals ¢ = 0 (¢ = n) in Eq. (21): (a) ¢ = 0.05, (b) ¢ = 0.072, (c) ¢ = 0.10, and (d) e = 0.25.
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complete energy transfer, identified with |[{yypll = 7, never occurs as r varies. For this observed behavior, as
r increases the trajectory through the South pole coincides with energy level of the impulsive orbit but is not
coincident with the impulsive orbit itself, which occurs before the turning point of ynp is reached. This progression
is illustrated in Fig. 13. The critical mass ratio between these two behaviors, illustrated in Figs. 12a and c, is e~0.072,
shown in Fig. 12b. At this mass ratio the y\p and Ygp intersect exactly at the turning point. Thus, as r increases, the
amplitude of the impulsive orbit jumps to [[npll = 7; that is, complete energy transfer.

In summary, the amplitude of the impulsive orbit, that is, the trajectory initially localized to the LO,
depends critically on the mass ratio ¢. Specifically,

(1) For ¢ sufficiently large the amplitude of the impulsive orbit is a continuous function of r and exhibits
complete energy transfer for

5 2¢

ot = .
1 —¢2

(23)

(2) As ¢ decreases the amplitude of the impulsive orbit becomes a discontinuous function of r. The jump
occurs as the impulsive orbit coincides with a homoclinic connection created by a saddle-node bifurcation
in the equilibrium states. Therefore the existence of a homoclinic connection is a necessary requirement for
the observed jump in ||npll, although not a sufficient condition—the impulsive orbit must coincide with
the homoclinic connection for some value of r. However, for intermediate values of ¢ the impulsive orbit
still exhibits complete energy transfer for the value of r identified above.

(3) For sufficiently small mass ratios the amplitude of the impulsive orbit remains discontinuous in r, but is no
longer allowed to completely exchange energy between the LO and nonlinear energy sink for any value of
r. Hence, the ability of the nonlinear energy sink to passively transfer energy from the LO is expected to
diminish in this regime.

(a) /2

37/2
(b) w2

0.25 0.30 0.35 0.40

(c) w2 (d) w2 (e) w2

3w/2 37/2 37/2

Fig. 13. Amplitude of the impulsive orbit as r varies (x = 1.00, ¢ = 0.05); (a—e) phase space, see Fig. 10 caption for description:
(a) r=0.28, (b) r=0.31, (c) r=0.312, (d) r =0.35, (¢) r = 0.39, (f) extent of the pole trajectories (see Fig. 12 caption for linestyle
description).
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4. Damped system ({; #0, {, #0)

The response of the undamped system and the analysis presented above can be used as a framework for
understanding the response of the system in the presence of damping. Although with {; and/or {, non-zero
the trajectories are no longer constrained to integral curves (r = constant, # = constant) in phase space, the
timescale associated with the response along integral curves is much smaller than that associated with the
evolution of r and &, which is ((¢). Therefore, for (1) durations in time, the response approximately follows
an integral curve and is, therefore, qualitatively similar to the response of the undamped system. However this
description breaks down in the neighborhood of a bifurcation in the undamped system, and as the energy of
the system decreases the damped response will undergo qualitative changes in its response near these states.

4.1. Numerical investigation

In Fig. 14 the damped response of an impulsive orbit is shown for three different initial energy levels. Note that
these can be compared to the phase portraits shown in Fig. 8 for the undamped system. In the presence of damping
the equilibrium point formerly identified with S11+ no longer exists. The system is structurally unstable and the
family of equilibria formerly parametrized by r becomes a trajectory on which the evolution is slow, of O(g).
Although the equilibrium point no longer exists, this normally elliptic motion can be loosely referred to as S11+.

For energies that are sufficiently large, shown in Fig. 14a, the response initially approaches S114. This
initial transient interval is followed by the slow evolution of S11+ as the energy decreases. Finally, the state
identified with S11+ becomes unstable and the response localizes to the LO, so that lim,_, o ¥/(¢) = 7/2. In the
figure this final stage is seen as the spiraling of the trajectory toward the origin.

For lower initial energy levels, as seen in Fig. 14b, the amplitude of the fluctuations in the initial transient
interval is increased. However, as for larger energy levels the response approaches S11+ before finally
localizing to the LO as the energy becomes sufficiently small. Finally, if the initial value of r is sufficiently
small, the response quickly localizes in the LO as shown in Fig. 14c, and does not approach S11+. Instead, the
response spirals toward the origin as time increases.

In Fig. 15 the response of the system is shown versus time as obtained from numerical simulation. The total
energy /(f) is shown, along with () and the evolution of Ji(7), which describes the instantaneous change in the
energy of the averaged equations, and can be written as

h= —%ﬂ{l + siny +°‘Tr2(e(1 + sin ¢) — v/ cos y cos P)[(1 + ¢)
—(1 —¢)siny — 2¢5cos¢cos¢]} — %ﬁ[(l +¢&)— (1 —¢)siny
- 2ﬁcos¢cos¢]{1 +°‘2—r;(1 + o)1 +&) — (1 —¢)siny
2 zcos  cos ¢]}. 24)

(b) (©

Fig. 14. Phase space projection (o = 1.00, ¢ = 0.10, {; = {, = 0.05): (a) r(0) = 2.00, (b) (0) = 1.00, and (c) r(0) = 0.50.
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Fig. 15. Numerical integration of the impulsive orbit (¢ = 0.10, o = 1.00, { = 0.05): (a) #(0) = 0.50 and (b) r(0) = 1.00.

The above equation on / is not considered as part of the equations of motion, although it could in principle
replace one of the equations in Egs. (8). Instead, the response of r(7), (), and ¢(7) are determined numerically
and then /(7) is calculated a posteriori. Finally, the quantity h(t)/h(t) which represents the instantaneous
exponential decay rate of the energy, is also shown.

The instantaneous power dissipated in the nonlinear energy sink, defined as Pngs can be determined from
(24) with {; = 0, and the nonlinear energy sink is most effective when the power is maximal. In Fig. 16 the
level sets of Pngs are constructed in phase space for fixed r. These equi-power curves coincide with the level
sets of the amplitude of ||y, — »,| (see Eq. (9)), equivalent to curves in phase space for which

(1+¢)— (1 —e¢)siny — 2/ecosy cos ¢
= (1 + &)(1 — A(¢) sin(yy + y(¢))) = constant. (25)

Note that this quantity is independent of r. Although r changes the value of Pngs, it does not affect the
geometry of the level sets of this quantity.

As a function viewed in phase space, the power dissipated in the nonlinear energy sink possesses two
extrema, seen as stationary points in Fig. 16. The stationary point that lies along the curve ¢ = 0 (to the right
of the origin) is a minimum, while the point for ¢ = 7 is a maximum. These stationary points do not coincide
with the equilibria S11+, although as r — oo the equilibria S114 approach these stationary points. From
Fig. 16, the most efficient energy dissipation occurs for trajectories that are located away from the minimum of
PnEs, located at

— &

V==—790)==— arctan(lzﬁ>, (26)

which lies near S11+. In contrast, the maximum of Pngs occurs at ¥ = —7n/2 + y(0).



D.D. Quinn et al. | Journal of Sound and Vibration 311 (2008) 1228-1248 1243
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Fig. 16. Level sets of Pngs (¢ = 0.10).

Revisiting the numerical simulations shown in Fig. 14, the trajectories shown in Figs. 14a and b with
r(0) = 2.00 and r(0) = 1.00, respectively, are quickly drawn toward S114 and into a region of inefficient
dissipation. As the energy is further decreased the trajectory follows S11+4 and the rate of energy loss is
expected to slowly increase with this drift. In contrast, the trajectory for r(0) = 0.50 undergoes an initial
interval of motion that takes it into a region of efficient dissipation as seen in Fig. 16. Thus the energy loss
induced by the nonlinear energy sink is expected to be significant in these initial motions.

These conjectures are verified in Fig. 15. In each simulation the initial transient motion is accompanied by a
relatively large decrease in the total energy. As the response approaches S11+ the rate of the energy decrease is
reduced. Recall that S11+ is an in-phase motion so that the relative displacement between the masses, and
hence the effect of the coupling including the damping {, is small. In contrast, during the initial transient
motion the relative displacement is larger, as is the associated dissipation. Note however that the exponential
decay rate h(l)/h(l) is largest when S114 loses stability and the system moves toward a response localized in
the LO. This implies that the energy dissipation is most efficient during this transition between S11+4+ and
S11—, when the trajectories move through a region of enhanced dissipation.

The most effective energy dissipation occurs when the efficient response described above occurs for
relatively large energies. As illustrated in Fig. 15a, with (0) = 0.50, the transition occurs almost immediately
when the energy / is still large. In contrast, for 7(0) = 1.00 the response is attracted to S114 during the initial
transient phase, but note that the exponential rate remains small. The efficient energy dissipation does not
occur until #~75, for which the energy has already decayed to a low value—the energy dissipation at this point
is efficient but it is not necessarily effective. Finally, for sufficiently small initial energies, so that the impulsive
orbit remains near S11—, the trajectory is localized to the LO, and the efficient energy dissipation described
above does not occur.

The effectiveness of the nonlinear energy sink at dissipating energy from the impulsive orbits therefore
depends on two factors: the first is the geometry of the impulsive orbit itself, which is approximated by that for
the undamped system. The second influence arises from the effect of damping on the resulting flow through
Pnis. Recall the qualitative behavior of the undamped system in which the impulsive orbits undergo a jump in
their amplitude as the initial energy varies. This jump arises from the homoclinic connection seen in phase
space in Fig. 8. For sufficiently small initial energies the amplitude of the impulsive orbit is small, and more
importantly for the resulting efficiency of the nonlinear energy sink, lies within a region of limited power
dissipation. Moreover, the dissipation serves to keep the resulting damped orbit within this region. As the
energy increases, the amplitude of the impulsive orbit jumps, taking the impulsive orbit into a region of
increased Pngs, and the efficiency of the nonlinear energy sink increases. With ever increasing initial energies,
the impulsive orbit quickly approaches S114+ due to damping, which lies within a region of lower Pngs.

The efficiency of the nonlinear energy transfer from the impulsive orbit is described by the time required for
the value of r(¢) to decay by a factor of exp(1) so that #(T)) = r(0)e~!, which, for a linear system, is defined as
the time constant. However, in the present nonlinear system this value is not strictly a property of the
components and also depends on the initial conditions. Nonetheless this numerically computed value,
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identified as 7, is used to compare the response of the system for varying parameters and initial conditions—
increased efficiency corresponds to smaller values of 7.

In Fig. 17 the variation of T is shown for ¢ = 0.05, {; = 0.00, and {, = 0.10 as r(0) varies. Here {; = 0.00
was chosen to focus on the dissipation in the attachment. In addition, the impulsive orbit is shown for this
time interval at several different energy levels. Near r(0) = 0.46 there is a sharp decrease in the numerically
computed value of T'. As seen in Figs. 17b and c, at this point the impulsive orbit undergoes a sudden jump in
amplitude and moves from a localized response in the LO for r(0) = 0.46 to a larger amplitude motion that
moves into a region of increased energy dissipation in the nonlinear energy sink (cf. Fig. 16).

For a linear single degree- of- freedom system with damping ratio ¢{ and unit natural frequency, the
expected value of T'is ¢(. In Fig. 18a the quantity 7= T /(e(,) is shown as a function of ¢ and r(0). The value
of T undergoes a sharp decrease near r(0)~0.45, attributed to the geometry of the unperturbed system as
illustrated in Fig. 17. Recall that decreases in T indicate increased efficiency of the energy transfer. However,
this scaled decay time is relatively insensitive to the mass ratio ¢. The jump in efficiency is most pronounced for
small values of the mass ratio ¢, for which the IO surrounds the S11— state at the bifurcation. For larger
mass ratios the 1O of the unperturbed system surrounds S11+ as described in Fig. 12, and the decrease in 7 is
more gradual.

For fixed mass ratio ¢, similar conclusions can be drawn as the damping ratio {, varies. As shown in
Fig. 18b, holding the damping constant, for low initial energies the value of Tis relatively large and T actually
increases with increasing damping, indicating that the system requires longer to decay relative to the expected
value of &{, (although the actual time decreases). For fixed {, sufficiently small, as r(0) increases the decay time
T undergoes a sharp decrease. Note, however, that the location in r(0) of this transition increases as (,
increases, and the transition itself becomes more gradual. As the damping increases the geometry of the
unperturbed system plays a less significant role on the evolution of the damped system. In fact, for sufficiently
large damping, no significant increase in the efficiency of the energy transfer occurs.
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0 1 I 1 I 1 I 1 I 1
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3m/2 3n/2 3m/2

Fig. 17. Numerical simulations of impulsive orbits as (0) varies (z = 1.00, ¢ = 0.05, {, = 0.10). The points marked in (f) correspond to the
phase portraits shown in (a—¢): (a) r(0) = 0.45, (b) r(0) = 0.46, (c) r(0) = 0.47, (d) r(0) = 0.50, (e) r(0) = 0.75 and, (f) nonlinear energy sink
efficiency.
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(b)

Fig. 18. Time required for the impulsive orbit to reach (0)/2 (a = 1.00, & {; = 0.00): (a) {, = 0.10, 0.01<¢<0.20 and (b) ¢ = 0.05,
0.01<{,<0.50.

4.2. Stability of S11+

From the long-time behavior of the impulsive orbits shown in Figs. 14 and 15, we observe that for
sufficiently large initial values of r(0) the response is initially attracted to S11+ before transitioning to S11—
with the response becoming localized in the LO. During this transition the efficiency of the energy dissipation
in the nonlinear energy sink is increased. This transition can be associated with a change in stability of S11+4 in
directions normal to the evolution along S11+.

The damped equations of motion can be formally written as

F={g,, x=f+lg, x=[.9I, 27)

where the functions fy, g,, and g, can be determined from Eq. (8a). To these equations we assume that {, which
represents the strength of the damping, is the expansion parameter and identify the new time scale T = {¢. The
method of multiple scales is applied to these equations, with the additional identification of the timescale
introduced by r, so that

d © 0 0
RN Sl il 28
a~at em Ty @8)
and the state variables are expanded in (.
At (") the equations of motion reduce to
%0 — (0., 29)

The states identified as S114 correspond to slowly varying nonlinear normal modes of the original system and
are identified as equilibrium points at this order on the fast timescale, so that

fx(X09 r) = 09 (30)

which can formally be solved so that xy = X((r), that is, parametrized by r. Also, note that x; is independent of
the slow timescale 7. In addition, from x(r)

0xo(r)

afx (X(], V)
or '

[V, )]

(31
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At ((¢"), the expansion can be reduced to

ox Oxo(r
X1 Vh(x0 ) X1 + {0 7) — g, (00, 1) 2L (32)
ot or
The solution can be written in the form x; = q; + s;, with
ofyx(xg, 7
s1 = —[VEx(x0.1] - {gx(xO,r) — g, (x0, N[VEx(x0, )] %} (33)
so that
0
S = Vi (%0, 4y (34)
t
Finally, at 0((%)
0xy 0q, Oq,
5 - fo(x())r) - X2 — |:6T + gr(XO, r)g
ofx(xq,
+ {Vgx(xo, )+ 980 - 0 6 9, (1) 4 (0, sl} q
0 0 ofx(Xo,
S Rl g,.(xo,r)i + 4 Vg, (X0, 7) + [VEx(x0, )] QULLUL) ® Vg,(Xo, 1) ¢ - 81
ot or or
1
+5 {s1 - VVix(x0,7) - 81 +q; - VVix(X0,7) - q; }. (35)

In this expression the terms that are linear in q; contribute to the secular terms whose removal provides the
slow flow equations. Specifically, if (4;,u;), i = 1,2, are the eigenpairs of Vfy then q; can be written as

q, = c1(r, )"y + oo(r, 1)e™ us. (36)

Identifying v;, i = 1,2 as the dual basis, so that V; - u; = J;;, then removal of secular terms requires that

oc; oc; ofx (o,
%t 4,000 2 = L | Va0 + 198001 - 0 6 9,
ot or or
~|—Vfo(X0,V)'Sl} ‘ui}ci~ (37)
This equation can be solved with the method of characteristics, which are defined by the curves
dr
& = o). (38)
so that along the characteristics
Gci aC,' dC,’
— — = 39
5, T2 = (39)
and the variational equation reduces to
de; =a(r)c;, (40a)
dr
dr
= 9, (xo(0).1) (400)
T
with the exponential rate ¢ defined as
, sin y 4 $in(2 g (r) +7)
o= {SCI sin g (r) — (o(1 +8)< 2cosPog(r)

8{1 (SIN Yo (r) — €08 21 (1) + (a(1 + £)(SIN Yo (1) + OS2y (1) + y)))} an

28in Y, (1) — 22 (1 4 £)*(cosQreg (r) + 7)) + sin(W e (r) + 7))
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Fig. 19. Exponential rate (¢ = 0.05, « = 1.00, {; = {; = 0.05).

The final term in this expression arises solely from the slow evolution in r, that is, for g, = 0 this last term
vanishes. Also note that in this equation , represents the equilibrium value of ¢, which is a function of r, and
r depends on the slow timescale t through the definition of the characteristic. The evolution equation given
above can be formally solved to yield

ci(t) = ¢i(0) exp{ /0 ' a(r(s)) ds}, (42)

where r(7) is determined independently from c;(z). Therefore the growth or decay of the amplitude of solutions
near S11 is determined by the sign of ¢, which is in turn only a function of r. In Fig. 19 the exponential rate o is
shown for S11+ as a function of r, with £ = 0.05, « = 1.00, and {; = {, = 0.05. For r sufficiently large
(r>0.30) 0<0, indicating that solutions are attracted to S114. However, as energy is lost in the damped
system and r decreases, ¢ changes sign and solutions diverge from S114. This progression matches the
behavior illustrated in simulations of the averaged system, shown in Figs. 14 and 15.

5. Concluding remarks

The findings of this work confirm that, for sufficiently weak damping, nonlinear damped transitions are
essentially influenced by the underlying Hamiltonian dynamics. It follows that significant understanding and
interpretation of (even complicated and multi-frequency) damped nonlinear transitions in the dynamics can be
gained by performing perturbation studies that use as generating functions the Hamiltonian periodic or quasi-
periodic orbits. An additional finding in this work is the central role that impulsive orbits play on efficient
targeted energy transfers passive targeted energy transfers from the (directly excited) LO to the essentially
nonlinear attachment. Based on the study of impulsive orbits and under the assumption of 1:1 resonance
capture, we were able to determine conditions on the system parameters and forcing level for which optimal
passive targeted energy transfer occurs, e.g., conditions where a major part of the vibration energy of the LO
gets passively transferred and locally dissipated by the nonlinear attachment in the least possible time. In
addition to this observed localization to S11+, energy dissipation in the system is enhanced during the
transition from S11+ to S11—. Therefore, the novel energy dissipation properties of the essentially nonlinear
system arise from the localization of the slowly varying nonlinear normal modes and the transition between
1:1 resonance captures. The analytic investigation of optimal passive targeted energy transfer will be reported
in a companion work, where the boundaries in parameter space separating optimal from inefficient passive
targeted energy transfer will be formulated.
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