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Abstract

In the present work the problem of determining the probabilistic structure of the dynamical response of nonlinear systems subjected to
general, external, stochastic excitation is considered. The starting point of our approach is a Hopf-type equation, governing the evolution of
the joint, response–excitation, characteristic functional. Exploiting this equation, we derive new linear partial differential equations governing
the joint, response–excitation, characteristic (or probability density) function, which can be considered as an extension of the well-known
Fokker–Planck–Kolmogorov equation to the case of a general, correlated excitation and, thus, non-Markovian response character. These new
equations are supplemented by initial conditions and a marginal compatibility condition (with respect to the known probability distribution of the
excitation), which is of non-local character. The validity of this new equation is also checked by showing its equivalence with the infinite system
of moment equations. The method is applicable to any differential system, in state-space form, exhibiting polynomial nonlinearities. In this paper
the method is illustrated through a detailed analysis of a simple, first-order, scalar equation, with a cubic nonlinearity. It is also shown that various
versions of Fokker–Planck–Kolmogorov equation, corresponding to the case of independent-increment excitations, can be derived by using the
same approach.

A numerical method for the solution of these new equations is introduced and illustrated through its application to the simple model problem.
It is based on the representation of the joint probability density (or characteristic) function by means of a convex superposition of kernel functions,
which permits us to satisfy a priori the non-local marginal compatibility condition. On the basis of this representation, the partial differential
equation is eventually transformed to a system of ordinary differential equations for the kernel parameters. Extension to general, multidimensional,
dynamical systems exhibiting any polynomial nonlinearity will be presented in a forthcoming paper.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Many problems occurring in applied sciences and engi-
neering are successfully modelled as stochastic differential
equations. A very important class of such problems are those
I This work was initiated in 2004 in the context of the Diploma Thesis of
TPS, under the supervision of GAA at the National Technical University of
Athens, Dept. of Naval Architecture and Marine Engineering.

∗ Corresponding author. Tel.: +30 210 7721136; fax: +30 210 7721397.
E-mail addresses: sapsis@mit.edu (Th.P. Sapsis), mathan@central.ntua.gr

(G.A. Athanassoulis).

0266-8920/$ - see front matter c© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.probengmech.2007.12.028
modelled as stochastically excited, nonlinear, dynamical sys-
tems. Well-known examples include the dynamic responses of
ships and other man-made structures and systems under the
influence of wind-generated waves in the sea [46,58,5,1], the
dynamic responses of buildings and bridges under the influ-
ence of earthquakes [36,16,31], as well as the dynamic re-
sponses of structures and vehicles under the influence of wind
forces [48,33,52,27]. In all these cases the excitation loads are
assumed to be known stochastic processes, either Gaussian or
non-Gaussian, as in the case of wind loads. Their probabilis-
tic and correlation structure can be (and, usually, have been)
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inferred by means of statistical data analysis and, in most cases,
have been conveniently parameterized for easy reference and
use in calculations. Most of the foundational facts and aspects
concerning the stochastic modelling philosophy in engineering
and applied science, and the corresponding mathematical back-
ground can be found nowadays in book form; see, e.g., [33,49,
52,44].

The ultimate objective in the analysis of such problems is
to obtain a complete probabilistic description of the response
process, permitting us to answer any important questions about
the response dynamics. Examples of such questions concerns
the distributions of local extrema, of upcrossing rates at certain
levels, of the first passage time associated with a critical level
value, etc. To make this possible we need, in principle, to
know the whole Kolmogorov hierarchy of the n-fold, joint,
probability distributions Fx(t1)x(t2)...x(tn) (a1, a2, . . . , an) of the
n-variate response random variables (x(t1), x(t2), . . . , x(tn)) at
any collection of time instances (t1, t2, . . . , tn) or, equivalently
and more concisely, the Characteristic Functional (Ch.Fl) of
the response process. Because of the obvious difficulties of
this general concept of solution of the probabilistic dynamics
problems, there is a constant tendency – at least in the applied
and engineering literature – to avoid such an approach, resorting
to simpler (partial) solution concepts.

An important and extensively studied context, permitting a
relatively easy characterization of the probabilistic responses
of a dynamical system, occurs if we assume that the excitation
is a process with independent increments (see, e.g., [43,17,
51,24,25,30]). The key feature in this context is that the
response vector, in the state-space formalism, is a Markovian
process and, thus, its probability density function is governed
by the Fokker–Planck–Kolmogorov (FPK) equation (in the
case of a Gaussian excitation) or by reasonable extensions of
the FPK equation (in the case of non-Gaussian excitation).
Approximate techniques of solution of these equations have
been thoroughly surveyed in [18]. Interestingly enough, there
have been identified broad classes of problems in which
analytic solutions of the classical FPK equation are available
(see, e.g., [12,51,56,41]), making this approach even more
attractive.

An approximate method dealing with nonlinear systems un-
der general stochastic excitation is the Statistical Linearization
Method (see, e.g., [44]), which is based on the approximation of
the full system by a ‘statistically equivalent’ linear one. Some
variations of the method, concerning local linearization in the
phase space, have been recently presented [40], giving promis-
ing results. It is also possible to develop approximate solution
schemes by replacing the given dynamical system by a “sta-
tistically equivalent” nonlinear system provided that the latter
belongs to the class of problems which can be solved exactly.
This method has been applied to various particular problems in
the last three decades; see e.g. [37,13,14,44,42,59].

Another well-known and extensively used method that can
be applied to any type of stochastic excitation and to any type
of nonlinearity, is the method of moments, which reduces the
initial stochastic dynamics problem to an infinite system of
deterministic differential equations for the moment functions
[7,43]. This infinite system is truncated and becomes closed
(in the case of nonlinear problems) by means of appropriate
closure schemes. Then, it is solved numerically, providing us
with some (incomplete) information about the probabilistic
characterization of the response process.

Another method, in principle well-known but in very little
use for solving practical problems in stochastic dynamics, is
the one based on the characteristic functional (Ch.Fl) of the
full probability measure associated with the dynamic response
process. The first step in this direction was made by Hopf
[29] who derived a Functional Differential Equation (FDE)
for the Ch.Fl associated with the probabilistic solution of
the Navier–Stokes equations. This approach, known as the
statistical approach to turbulence, has been developed further
by many authors (see, e.g., [35,38,21,20]), and, eventually,
led to the derivation and exploitation of various transport-
diffusion equations for pdfs of the velocities and composition
in turbulent reactive flows [32,39]. In parallel, a simpler version
of the same approach has been developed and applied to
finite-dimensional dynamical systems, governed by Stochastic
Ordinary Differential Equations (SODEs). See, e.g., [7]. Such
Hopf-type FDEs are always linear, and govern the Ch.Fl of the
sought-for probability measure or – depending on the specific
formulation – the Ch.Fl of the joint, response–excitation,
probability measure. In recent years successful attempts have
been reported towards the analytic determination of the
response Ch.Fl for some classes of linear problems, even
avoiding the explicit use of Hopf’s FDE [11,8,9]. For some
non-linear problems, the Ch.Fl can be expressed as a formal
infinite-dimensional (functional) integral [38], which is of little
(or no) practical use.

In this paper, Hopf’s FDE is taken as the starting point of
the probabilistic analysis of the considered stochastic dynamics
problem. Because of the generality of Hopf’s approach, the
method is applicable to any (at least) polynomially non-linear
system and any kind of stochastic excitation. Nevertheless,
for reasons of simplicity and clarity, our study will be
carried out on a specific, first-order, dynamical system, with
cubic nonlinearity. The excitation process will be assumed,
in principle, completely known, with a given (arbitrary)
correlation structure and continuous (or smoother) sample
functions. This implies a non-Markovian character of the
response, making the approach based on the FPK equation
inapplicable. Exploiting the Hopf FDE, new Partial Differential
Equations (PDEs) governing the joint, response–excitation,
characteristic functions (ch.f.), are derived. The corresponding
equations for the joint pdfs are also obtained, by applying a
Fourier transformation. These new PDEs, which are always
linear, can be considered as a systematic and rigorous
generalization of the FPK-type equations to the case of
correlated excitation and non-Markovian responses. As an
additional test of validity of these new PDEs, we show that they
produce the correct infinite system of the moment equations.
The same approach, i.e. starting from the Hopf FDE, is also
applied to derive FPK equations, for the case of independent-
increment excitation. A lack of rigor occurs here, when the
sample functions of the excitation process are not continuous,
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since the validity of the basic properties of the Ch.Fl exploited
in our treatment are questionable in this case. Nevertheless, it
is shown, in Section 6, that the equation obtained using our
approach, by means of formal calculations, coincides with the
extended FPK equation (for the same system) obtained by other,
well-established methods [25]. This allows us to conjecture
that a rigorous extension of the present theory to the case of
independent-increment excitation might be possible, probably
under some appropriate conditions.
Abbreviations

The following abbreviations – some of which have already
been introduced above – will be consistently used in the
following:

B-space Banach space
ch.f(s) characteristic function(s)
Ch.Fl(s) characteristic functional(s)
F-derivative Frechet derivative
FDE(s) functional differential equation(s)
FPK Fokker–Planck–Kolmogorov
ODE(s) ordinary differential equation(s)
PDE(s) partial differential equation(s)
pdf(s) probability density function(s)
SODE(s) stochastic ODE(s)

2. Preliminaries and notation

In this work we consider ODEs (systems) of the form (in
state space formulation):

ẋ (t) = G (x (t)) + y (t) , x (t0) = x0, (2.1)

where x and y are scalar-valued or N -vector-valued, continuous
(or smoother) functions, defined at least on an interval I ≡

[t0, T ] (that is, x, y : [t0, T ] ≡ I → RN ), and G : RN
→ RN ,

N = 1 or N > 1, is also a continuous (or smoother) function.
Both the excitation y (·) and the initial conditions x0 will be
assumed known stochastic elements (function and variable,
respectively). In contrast with the standard approach, followed
in the case of an Ito SODE, the excitation y (·) is allowed to be
smooth (e.g., k-times continuously differentiable), exhibiting
any type of correlation structure in time. Thus, the sample
functions x (t) and y (t) are considered as elements of smooth-
function B-spaces, denoted by X and Y , respectively. Our
main results will refer to the case N = 1, Y = Ck (I ), I ⊆ R,
k = 0 or k > 0, and X a similar space with smoother elements.
The whole methodology can be extended to the vector case
N > 1 with the usual trouble (see [4] for a detailed analysis
of a second-order system).

The topological dual spaces of X and Y are also B-spaces
and will be denoted by X ′

= U and Y ′
= V . The symbols

〈u, x〉 and 〈v, y〉 denote the standard duality pairings between
X and U , and Y and V , respectively.

The underlying probability space is denoted by
(Ω , B (Ω) , PΩ), where Ω is an abstract version of the
sample (trial) space, B (Ω) is the family of Borel sets of
Ω , and PΩ is the corresponding probability measure over
Ω . The stochastic processes x and y are measurable maps
x, y : Ω → X , Y , which define the induced probabil-
ity spaces (X , B (X ) , PX ) and (Y , B (Y ) , PY ), respec-
tively. We shall also need and consider the joint process
x × y : Ω → X × Y with induced probability space
(X × Y , B (X × Y ) , PX ×Y ). In the following we shall
use the notation x or x (·) or x (· ; ω), and similarly for y, for the
random element, and x (t; ω), t ∈ [t0, T ] ≡ I ⊆ R, ω ∈ Ω , and
similarly for y, for the sample functions, in accordance with the
needs of the discussion.

The finite-dimensional distributions, densities and character-
istic functions of the random element x (· ; ω) will be denoted
by Fx(t1)...x(tM ) (α1, . . . , αM ), fx(t1)...x(tM ) (α1, . . . , αM ) and
φx(t1)...x(tM ) (υ1, . . . , υM ), respectively. This implies a conve-
nient notation for the joint random element (x (· ; ω) , y (· ; ω));
for example fx(t1)x(t2)y(t1)y(t2)y(t3) (α1, α2, β1, β2, β3) is the
(2 + 3)-order joint probability density function, and
φx(t1)x(t2)y(t1)y(t2)y(t3) (υ1, υ2, ν1, ν2, ν3) is the corresponding
characteristic function. The usual (finite-dimensional) mean
value operator (ensample average) will be denoted by Eω [·].
For example, the mean value function of the random element
x (· ; ω) will be written as mx(t) = Eω [x (t; ω)]. Slight varia-
tions (simplifications) of this notation will be introduced later,
in accordance with the needs of the presentation.

Infinite-dimensional (global) moments, are defined by
integrating over the whole sample space X with respect to the
probability measure PX (see, e.g., [33,55,19]). For example,
the mean (first moment) mX is defined to be this element of
X , for which the following scalar equation holds true:

〈u, mX 〉 =

∫
X

〈u, x〉 P (dx) , ∀u ∈ U , (2.2a)

where U ≡ X ′. Furthermore, the correlation operator (second
moment) is defined to be this linear operator RXX : U → X ,
for which the following scalar equation is valid ∀u, w ∈ U :

〈w, RXX u〉 =

∫
X

〈w, x〉 〈u, x〉 P (dx) . (2.2b)

The integrals appearing in the right-hand side of Eq. (2.2a)
are infinite-dimensional (functional) integrals over B-spaces.
(For detailed definitions and conditions ensuring existence of
these integrals see references stated above or [15].) In general,
the functional integral of any bounded, measurable, continuous
functional G : X → C, with respect to a probability measure
P , is well defined, and will be denoted by

∫
X

G (x) P (dx).
Measures and integrals over infinite-dimensional vector

spaces are related with the corresponding finite-dimensional
ones through the concepts of cylinder sets, cylinder measures
and cylinder functionals. Let X be a separable B-space, U
be the dual of X , and u1, . . . , uQ , be Q linearly independent
elements of U . Then, to any element x ∈ X we associate the
Q-dimensional projection Πu1,...,uQ : X → RQ , defined by

Πu1,...,uQ [x] =
(
〈u1, x〉 , . . . , 〈uQ, x〉

)
. (2.3)

The inverse of Πu1,...,uQ [·], applied to the Borel sets B
(
RQ

)
,

defines the cylinder sets of X . The existence of a probability
measure PX on X implies the existence of Q-dimensional
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(marginal) measures Pu1,...,uQ on RQ , associated with the
random vectors

(
〈u1, x (· ; ω)〉 , . . . ,

〈
uQ, x (· ; ω)

〉)
by means

of the relation

Pu1,...,uQ

(
EQ
)

= PX

(
Π −1

u1,...,uQ

[
EQ
])

(2.4)

for any EQ ∈ B
(
RQ

)
.

Consider now an arbitrary cylinder functional G : X → C,
that is a functional of the form

G (x) = g
(
〈u1, x〉 , . . . ,

〈
uQ, x

〉)
, x ∈ X , (2.5)

where g : RQ
→ C is an arbitrary, measurable, integrable

function. In this case, the infinite-dimensional integral of G (x)

with respect to the probability measure P over the space X ,
can be expressed as a Q-dimensional integral by means of the
formula:∫

X

G (x) P (dx) =

∫
RQ

g (a) Pu1,...,uQ (da) . (2.6)

Eqs. (2.5) and (2.6) provide us with a powerful method for
evaluating integrals over infinite-dimensional (function) spaces.
They will be referred to as the (Q-dimensional) Projection
Theorem.

3. A brief review on the characteristic functional and its
basic properties

For stochastic processes with values in a linear space (as
e.g. the space of continuous functions C (I ), I = [t0, T ]), the
full probability measure is completely characterised by means
of the corresponding characteristic functional. See, e.g., [23,
Chapter V, Sec.3], [55, Chapter IV]. In this section we recall the
definition and some basic properties of the Ch.Fl for probability
measures defined on separable B-spaces.

3.1. Definition of the characteristic functional

Definition 3.1. Let X be a separable B-space and P = PX

be a probability measure defined on it. The Ch.Fl F of P is a
cylinder functional defined on the dual space X ′

= U by the
formula

F (u) =

∫
X

ei〈u,x〉P (dx) , u ∈ U . (3.1)

This integral always exists provided that the corresponding
probability measure is well defined.

3.2. Infinite-dimensional (global) moments

Let the Ch.Fl be differentiable in the sense of Frechet. In
order to calculate the F-derivative DF (u), we make use of the
Gateaux derivative (which always exists for a F-differentiable
map). Thus, we have

DF (u) [z] =
dF (u + εz)

dε

∣∣∣∣
ε=0

= i ·

∫
X

〈z, x〉 ei〈u,x〉P (dx) , u, z ∈ U . (3.2)
Setting u = 0, we obtain

DF (0) [z] = i ·

∫
X

〈z, x〉 P (dx) , z ∈ U . (3.3)

Since DF (0) [z] is a continuous, linear functional with respect
to z, there should exist an element m ∈ X , such that

〈z, m〉 = −i · DF (0) [z] =

∫
X

〈z, x〉 P (dx) . (3.3
′

)

Comparing the above equation with Eq. (2.2a), it is easily seen
that the element m ∈ X of Eq. (3.3)

′

coincides with the
mean value mX of the probability measure P . The correlation
operator RXX can be associated in a similar way with the
second F-derivative of the Ch.Fl. In this case we have

〈w, RXX z〉 = −D2F (0) [z, w]

=

∫
X

〈w, x〉 〈z, x〉 P (dx) , z, w ∈ U .

3.3. Finite-dimensional (point) moments

In the case where the space X is a function space,
apart from infinite-dimensional (global) moments, we are also
interested in finite-dimensional moments associated with finite-
dimensional projections (x (t1; ω) , x (t2; ω) , . . . , x (tn; ω)),
for any set of time instances (t1, t2, . . . , tn). This kind of
moments can be obtained also by differentiating the Ch.Fl,
this time using Volterra functional derivatives. (See, e.g.,
[57] or [7].) Volterra derivatives, e.g. the first-order one
δF (u) /δu (t), can be calculated either by applying the
original definition to the functional, or by applying the Frechet
derivative DF (u) [z] at z (·) = δ (· − t). Following the second
approach, and using Eqs. (3.3) and (2.6), we obtain

δF (0)

δu (t)
def
= DF (0) [δ (· − t)] = i

∫
X

x (t) P (dx)

= i
∫
R

adFx(t) (a) = iEω [x (t; ω)]

and thus

Eω [x (t; ω)] =
1
i
δF (0)

δx (t)
. (3.4a)

Similarly we obtain

Eω [x (t1; ω) x (t2; ω)]

=
1

i2
· D2F (0) [δ (· − t1) , δ (· − t2)]

=
1

i2
δ2F (0)

δu (t1) δu (t2)
, (3.4b)

as well as analogous expressions for higher-order moments.
Working similarly, and using appropriate generalized functions,
we can derive equations for higher-order moments involving
both the values of the random element at some time instances,
and the values of its derivatives either at the same or at different
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time instances. As an example we give the formula:

Eω
[
x ′ (t1; ω) x (t2; ω)

]
=

1

(−i) i
· D2 F (0)

×
[
δ′ (· − t1) , δ (· − t2)

]
.

4. Hopf-type equation for the characteristic functional

In order to illustrate the derivation of Hopf-type FDEs for
nonlinear dynamical systems, and pave the way to the next
section, where these equations will be exploited to produce new
PDEs for finite-dimensional ch.fs, we shall restrict ourselves
here to a specific case of a simple (scalar, first-order) dynamical
system having a cubic nonlinearity, which is described by the
following SODE:

x ′ (t; ω) + µx (t; ω) + kx3 (t; ω) = y (t; ω) , (4.1a)

x (t0; ω) = x0 (ω) , (4.1b)

where µ, k are deterministic constants, x0 (ω) is a random
variable with known ch.f φ0 (υ) , υ ∈ R, and the excitation
y (· , ω) is a real-valued random function, with sample space Y ,
probability measure Py , and Ch.Fl Fy (v) , v ∈ Y ′

= V . The
sample space Y can be taken to be a quite general, separable,
B-space. In the present work, it will be taken as a space Y =

Ck (I ) , I ⊆ R, for some k ∈ N ∪ {0}.
Standard existence and uniqueness theory (see, e.g., [10], or

[49]) ensure that there is a stochastic process x (· ; ω), with
sample space X = Ck+1 (I ) and probability measure Px , and
a joint probability space

(
X × Y , B (X × Y ) , Pxy

)
, such

that the joint process (x (· ; ω) , y (· ; ω)) verifies the SODE
(4.1).

The joint, response–excitation, probability measure Pxy is
equivalently described by the joint Ch.Fl

Fxy (u, v) =

∫
Y

∫
X

ei(〈u,x〉+〈v,y〉)Pxy (dx, dy) . (4.2)

We shall now use the SODE (4.1) in order to obtain an FDE
for Fxy (u, v). Let us consider the Volterra u-partial derivative
of Fxy at time t :

δFxy (u, v)

δu (t)
=

∫
Y

∫
X

ix (t) ei(〈u,x〉+〈v,y〉)Pxy (dx, dy) . (4.3)

Since the sample space X consists of smooth functions, we
can differentiate (4.3) with respect to t , obtaining:

d
dt

δFxy(u, v)

δu(t)
=

∫
Y

∫
X

ix ′(t)ei(〈u,x〉+〈v,y〉)Pxy(dx, dy).

(4.4)

Further, we compute the three-fold u-partial Volterra derivative
of Fxy (u, v) at time instants t1, t2, t3 ∈ I :

δ3Fxy (u, v)

δu (t1) δu (t2) δu (t3)
=

∫
Y

∫
X

ix (t1) ix (t2) ix (t3)

× ei(〈u,x〉+〈v,y〉)Pxy (dx, dy) . (4.5)
Setting t1 = t2 = t3 = t in the latter, and combining with Eqs.
(4.3), (4.5) and (4.1a), we get

d
dt

δFxy (u, v)

δu (t)
+ µ

δFxy (u, v)

δu (t)
− k

δ3Fxy (u, v)

δu (t)3

= i
∫

Y

∫
X

[
x ′ (t) + µx (t) + kx3 (t)

]
× ei(〈u,x〉+〈v,y〉)Pxy (dx, dy)

(4.1a)
= i

∫
Y

∫
X

y (t) ei(〈u,x〉+〈v,y〉)Pxy (dx, dy) . (4.6)

Clearly, the last double functional integral can be expressed
as a v-partial Volterra derivative:∫

Y

∫
X

iy (t) ei(〈u,x〉+〈v,y〉)Pxy (dx, dy) =
δFxy (u, v)

δv (t)
. (4.7)

Combining (4.6) and (4.7) we derive the sought-for, Hopf-type,
FDE that governs the joint Ch.Fl Fxy (u, v):

d
dt

δFxy (u, v)

δu (t)
+ µ

δFxy (u, v)

δu (t)
− k

δ3Fxy (u, v)

δu (t)3

=
δFxy (u, v)

δv (t)
. (4.8a)

Eq. (4.8a) is a linear FDE involving Volterra functional
derivatives, as well as ordinary time derivatives. The cubic
nonlinearity of the initial SODE corresponds to the 3-fold
Volterra derivative δ3Fxy/δu (t)3. From the above derivation
it is clear that any nth-order polynomial nonlinearity of the
initial differential equation is transformed to an n-fold Volterra
derivative in the corresponding Hopf-type FDE. Another
important feature of Eq. (4.8a) is that it holds true for any
continuous functionals u ∈ U , v ∈ V .

Eq. (4.8a) has to be supplemented by an appropriate initial
condition, expressing that the probability measure associated
with the initial state x (t0, ω) is given. This condition can be
implemented by means of the joint Ch.Fl Fxy (u, v) as follows.
Setting v = 0 (to restrict ourselves to the response process only)
and u = υ · δ (· − t0), υ ∈ R, (to concentrate only at the initial
time instant), will result in

Fxy (υδ (· − t0) , 0)

=

∫
Y

∫
X

ei(〈υδ(·−t0),x〉+〈0,y〉)Pxy (dx, dy)

=

∫
X

ei〈υδ(·−t0),x〉Px (dx) = φ0(υ),

where φ0 (υ) is the ch.f of x (t0, ω) = x0 (ω). Hence, the initial
condition can be expressed as

Fxy (υδ (· − t0) , 0) = φ0(υ), υ ∈ R. (4.8b)

5. Derivation of new PDEs for joint response–excitation
characteristic functions

In this section we shall exploit the Hopf-type FDE
(4.8), obtained above, to derive new PDEs for the joint,
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response–excitation, ch.f when the excitation is a known
stochastic process either with a.e. continuous sample functions
or smoother. In contrast with the case of an independent-
increment excitation process, where the randomness of the
excitation “regenerates” every time instant and allows us to
write explicitly an equation involving only the response density
(the well-known FPK equation), in the case of a stochastic
excitation with smooth sample functions, the randomness
evolves, in general, in a smoother way, as a result of the finite
correlation time, making necessary to consider response and
excitation jointly.

The causality principle dictates that the current value x (t; ω)

of the response, depends only on the history of the excitation
y (t0 ≤ s < t; ω). However, this does not prevent the stochastic
dependence between x (t; ω) and y (t + ε; ω), ε > 0, which is
a natural result of the smoothness and the finite correlation time
of the excitation, Cyy (t + ε, t) 6= 0.

We shall proceed to derive a PDE for the joint ch.f
φx(t)y(t) (υ, ν) corresponding to the pair of random variables
(x (t; ω) , y (t; ω)), t = fixed. To this end we apply Eq. (4.8a),
above, to the pair

u = υ · δ(· − t), v = ν · δ(· − s), (5.1)

(υ, ν ∈ R) and take the limit s → t , after some manipulations.
For the first term of Eq. (4.8a) (see also Eq. (4.4)), we obtain

d
dt

(
δFxy(u, v)

δu(t)

)∣∣∣∣ u=υ·δ(·−t)
v=ν·δ(·−s)

=

∫∫
X ×Y

i
dx(t)

dt
exp{iυx(t) + iνy(s)}Pxy(dx, dy)

=
1
υ

∂

∂t

[∫∫
X ×Y

exp {iυx (t) + iνy (s)} Pxy (dx, dy)

]
=
[
Projection Theorem

]
=

1
υ

∂

∂t

[∫∫
R×R

exp {iυx + iνy} fx(t)y(s) (x, y) dxdy

]
=

1
υ

∂φx(t)y(s) (υ, ν)

∂t
.

Taking now the limit s → t , we get

lim
s→t

d
dt

(
δFxy (u, v)

δu (t)

)∣∣∣∣ u=υ·δ(·−t)
v=ν·δ(·−s)

=
1
υ

∂φx(t)y(s) (υ, ν)

∂t

∣∣∣∣
s=t

. (5.2)

Working similarly, we readily obtain the following results
concerning the remaining terms appearing in Eq. (4.8a):

δFxy (υ · δ (· − t) , ν · δ (· − t))

δu (t)
=

∂φx(t)y(t) (υ, ν)

∂υ
, (5.3)

δ3Fxy (υ · δ (· − t) , ν · δ (· − t))

δu (t)3 =
∂3φx(t)y(t) (υ, ν)

∂υ3 , (5.4)

δFxy (υ · δ (· − t) , ν · δ (· − t))

δv (t)
=

∂φx(t)y(t) (υ, ν)

∂ν
. (5.5)
Combining Eqs. (5.2)–(5.5) with the FDE (4.8a), we obtain the
following PDE for the joint ch.f φx(t)y(t) (υ, ν), of the pair of
random variables (x (t; ω) , y (t; ω)), for every t > t0:

1
υ

∂φx(t)y(s) (υ, ν)

∂t

∣∣∣∣
s=t

+ µ
∂φx(t)y(t) (υ, ν)

∂υ

− k
∂3φx(t)y(t) (υ, ν)

∂υ3 =
∂φx(t)y(t) (υ, ν)

∂ν
. (5.6a)

Now, since the stochastic process y (· , ω) is given, its ch.f
φy(t) (ν) is known. Hence, the y-marginal of the joint ch.f
φx(t)y(t) (υ, ν) has to coincide with φy(t) (ν), resulting in the
following marginal compatibility condition:

φx(t)y(t) (0, ν) = φy(t) (ν) , ν ∈ R, t ≥ t0. (5.6b)

In addition, the initial condition (4.8b) implies the following
initial condition to φx(t)y(t) (υ, ν):

φx(t0)y(t0) (υ, 0) = φx(t0) (υ) = φ0 (υ) , υ ∈ R. (5.6c)

Finally, two obvious, yet essential, conditions that the sought-
for function φx(t)y(s) (υ, ν) should obey are the following:

φx(t)y(s) (0, 0) = 1, t, s ≥ t0, (5.6d)

φx(t)y(s) (υ, ν) is non-negative definite w.r.t. υ, ν,

for any t, s ≥ t0 (5.6e)

which come directly from the fact that it is a characteristic
function. The last two conditions will be referred to as
constitutive conditions.

The above problem (5.6a)–(5.6e) can be equivalently
reformulated in terms of the corresponding joint, response–
excitation, pdf fx(t)y(s) (a, β). Recalling that fx(t)y(s) (a, β)

and φx(t)y(s) (υ, ν) constitute a Fourier transform pair, i.e.

φx(t)y(s) (υ, ν) = F a→υ
β→ν

{
fx(t)y(s) (a, β)

}
,

and applying the inverse Fourier transformation to (5.6a)–(5.6c)
and (5.6e), we readily obtain the partial differential equation

∂ fx(t)y(s) (a, β)

∂t

∣∣∣∣
s=t

+
∂

∂a

[(
µa + ka3

)
fx(t)y(t) (a, β)

]
+

∂

∂a

[
β fx(t)y(t) (a, β)

]
= 0, (5.7a)

the following alternative forms of the marginal compatibility
condition and the initial condition∫
R

fx(t)y(t) (a, β) da = fy(t) (β) , β ∈ R, t ≥ t0, (5.7b)∫
R

fx(t0)y(t0) (a, β) dβ = fx(t0) (a) = f0 (a) , a ∈ R, (5.7c)

as well as the corresponding new forms of the constitutive
conditions∫
R×R

fx(t)y(s) (a, β) dadβ = 1, t, s ≥ t0 (5.7d)

fx(t)y(s) (a, β) ≥ 0, for any a, β ∈ R any t, s ≥ t0. (5.7e)
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To the best of our knowledge, Eqs. (5.6a)–(5.6e) and (5.7a)–
(5.7e), governing the evolution of the joint, response–excitation,
ch.f φx(t)y(t) (υ, ν) and pdf fx(t)y(t) (a, β), first appeared in [3].
They can be considered as a new kind of mathematical model,
providing us with the probabilistic characterization of the re-
sponse x (t, ω) , ω ∈ Ω , for each t ∈ I , obtained by taking
the y-marginal of the joint ch.f or the joint pdf. This math-
ematical model is valid for any kind of stochastic excitation
with a.e. continuous (or smoother) sample functions, having
any (known) probabilistic structure.

Although the mathematical analysis (solvability theory) of
problem (5.6a)–(5.6e) or (5.7a)–(5.7e) is an open problem,
existing numerical evidence, presented in Section 8 (see also
[45]), suggests that it might be well-posed under reasonable
assumptions.

In concluding this section we should emphasize that the
above approach can be generalized in order to obtain similar,
linear, PDEs for the joint, N − x and M − y, ch.f

φx(t1)...x(tN )y(s1)...y(sM ) (υ1, . . . υN , ν1, . . . , νM )

(or the corresponding joint pdf), along with appropriate
(marginal compatibility and initial) conditions. This point will
be further discussed in forthcoming work [4]. It seems that
in this way it is possible to construct a closed (finitely-
solvable) hierarchy of linear problems providing us with the
full hierarchy of the finite-dimensional probabilities of the
stochastic response x (· ; ω).

6. Derivation of the FPK equation for the case of
independent increment excitation

Eqs. (5.6) and (5.7) hold true for any kind of stochastic
excitation process, provided that the latter has at least a.e.
continuous sample functions. We shall now turn to the most
studied case, those of an Ito SODE, where y (t; ω) represents
the generalized derivative of an independent-increment process.
In this case the response x (t; ω) is continuous but not
differentiable. Thus, the treatment based on the Hopf equation,
as developed in Section 5, is not valid, since the duality pairings
(5.1) are not applicable. The question arises if it is possible
to treat this case also by a similar method, starting from the
Hopf equation and obtaining the usual FPK equation — which
involves only the response ch.f (or pdf). In the present section
we shall show how this is possible, by resorting back to the FDE
for a finite-difference version of the SODE (4.1). The crucial
property, to be exploited in this case, is the independence of
the current response value x (t; ω) from the future increment
1τ z (t; ω) = z (t + τ ; ω) − z (t; ω), τ > 0, of the excitation.
Everything presented in this section can be generalized to
multidimensional nonlinear dynamical systems.

Let us rewrite the SODE (4.1a) and (4.1b) in a finite-
difference form:

x (t + τ ; ω) − x (t; ω)

τ
+ µx (t; ω) + kx3 (t; ω)

=
1τ z (t; ω)

τ
, (6.1a)

x (t0; ω) = x0 (ω) , (6.1b)
where z (· ; ω) is a known, real-valued process with independent
increments, and x0 (ω) is a known random variable. The time
increment τ is assumed to be positive, τ > 0, and this is
essential in what follows.

The sample functions of the stochastic process z (· ; ω) may
be either continuous functions (as in the case of a Wiener
process) or piecewise-continuous functions (as in the case of
a general Levy process containing Poisson components). In
the first case (continuous sample functions), it is clear that the
previously developed approach can be applied to Eq. (6.1). In
the second case (cadlag sample functions) the applicability of
the same arguments is not yet clear. Since, however, the space
of cadlag functions is given the structure of a Banach space
[28] with a well-defined topological dual [53,54], the rigorous
extension of the present theory for this case is expected to be
possible, probably under some appropriate conditions. Indeed,
it is remarkable that the obtained PDE for the ch.f of the
response x (· ; ω), by applying our method at a formal level,
coincides with the corresponding one (for the same system)
obtained by other methods even in a case where the excitation
process has not continuous sample functions.

Consider the joint Ch.Fl of the two random functions
x (t; ω), τ−11τ z (t; ω),

Fx(τ−11τ z) (u, v) =

∫
Z

∫
X

ei
(
〈u,x〉+

〈
v,τ−11τ z

〉)

× Pxy

(
dx, d

(
τ−11τ z

))
, (6.2)

where Z is an appropriate function space. The functional
Fx(τ−11τ z) (u, v) is parametrically dependent on the time
increment τ > 0. Working similarly as in Section 4, we
find that Eqs. (6.1a) and (6.1b) for the processes x (t; ω) and
1τ z (t; ω) are equivalent to the following Hopf-type FDE and
initial condition for the Ch.Fl Fx(τ−11τ z) (u, v):

τ−1

(
δFx(τ−11τ z) (u, v)

δu (t + τ)
−

δFx(τ−11τ z) (u, v)

δu (t)

)

+ µ
δFx(τ−11τ z) (u, v)

δu (t)
− k

δ3Fx(τ−11τ z) (u, v)

δu (t)3

=

δFx(τ−11τ z) (u, v)

δv (t)
, (6.3a)

Fx(τ−11τ z) (υδ (· − t0) , 0) = φ0 (υ) , υ ∈ R. (6.3b)

Taking the limit of both sides of (6.3a) as v → 0, and noting
that

lim
v→0

δFx(τ−11τ z) (u, v)

δu (t)
=

δFx(τ−11τ z) (u, 0)

δu (t)

=
δFx (u)

δu (t)
,

we obtain

τ−1
(

δFx (u)

δu (t + τ)
−

δFx (u)

δu (t)

)
+ µ

δFx (u)

δu (t)
− k

δ3Fx (u)

δu (t)3

= lim
v→0

δFx(τ−11τ z) (u, v)

δv (t)
. (6.4)
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In accordance with Eq. (4.7), the functional derivative
appearing in the right-hand side of (6.4) is expressed as:

δFx(τ−11τ z) (u, v)

δv (t)
≡ Iτ (u, v)

= i
∫
Z

∫
X

(
τ−11τ z (t)

)
ei
(
〈u,x〉+

〈
v,τ−11τ z

〉)

×Px(τ−11τ z(t))

(
dx, d

(
τ−11τ z

))
. (6.5)

In the present case, because of the specific form of
the excitation (independent-increment process), the response
x (t; ω) is stochastically independent from the future increment
of the excitation τ−11τ z (t; ω) = τ−1 (z (t + τ ; ω) − z (t; ω))

(at this point we make essential use of the assumption
τ > 0). As a consequence, the joint probability measure
Px(τ−11τ z)

(
dx, d

(
τ−11τ z

))
can be written in multiplicative

form as follows

Px(τ−11τ z)

(
dx, d

(
τ−11τ z

))
= Px (dx) · Pτ−11τ z

×

(
d
(
τ−11τ z

))
,

and the double functional integral appearing in the right-hand
side of Eq. (6.5), can be factorised and simplified as follows:

Iτ (u, v)

= i
∫
Z

∫
X

(
τ−11τ z (t)

)
ei
(
〈u,x〉+

〈
v,τ−11τ z

〉)
Px (dx)

× Pτ−11τ z(t)

(
d
(
τ−11τ z

))
= i

∫
Z

(
τ−11τ z (t)

)
ei
〈
v,τ−11τ z

〉
Pτ−11τ z

(
d
(
τ−11τ z

))
·

∫
X

ei〈u,x〉Px (dx)

= i
∫
Z

(
τ−11τ z (t)

)
ei
〈
v,τ−11τ z

〉
P1τ z (d (1τ z)) · Fx (u) .

The identity Pτ−11τ z
(
d
(
τ−11τ z

))
= P1τ z (d (1τ z)) has

been used in deriving the last member of the above equation.
Substituting the above result in Eq. (6.5) and getting back to
(6.4) we find

τ−1
(

δFx (u)

δu (t + τ)
−

δFx (u)

δu (t)

)
+ µ

δFx (u)

δu (t)
− k

δ3Fx (u)

δu (t)3

= iFx (u) · lim
v→0

∫
Z

(
τ−11τ z (t)

)
× ei

〈
v,τ−11τ z

〉
P1τ z (d (1τ z)) . (6.6)

We are interested in the limiting case τ → 0+. Thus, taking the
limit in both sides of (6.6) we obtain
lim
τ→0+

τ−1
(

δFx (u)

δu (t + τ)
−

δFx (u)

δu (t)

)
+ µ

δFx (u)

δu (t)

− k
δ3Fx (u)

δu (t)3

= iFx (u) · lim
τ→0+

lim
v→0

∫
Z

(
τ−11τ z (t)

)
ei
〈
v,τ−11τ z

〉
× P1τ z (d (1τ z)) , (6.7)

which holds true for any u ∈ U , and v → 0 in V . In order
to find an equation for the one-dimensional ch.f, Eq. (6.7) is
applied for u = υ · δ(· − t), v = υτ · δ(· − t). This specific
choice for the amplitude of v ensures that ν → 0 whenever
τ → 0+, thus transforming the double limit in the right-hand
side of Eq. (6.7) into a single one:

1
υ

∂φx(t) (υ)

∂t
+ µ

∂φx(t) (υ)

∂υ
− k

∂3φx(t) (υ)

∂υ3

= iφx(t)(υ) · lim
τ→0+

∫
Z

(
τ−11τ z (t)

)
× exp (iυ1τ z (t)) P1τ z (d (1τ z)) . (6.8)

In order to calculate the limit of the right-hand side of Eq.
(6.8) we consider the marginal ch.f

φ1τ z(t) (υ) =

∫
Z

exp {iυ (1τ z (t))} P1τ z (d (1τ z)) , (6.9)

and take the limiting value of its τ -derivative as τ → 0+:

lim
τ→0+

∂φ1τ z(t) (υ)

∂τ

= lim
τ→0+

∂

∂τ

∫
Z

exp {iυ (1τ z (t))} P1τ z (d (1τ z))

= lim
τ→0+

∫
Z

iυ
∂1τ z (t)

∂τ
eiυ1τ z(t)P1τ z (d (1τ z))

= iυ lim
τ→0+

∫
Z

1τ z (t)

τ
eiυ1τ z(t)P1τ z (d (1τ z)) . (6.10)

The last term in the above equation coincides – apart from the
factor iυ – with the term appearing in the right-hand side of Eq.
(6.8). Thus, combining Eqs. (6.8) and (6.10) we obtain

∂φx(t) (υ)

∂t
+ µυ

∂φx(t) (υ)

∂υ
− kυ

∂3φx(t) (υ)

∂υ3

= φx(t) (υ) lim
τ→0+

∂φ1τ z(t) (υ)

∂τ
, υ ∈ R. (6.11)

The corresponding equation for the pdf is easily derived from
Eq. (6.11) by applying the inverse Fourier transformation

∂ fx(t) (a)

∂t
+

∂

∂a

[(
µa + ka3

)
fx(t) (a)

]
=

1
2π

∫
∞

−∞

∫
∞

−∞

eiυ(y−a) fx(t) (y)

× lim
τ→0+

∂φ1τ z(t) (υ)

∂τ
dydυ. (6.12)

The term limτ→0+
∂φ1τ z(t)(υ)

∂τ
expresses the specific proba-

bilistic characteristics of the independent-increment excitation
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process which affects the response probabilities. We will now
proceed to examine some special cases (specific excitation pro-
cesses) in order to compare our equations with analogous re-
sults obtained by other authors with different methods.
Case 1: Gaussian, independent-increment excitation process

Let us assume that z (· ; ·) : I × Ω → R is the
Wiener process, i.e. for arbitrary t and τ > 0 the increment
z (t + τ ; ω) − z (t; ω) has a Gaussian distribution with

Eω [z (t + τ ; ω) − z (t; ω)] = 0 and

Eω
[
(z (t + τ ; ω) − z (t; ω))2

]
= b2τ. (6.13)

Then the characteristic function of the increment z (t + τ ; ω)−

z (t; ω),

φ1τ z(t) (υ) = exp
{
−

1
2

b2υ2τ

}
, (6.14)

hence,

lim
τ→0+

∂φ1τ z(t) (υ)

∂τ
= −

1
2

b2υ2. (6.15)

Substituting Eq. (6.15) to Eq. (6.11) will result to the following
FPK equation

∂φx(t) (υ)

∂t
+ µυ

∂φx(t) (υ)

∂υ
− kυ

∂3φx(t) (υ)

∂υ3

= −
1
2

b2υ2φx(t) (υ) , υ ∈ R. (6.16)

This equation coincides with the one given by Grigoriu [25,
Example2] for the same case.
Case 2: Compound Poisson excitation process (piece-wise
continues sample functions)

Assume now that z (· ; ·) : I × Ω → R is a compound
Poisson process, i.e.

z (t; ω) =

N (t;ω)∑
n=1

ẑn (ω) ,

where N (t; ω) is a Poisson process, and ẑn (ω) , n =

1, 2, . . . are real-valued, independent identically distributed
random variables, independent of N (t; ω). The Poisson process
N (t; ω) follows the distribution

F (k) =
[λ (t)]k

k!
e−λ(t), k = 0, 1, . . . , (6.17)

where λ (t) is an increasing positive function characterizing
the process. The characteristic function of the increment
z (t + τ ; ω) − z (t; ω) is given by

φ1τ z(t) (υ) = exp
{
(λ (t + τ) − λ (t))

(
φẑ (υ) − 1

)}
. (6.18)

[49, Ch. I]. Thus, we have

lim
τ→0+

∂φ1τ z(t) (υ)

∂τ
= λ′ (t)

(
φẑ (υ) − 1

)
= λ′ (t) Eω

[
eiυ ẑ

− 1
]
. (6.19)

Substituting Eq. (6.19) into Eq. (6.11) will result in the equation
∂φx(t) (υ)

∂t
+ µυ

∂φx(t) (υ)

∂υ
− kυ

∂3φx(t) (υ)

∂υ3

= φx(t) (υ) · λ′ (t)
(
φẑ (υ) − 1

)
, υ ∈ R. (6.20)

Assuming now that N (t; ω) is a homogeneous Poisson process
with λ (t) = ρt , and the system is linear (k = 0), we obtain the
specific FPK equation

∂φx(t) (υ)

∂t
+ µυ

∂φx(t) (υ)

∂υ
= ρEω

[
eiυ ẑ

− 1
]
φx(t) (υ) ,

υ ∈ R, (6.21)

which coincides with the one given by Grigoriu [25, Example
4], obtained by using different, well-established techniques.
That is, a formal application of our method leads to the correct
equation even in this case of an excitation with non-continuous
sample functions.

7. Moment equations from the new PDE (5.6)

It is worth noticing that the PDE (5.6a), derived at
Section 5, can reproduce the infinite set of moment equations
corresponding to the dynamical system equation (4.1a). This
is a very important consistency result that can be interpreted
twofold. From the point of view of the new PDE (5.6a), it
provides an independent check of validity. From the point of
view of the infinite system of moment equations, it provides an
“integrating scheme” permitting the replacement of the infinite
system of ODEs by a single linear PDE. The remaining of
this section is devoted to the proof of the above mentioned
consistency result.

Let us denote by Mnm (t, s) = Eω
[
xn (t; ω) · ym (s; ω)

]
,

n, m = 0, 1, . . ., the joint (n, m)th- order moment of x (t; ω)

and y (s; ω). Then, by direct integration of Eq. (4.1a), it is easily
seen that infinite system of moment equations has the form

1
n + 1

·
dMn+1,m (t, s)

dt

∣∣∣∣
s=t

+ µMn+1,m (t, t)

= −k Mn+3,m (t, s) + Mn,m+1 (t, s) . (7.1)

We shall now derive the same Eq. (7.1) using the PDE (5.6a).
Recall first that

∂n+mφx(t)y(s) (υ, ν)

∂υn∂νm

∣∣∣∣
υ=0
ν=0

= in+mEω
[
xn (t; ω) · ym (s; ω)

]
= in+m Mn,m (t, s) , n, m = 0, 1, . . . . (7.2)

By direct differentiation of Eq. (5.6a) we obtain

∂n+m+2φx(t)y(s) (υ, ν)

∂υn+1∂νm∂t

∣∣∣∣∣
s=t

+ µ
∂n+m+1

∂υn+1∂νm

×

[
υ

∂φx(t)y(t) (υ, ν)

∂υ

]
+ k

∂n+m+1

∂υn+1∂νm

[
υ

∂3φx(t)y(t) (υ, ν)

∂3υ

]

=
∂n+m+1

∂υn+1∂νm

[
υ

∂φx(t)y(t) (υ, ν)

∂ν

]
υ, ν ∈ R. (7.3)
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In accordance with (7.2), the first term in the left-hand side of
Eq. (7.3) can be written as

∂

∂t

∂n+m+1φx(t)y(s) (υ, ν)

∂υn+1∂νm

∣∣∣∣∣
υ=0
ν=0

= in+m+1 ∂ Mn+1,m (t, s)

∂t
. (7.4a)

To proceed with the remaining three terms in Eq. (7.3), use will
be made of the following lemma:

Lemma 7.1. For every Cn-differentiable function f : R → R,
we have

dn

dxn [x f (x)]

∣∣∣∣
x=0

= n
dn−1 f (x)

dxn−1

∣∣∣∣
x=0

. �

Hence,

∂n+m+1

∂υn+1∂νm

[
υ

∂φx(t)y(t) (υ, ν)

∂υ

]∣∣∣∣
υ=0
ν=0

= (n + 1)
∂n+m+1φx(t)y(t) (υ, ν)

∂υn+1∂νm

∣∣∣∣∣
υ=0
ν=0

, (7.4b)

∂n+m+1

∂υn+1∂νm

[
υ

∂3φx(t)y(t) (υ, ν)

∂3υ

]∣∣∣∣∣
υ=0
ν=0

= (n + 1)
∂n+m+3φx(t)y(t) (υ, ν)

∂υn+3∂νm

∣∣∣∣∣
υ=0
ν=0

, (7.4c)

and

∂n+m+1

∂υn+1∂νm

[
υ

∂φx(t)y(t) (υ, ν)

∂ν

]∣∣∣∣
υ=0
ν=0

= (n + 1)
∂n+m+1φx(t)y(t) (υ, ν)

∂υn∂νm+1

∣∣∣∣∣
υ=0
ν=0

. (7.4d)

Substituting Eqs. (7.4b)–(7.4d) in Eq. (7.3) we obtain(
1

(n + 1)

∂

∂t

∂n+m+1φx(t)y(s) (υ, ν)

∂υn+1∂νm

+ µ
∂n+m+1φx(t)y(t) (υ, ν)

∂υn+1∂νm

+ k
∂n+m+3φx(t)y(t) (υ, ν)

∂υn+3∂νm

)
υ=0
ν=0

=
∂n+m+1φx(t)y(t) (υ, ν)

∂υn∂νm+1

∣∣∣∣∣
υ=0
ν=0

. (7.5)

By applying Eqs. (7.2) and (7.4a), the above equation reduces
to the infinite system of moment equation (7.1). This completes
the proof of the consistency result announced at the beginning
of this section.
8. Kernel density representation of joint pdfs

Clearly, problem (5.6) – either in the form (5.6a)–(5.6e) or
in the form (5.7a)–(5.7e) – exhibits some peculiarities making
it distinctly different from the usual initial-boundary value
problems for PDEs, coming from problems of Mathematical
Physics. These peculiarities reflect the probabilistic origin of
the present problem.

In the remaining part of this paper, an original (particle-type)
method for the numerical solution of problem (5.6) (or (5.7))
is developed, and some first, illustrative, numerical results are
presented. The main tool, on which the formulation of the
numerical scheme relies, is the representation of the sought-
for pdf and ch.f by means of convex superpositions of kernel
density function s (kdfs) and their Fourier transformation, the
kernel characteristic function s (kch.fs), respectively. A short
presentation of the basic facts about kdfs is given below.

Kernel density functions constitute a key notion/tool within
the framework of nonparametric statistical estimation. See, e.g.,
[47]. In our approach, a kdf K (x; x∗, h) is mainly thought of as
a generalized (non-symmetric) summability kernel, appropriate
to represent pdfs [22]. The defining properties of an M-variate
kdf are the following:

(Pr.1) K (x; x∗, h) is a continuous, real-valued function defined
on a domain of the form DK = A × A × MNonNegDef

M×M ,
where A ⊆ RM is taken to be contained in (or to be
equal to) the support of the target pdf, say f (x), which is
to be represented (see Lemma 8.1 and Theorem 8.1), and
MNonNegDef

M×M is the set of non-negative definite, M × M-
matrices, which can serve as covariance matrices.

(Pr.2) K (x; x∗, h) ≥ 0, for (x; x∗, h) ∈ DK .
(Pr.3)

∫
A K (x; x∗, h) dx∗ = 1, for (x, h) ∈ A × MNonNegDef

M×M .
(Pr.4) lim‖h‖ → 0

∫
‖x−x∗‖ > δ

K (x; x∗, h) dx∗ = 0, for any x∗ ∈

A and δ > 0.

A kernel characteristic function is defined as the Fourier
transformation of a kdf. Clearly, properties (Pr.2), (Pr.3) ensure
that each kdf is a pdf on its own. The shape of the kernel
function K (x; x∗, h) is controlled by its covariance matrix h,
also called bandwidth (or shape) parameter. h quantifies the
spreading of the kernel probability mass around its “center” x∗.
Another – simpler and in many cases adequate – choice of the
shape parameter is the M-variate vector of the eigenvalues of
the covariance matrix. In this sense, the domain DK = A× A×

MNonNegDef
M×M can be (and will be) simplified as A× A×[0, ∞)M .
Using the defining properties (Pr.1)–(Pr.4), and only these, it

is not difficult to prove the following

Lemma 8.1. If f (x) is a continuous pdf and K (·; ·, ·) is any
kernel function satisfying (Pr.1)–(Pr.4), then, for any x,

lim
‖h‖→0

∫
A

K (x; x∗, h) f (x∗) dx∗ = f (x) . � (8.1)

That is, as the bandwidth decreases, the kernel function shrinks
around its “center” x∗, having the weak asymptotic limit

K (x; x∗, h)
‖h‖→0
−−−−→ δ (x − x∗) . (8.2)
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On the other hand, as the bandwidth increases the kernel
function spreads out.

Theorem 8.1. The set of all convex finite superpositions of the
form

∑N
n=1 pn K (x; xn, hn), where p1 + p2 + · · · + pN =

1, pn ≥ 0 for all n, and K (·; ·, ·) is any kernel function
satisfying (Pr.1)–(Pr.4), is dense within the set of all continuous
pdfs supported in A. That is, given any continuous pdf f (x),
a specific kernel function K (x; x∗, h), and an arbitrary (small)
number ε > 0, there exist a bandwidth parameter h∗, a finite
set of centers {xn}

N
n=1 in A, and a vector p = (p1, p2, . . . , pN )

lying in the positive cone of RN , such that

max
x∈A

∣∣∣ f (x) − f N (x)

∣∣∣ < ε, (8.3a)

where

f N (x) =

N∑
n=1

pn K (x; xn, hn). � (8.3b)

The clue of the proof of this theorem is Lemma 8.1,
in conjunction with the properties of the Riemann sum
approximation of the integral

∫
A K (x; x∗, h) f (x∗) dx∗ [2]. The

technical details are omitted. The above theorem makes clear
that any (continuous) pdf can be approximated, as closely as it
is required, by a representation of the form (8.3b).

9. Reformulation of the problem by using kernel density
representations

We shall now apply the pdf representation (8.3b) (or
the corresponding ch.f representation, obtained by means of
a Fourier transformation) in order to reformulate problem
(5.7) (or (5.6a)) in a way facilitating its numerical solution.
Again here and subsequently, as in the introduction, fxy =

fx(t)y(s) (a, β), φxy = φx(t)y(s) (υ, ν) are four-argument, two-
variate, joint, response–excitation pdf and ch.f, respectively.
For clarity, in the present and the subsequent sections, vector
or matrix quantities will be explicitly denoted by using bold
letters.

Applying the representation (8.3b) for the pdf, and the
corresponding one for the ch.f we define the approximants

f N
x(t)y(s) (a, β)

=

N∑
k=1

pk (t, s) K
(

a, β; mk (t, s) , hk (t, s)
)

, (9.1)

φN
x(t)y(s) (υ, ν) = F a→υ

β→ν

{
f N
x(t)y(s) (a, β)

}
=

N∑
k=1

pk (t, s) K̃
(
υ, ν; mk (t, s) , hk (t, s)

)
. (9.2)

Here mk
= (mk

x , mk
y) is the location parameter, namely the

position of the most probable (highest) value of the kdf, and
hk is the shape parameter, represented either by the 2 × 2-
covariance matrix of the kdf or by the two eigenvalues of the
latter (both pictures will be applied to the numerical treatment).
For the numerical computations, K
(
a, β; mk, hk) is taken to be

a Gaussian pdf. (See, e.g., [26, Sec. 2.9].)
Our main goal now is to exploit the representations (9.1)

and (9.2) in order to solve the system (5.6) or the equivalent
(5.7). Conditions (5.6d) and (5.6e), or the equivalent (5.7d) and
(5.7e), are automatically satisfied since the approximants (9.1)
and (9.2) are by construction pdfs and ch.fs, respectively.

To facilitate the discussion, we define the linear differential
operators

L· =
∂·

∂t

∣∣∣∣
s=t

+ µ
∂ [a·]
∂a

+ k
∂
[
a3·
]

∂a
−

∂ [β·]
∂a

. (9.3a)

L̃· =
∂·

∂t

∣∣∣∣
s=t

+ µυ
∂·

∂υ
− kυ

∂3·

∂υ3 − υ
∂·

∂ν
. (9.4a)

And rewrite Eqs. (5.6a) and (5.7a) in the following concise
form:

L
[

fxy
]
(a, β, t) = 0, (a, β) ∈ R2, t ≥ t0, (9.3b)

L̃
[
φxy

]
(υ, ν, t) = 0, (υ, ν) ∈ R2, t ≥ t0. (9.4b)

It is interesting to note here that the two equivalent formulations
–(5.7a) or (9.3) in terms of the pdf, and (5.6a) or (9.4a),(9.4b) in
terms of the ch.f – are both useful and they will be considered
in parallel, since the conceptual arguments are better stated
using the pdf formulation, while the numerical analysis is better
developed using the ch.f formulation.

Substituting the approximation (9.1) into (9.3), we obtain

N∑
k=1

L
[

pk K
(

a, β; mk, hk
)]

= 0, (a, β) ∈ R2. (9.5)

Let us denote by ε
(
h j ) the radius of the effective support of

K
(
a, β; m j , h j ). ε

(
h j ) will be taken and always kept to be

small. Since each kernel function K
(
a, β; m j , h j ) is taken

to be concentrated around its center m j
=

(
m j

x , m j
y

)
and

it is positive there, Eq. (9.5), restricted in a neighborhood
N

(
m j , ε

(
h j )), is locally equivalent with the equation

N∑
k=1

L
[

pk K
(

a, β; mk, hk
)]

· K
(

a, β; m j , h j
)

= 0,

(a, β) ∈ N
(

m j , ε
(

h j
))

. (9.6)

Assuming that the system of neighborhoods{
N

(
m j , ε

(
h j )) , j = 1, . . . , N

}
covers the essential support

of the sought-for density function fxy , we can assert that the
global equation (9.5) is equivalent to the system of local equa-
tions

N∑
k=1

L
[

pk K
(

a, β; mk, hk
)]

· K
(

a, β; m j , h j
)

= 0,

∀ j ∈ {1, . . . , N } , and

∀ (a, β) ∈

⋃
j=1,...,N

N
(

m j , ε
(

h j
))

. (9.7)
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By taking a Fourier transformation, Eq. (9.7) is equivalently
rewritten as

N∑
k=1

L̃
[

pk K̃
(
υ, ν; mk, hk

)]
∗ K̃

(
υ, ν; m j , h j

)
= 0,

∀ j ∈ {1, . . . , N } , and ∀ (υ, ν) ∈ R2, (9.8)

where ∗ denotes the convolution operator. Although the latter
equation could be considered as being more complicated than
Eq. (9.7), an efficient numerical solution scheme will be based
on it.

10. A two-level numerical solution scheme for the set of Eq.
(9.8)

To proceed to the numerical solution, use will be made of a
specific choice of the kdf. Assuming a Gaussian density as the
kdf, we have

K
(

a, β; mk, Ck
)

=
1

2π
√

|det [C]|

× exp

−
1
2

(
a − mk

x

β − mk
y

)T [
Ck
]−1

(
a − mk

x

β − mk
y

) , (10.1a)

with corresponding kernel characteristic function

K̃
(
υ, ν; mk, Ck

)
= exp

i

[
mk

x

mk
y

]T

·

[
υ

ν

]
−

1
2

[
υ

ν

]T

·

[
Ck
]

·

[
υ

ν

] , (10.1b)

where

mk
= mk (t, s) =

(
mk

x (t) , mk
y (s)

)
(10.2a)

is the mean vector, and

Ck
= Ck (t, s) =

(
Ck

xx (t, t) Ck
xy (t, s)

Ck
yx (s, t) Ck

yy (s, s)

)
(10.2b)

is the covariance matrix of our Gaussian kdf. As we have
already mentioned above, a dual realization of the shape
parameter will be considered herewith. Apart from the

covariance matrix Ck , the vector hk
=

(
hk

x , hk
y

)
having as

elements the two eigenvalues of the matrix Ck , will also be used
in this case.

Our numerical solution scheme will be implemented by
restricting the kdf to be highly concentrated, so that the
effective supports of any pair of two different kernels to
be practically non-overlapping. This permits us to neglect
the interaction between any pair of Gaussian kernels, i.e. to
disregard the summation in the left-hand side of Eq. (9.7) and
its equivalent Eq. (9.8). Thus, under the above assumption,
which is equivalent with the condition

∥∥hk
∥∥ < ε1, for all

k ∈ {1, . . . , N }, where ε1 is an appropriate (small) constant,
Eq. (9.8) simplifies to

L̃
[

p j K̃
(
υ, ν; m j , C j

)]
= 0, t ≥ s ≥ t0,

and ∀ j ∈ {1, . . . , N } , and ∀ (υ, ν) ∈ R2. (10.3a)

Furthermore, assuming the amplitudes p j are positive and
piecewise constant, the above equation is further simplified to

L̃
[

K̃
(
υ, ν; m j , C j

)]
= 0, within each time interval

τ (`)
≤ s ≤ t ≤ τ (`+1), ∀ j ∈ {1, . . . , N } ,

and ∀ (υ, ν) ∈ R2. (10.3b)

On the basis of the above discussion, a two-level (two-time
scale) approach comes into the scene:

a. Solve the set of independent equation (10.3b) within each
interval τ (`) ≤ s ≤ t ≤ τ (`+1) (this is the short-time phase
or inner-cycle phase), and then

b. Come back to the complete representation and update the
values of the amplitudes p j , passing from the interval[
τ (`), τ (`+1)

]
to the interval

[
τ (`+1), τ (`+2)

]
(this is the

coarse-time phase or the outer-cycle phase).

The criterion for defining the sequence of coarse updating
times τ (`), ` = 1, 2, 3, . . . , is formulated as a sufficient
condition for the validity of the assumptions underlying the
derivation of the set of independent equation (10.3b). It turns
out that the most critical assumption is the restriction of each
kdf to be highly concentrated around its center. As expected,
because of the diffusive character of the problem, it has
been found that, during the short-time phase solution, kernel
parameters evolve in a way leading to a continuous increase
of the variance parameter

∥∥hk
∥∥. (See, for example, Figs. 2(c)

and 3(c), in Section 11, and the discussion therein.) The growth
of the quantity

∥∥hk
∥∥ leads to the spreading of the mass of

the corresponding kdf, which results in the violation of the
assumption of negligible interaction between the kernels.

Thus, the set of kernel parameters mk (t, s) and Ck (t, s)
evolve in accordance with the simplified dynamical equation
(10.3b) from time τ (`), until the spreading index

∥∥hk (t)
∥∥, of

some kernel, exceeds a certain critical value, say ε1 > 0. This
value of t is taken to be the next updating time τ (`+1). At
that time instant, the inner-cycle (short-time) solution phase
is interrupted, and an approximation of the total joint pdf
f N
x(τ (`+1))y(τ (`+1))

(a, β) is calculated by means of Eq. (9.1), in

the specific form:

f N
x(τ (`+1))y(τ (`+1))

(a, β) =

N∑
k=1

pk

(
τ (`)

)
K
(

a, β; mk
(
τ (`+1), τ (`+1)

)
, hk

(
τ (`+1), τ (`+1)

))
. (10.4)

Then, the calculated pdf (10.4) is re-approximated, by using a
new set of kdfs, satisfying the concentration condition

∥∥hk
∥∥ =

ε2 < ε1, with different amplitudes pk
(
τ (`+1)

)
. The latter are

calculated by means of an optimization algorithm (used also
for the set up of the initial conditions), which is described in
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the Appendix. After the updating of the amplitudes, the next
inner-cycle begins, and the procedure continues as described
above.

During each time interval
[
τ (`), τ (`+1)

]
the amplitudes

are considered constant and, thus, globally, p j are piecewise
constant functions of time. In fact, the evolution of the
amplitudes p j is much slower than the evolution of the kernel
parameters mk and hk , and this is what justifies the piece-wise
constant assumption for p j in our numerical scheme. C.f. [50].
An improved numerical solution, taking also into account the
evolution of p j in a continuous fashion, can be constructed and
will be published elsewhere.

It should be stressed that the accuracy of the method
proposed and developed herewith is critically dependent on the
threshold value ε1 for the variance parameter (spreading index)∥∥hk (t)

∥∥.

10.1. A local-moment method for the numerical solution of Eq.
(10.3b)

We are now focusing on the numerical treatment of Eq.
(10.3b). For each value of j ∈ {1, . . . , N }, Eq. (10.3b)
contains three unknown functions, namely the response mean
value m j

x (t), and covariances C j
xx (t, t) and C j

xy (t, s), which
should be determined, and two known functions, namely
the excitation mean value m j

y (s) and the autocovariance

C j
yy (s, s), introducing the appropriate, inner-cycle, excitation.

Thus, any solution scheme of Eq. (10.3b) should provide
us with a number of equations (hopefully three) governing
the evolution of the three unknown functions, along with the
evidence that introducing the obtained solution in the operator
L̃[K̃ (υ, ν; m j , C j )] will result in 0 (at least approximately) for
all values of (υ, ν) ∈ R2.

Since the (Gaussian) kernel K̃
(
υ, ν; m j , C j ) is C∞

(
R2
)

in
(υ, ν) and dies out as ‖(υ, ν)‖ → ∞, Eq. (10.3b) is equivalent
to the following system of localized moment equations:

∂ p+q

∂ pυ∂qν
L̃
[

K̃
(
υ, ν; m j , C j

)]∣∣∣∣
υ=0
ν=0

= 0,

∀ (p, q) ∈ N0 × N0, N0 = {0, 1, 2, 3, . . .} . (10.5)

Exploiting the specific (Gaussian) form of the kernel, and
considering the cases (p, q) = (1, 0), (2, 0) and (1, 1), the
following three (nonlinear) ODEs are obtained from (10.5):

m j
x,t (t) + µm j

x (t) + 3km j
x (t) C j

xx (t, t)

+ k
[
m j

x (t)
]3

= m j
y (t) , (10.6a)

C j
xx,t (t, s) + µC j

xx (t, s) + 3km j
x (t) C j

xx (t, s) m j
x (t)

+ 3kC j
xx (t, t) C j

xx (t, s) = C j
xy (t, s) , (10.6b)

C j
xy,t (t, s) + µC j

xy (t, s) + 3kC j
xx (t, t) C j

xy (t, s)

+ 3km j
x (t) C j

xy (t, s) m j
x (t) = C j

yy (t, s) . (10.6c)

These equations involve the three unknown functions m j
x (t),

C j
xx (t, t) and C j

xy (t, s), and they are differential equations with
Table 1
System parameters

System parameters Case I Case II

µ 1 1
k 1 −1

respect to t , parametrically dependent on s. (No derivatives with
respect to s appear.) They should be satisfied for all values of
(t, s) such that τ (`) ≤ s ≤ t ≤ τ (`+1). We are especially
interesting in the solution of system (10.6) on the diagonal
s = t .

By direct calculations it has been found that, if the three
moment equations (10.6a)–(10.6c) holds true, then various
other – but not all – (p, q)-moment equations are also
satisfied. In any case, the system (10.6a)–(10.6c) is closed
and can be efficiently solved, providing us with a reasonable
approximation of the evolution of the kernel parameters m j

x (t),
C j

xx (t, s = t) and C j
xy (t, s = t). When the value of

∥∥h j (t)
∥∥

exceeds the threshold value ε1, the current inner-cycle phase is
finished and the procedure switches to outer-cycle phase.

The numerical solution of the set of nonlinear ODEs (10.6)
is implemented by using the method of the quasilinearization
[6,34]. Taking advantage of the symmetry properties of
the correlation matrix, the equations can be solved on the
‘diagonal’, that is around s = t . The sequence of time instants
for the numerical scheme has the form

(t, s) : (ti , ti ) → (ti+1, ti ) → (ti+1, ti+1).

An important aspect of the present method is its suitability
for parallel computation. Parallelization techniques can be
applied both to the dynamical evolution of the kernels and to
the optimization algorithm. In the first case the algorithm can
take advantage of the independent evolution of each kernel.
For the parallelization of the optimization algorithm we can
split the group of kdfs into subgroups and then independently
approximate each subgroup by new kernels with small variance.
Hence, we can probably succeed fast computations for systems
of higher dimensions, subjected to general (smooth) excitation.

11. Numerical examples

We shall now apply the above described numerical scheme
to the numerical determination of the response pdf of a
dynamical system (4.1), excited by a known stochastic process
(see below), with system parameters µ and k having the values
given in Table 1, under Cases I and II.

By performing a stability analysis to problem (4.1) we found
that for µ/k > 0 (Case I in Table 1), the nonlinear system has
one stable fixed point located at zero. A pitchfork bifurcation
occurs at µ/k = 0, and the fixed point at zero becomes
unstable in the semi-axis µ/k < 0 (Case II). In the same region
(µ/k < 0) two symmetric stable points appear at ±

√
|µ/k|.

Hence, we have the bifurcation diagram shown in Fig. 1.
On the basis of the above described dynamical features of

the studied problem, it is natural to expect that, in Case I, the
evolved pdf will become eventually a unimodal distribution
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Fig. 1. Bifurcation diagram for system (4.1) with respect to the bif. parameter
µ/k.

centered at zero, while in Case II, the probability will
concentrate around the pair of the two symmetric stable fixed
points ±

√
µ/ |k|, hence ultimately a bimodal distribution will

appear. Since the stable fixed points are global attractors we
expect to attain these results after some time, independently of
the initial density. The numerical results to be presented and
discussed below clearly comply with this behavior, dictated by
the qualitative analysis of the studied system.
Consider first Case I, with a bimodal initial pdf, defined as a
convex superposition of two Gaussians with parameter values
m1 = 0, m2 = 0.6, σ1 = 0.1, σ2 = 0.6, and amplitudes
p1 = 0.4 and p2 = 0.6, respectively. This initial pdf is shown
in Fig. 2(b), at the section t = 0. The excitation process is taken
to be, in this case, a Gaussian stationary random function with
zero mean and covariance function given by

CYY(τ ) =
1
2

cos2 (2τ) . (11.1)

Numerical results are presented in Fig. 2. More specifically,
in the two upper plots of this figure (Fig. 2(a) and (b)), the
evolution of the probability density fx(t) (a) is shown, for the
time interval 0 < t < 1.4 s, large enough to get the steady
state response pdf. Also, in the same figure (Fig. 2(a)) the orbits
of mk

x (t) are plotted by using thick black lines. The apparent
discontinuities every 0.2 s are due to the reapproximation of
the calculated density by means of a new convex superposition
of kdfs with smaller variance every time the concentration
parameters hk exceeds the critical value ε1 (which in this
example was taken to be ε1 = 0.3). In Fig. 2(c) the evolution of
the variance for some kdfs of the response density is shown.
The diffusive character of the evolution (strictly increasing
variances with respect to time) is clearly seen in the numerical
results. Again, the apparent discontinuities are due to the
Fig. 2. (a) Response pdf fx(t) (a) and m j
x (t) curves for Case I with stationary excitation. (b) 3D plot of the response pdf. (c) Variance plots for some kdfs.
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Fig. 3. (a) Response pdf fx(t) (a) and m j
x (t) curves for Case II with stationary excitation. (b) 3D plot of the response pdf. (c) Variance plots for some kdfs.
re-approximation of the response pdf by kdfs with smaller
variances.

Let us now consider our system (4.1) with parameter values
as in Case II. Two cases of stochastic excitation will be
considered. First we will study the same stationary Gaussian
excitation as before, having zero mean and covariance function
given by Eq. (11.1). The initial distribution is taken to be
bimodal (strongly asymmetric for this case), and is defined as
a convex superposition of two Gaussian pdfs with parameters
m1 = −0.4, m2 = 0.6, σ1 = 0.1, σ2 = 0.6, and amplitudes
p1 = 0.4, p2 = 0.6, respectively.

Numerical results concerning the evolution of the response
pdf, for the time interval 0 < t < 2.4 s, are presented in Fig. 3.
Although the initial pdf has taken to be a strongly asymmetric
bimodal one, the eventually resulting response density turns to
be a symmetric bimodal pdf, with modes exactly at the stable
fixed points, located at ±

√
|µ/k| = ±1, as expected. The

interchange of probability between the kernels (implemented
by means of the re-approximation of the response pdf in terms
of a new convex superposition of kdfs with smaller variances)
takes place approximately every 0.2 s. This is shown in the
figure as an apparent discontinuity of the mean-value and
variance curves.

From both Figs. 2(a) and 3(a) (see also Fig. 4(a)), we
can easily observe a permanent tendency of mk

x (t)-orbits to
be attracted by the stable fixed points. This means that there
is a continuous inflow of probability mass from the outer
region of the phase space (|a| > 1) to a strip around the
locus of the stable fixed points, which is not stopping even
after the response pdf has been reached its stationary form.
This apparently paradoxical behaviour should be addressed
to the discrepancy between the tail form of the response pdf
fx(t) (a), and the tail form of the Gaussian kernels which are
used to represent fx(t) (a). This fact reveals the necessity for
an asymptotic study of the tail behaviour directly from the
differential equation (5.7a), which will permit the construction
and use of the kdfs suitably adapted to the specific system,
i.e., exhibiting the correct tail behaviour. Such a construction
will also facilitate and accelerate the convergence of the
numerical solution procedure.

Finally, in Fig. 4 we present numerical results for Case
II, with a non-stationary (cyclostationary) Gaussian excitation,
with zero mean and covariance function given by

CYY(t, s) =
1
2

(
1 + 0.2 cos

(
π t

2

))
cos2 (t − s) . (11.2)

Again the initial distribution is constructed as a superpo-
sition of two Gaussian pdfs with parameters m1 = −0.4,
m2 = 0.6, σ1 = 0.3, σ2 = 0.7, and amplitudes p1 = 0.4
and p2 = 0.6, respectively. The evolution of the response prob-
ability density function is plotted for the time interval 0 < t <
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Fig. 4. (a) Response pdf fx(t) (a) and m j
x (t) curves for Case II with non-stationary excitation. (b) 3D plot of the response pdf. (c) Variance plots for some kdfs.
8.0 s, long enough so that the periodic character of the response
becomes clear.

From Fig. 4(a) and (b) we are able to observe that, after a
transient state (0 < t < 1.5 s), the response density function
exhibits a periodic behavior with a period of approximately
4 s, which is the period of the excitation, i.e., the period of the
correlation function CYY(t, s) (Eq. (11.2)) with respect to its
first argument. Furthermore, it is easily seen that, in this case, a
greater amount of kernels is necessary in order to approximate
satisfactorily the sought-for pdf, due to the fact that the non-
stationary excitation produces a more complicated response.

12. Discussion and conclusions

In this paper new PDEs governing the evolution of
the joint, response–excitation, ch.f and pdf of nonlinear
dynamical systems under general (correlated) stochastic
excitation have been derived. The starting point of our
approach is a Hopf-type equation, that governs the joint,
response–excitation, characteristic functional, providing a
probabilistically complete reformulation, equivalent with the
underlying (nonlinear) stochastic differential equation. This
‘infinite-dimensional’ equation is appropriately reduced (by
projection) to linear partial differential equations that govern
the response–excitation, characteristic (or probability density)
function (see, e.g. Eq. (5.6a) or (5.7a)). The latter equations
are supplemented with (non-local) marginal compatibility
conditions (see, e.g. Eq. (5.6b) or (5.7b)) and initial conditions
(see, e.g. Eq. (5.6c) or (5.7c)), and they can provide us with the
evolution of the joint ch.f. (or pdf).

For the numerical solution of these novel PDEs (e.g., either
in the form (5.6) or (5.7)) an original, particle-type, method is
developed and illustrated through its application to a specific,
simple, nonlinear system. The key point of the numerical
method is the representation of the joint, pdfs and ch.fs by
means of appropriate convex superpositions of kernel density
or kernel characteristic functions, respectively. In this way,
the non-local marginal compatibility conditions are satisfied a
priori, and the PDEs governing the evolution of the sought-for
pdf and ch.f are eventually transformed to systems of nonlinear
ODEs for the kernel parameters.

From the results presented in this work we conclude that the
proposed method is able to produce quite satisfactory results for
systems subjected to general stochastic excitation. Important
aspects of the method are (i) It is a two-level, particle-type
method, separating the fast, inner-cycle (short-term) phase,
which describes the particle dynamics separately for each
particle, from the slow, outer-cycle (long-term) phase, which
accounts for the interchange of probability mass between the
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particles and the evolution of the particles’ amplitudes. (ii) It
can be improved, keeping its two-level, particle-type character,
so that to avoid the piece-wise smoothness assumption for the
amplitudes p j , and to ensure the “exact” satisfaction of the
PDE, by solving a linear evolution problem in the outer-cycle
phase. (iii) It can be generalized to higher dimensional systems.
And (iv) It is plainly suitable for parallelized computations,
since the nonlinear ODEs describing the evolution of each
particle in the inner-cycle phase can be solved independently.
In addition, the computationally demanding optimization
algorithm (see Appendix) is easily parallelizable.
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Appendix

In this Appendix a brief outline is given of the
optimization algorithm used for the construction of appropriate
approximants of the sought-for pdf in terms of kdfs exhibiting
a small variance (either given or under specific control). This
algorithm is used quite often throughout the numerical solution,
i.e. each time the solution procedure switches from the inner-
cycle to the outer-cycle and the calculated density is re-
approximated by means of kdfs of small variance. It is also used
for implementing the initialization, by representing the given
initial pdf as a convex superposition of appropriate kdfs. The
basic optimization problem is formulated as follows:

Given f (x) and σ0, find M and {pk, mk}
M
k=1 such that∫

+∞

−∞

[
f (x) −

M∑
k=1

pk
√

2πσ0
exp

{
−

1
2

(
x − mk

σ0

)2
}]2

dx

= min (A.1)

under the constraints:

p1 + p2 + · · · + pM = 1 and pk ≥ 0, for all k.

For the inner-cycle/outer-cycle re-approximation of the
sought-for pdf, the integrations can be carried out analytically
(since f (x) is already represented as a superposition of
Gaussian kernels, with different parameters of course) leading
to an explicit linear optimization problem, if M is given. M is
obtained by using a variant of an iterative, adaptive procedure,
developed by Gavriliadis [22].

For the initial data representation, the optimization
procedure is performed quite similarly. However, in this case,
the integrations in (A.1) are performed numerically, since,
in general, the initial probability distribution may not be
analytically described. A detailed description of the solution
algorithm will be presented elsewhere.
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[42] Proppe C, Pradlwarter HJ, Schuëller GI. Equivalent linearization and
Monte Carlo simulation in stochastic dynamics. Probabilistic Engineering
Mechanics 2003;18(1):1–15.

[43] Pugachev VS, Sinitsyn . Stochastic differential systems. Chichester (New
York): John Wiley & Sons; 1987.
[44] Roberts JB, Spanos PD. Random vibration and statistical linearization.
Chichester (New York): John Wiley & Sons; 1990. Re-published by Dover
Publications 1990/2003; 2003.

[45] Sapsis ThP, Athanassoulis GA. New partial differential equations
governing the joint, response–excitation, probability distributions of
nonlinear systems under general stochastic excitation. II: Numerical
solution. In: Deodatis G, Spanos PD, editors. Proceedings of this
conference, Presented in the 5th conference of computational stochastic
mechanics. Rotterdam: Millpress; 2007. p. 587–96.

[46] Schlesinger MF, Swean T. Stochastically excited nonlinear ocean
structures. Singapore: World Scientific; 1998.

[47] Scott DW. Multivariate density estimation. Chichester (New York): John
Wiley and Sons; 1992.

[48] Simiu E, Scanlan RH. Wind effects on structures. 2nd ed. New York: John
Wiley & Sons; 1986.

[49] Sobczyk K. Stochastic differential equations. Dordrecht: Kluwer
Academic Publishers; 1991.

[50] Sofi A, Di Paola M, Spanos P. Determining response envelope probability
densities for a class of nonlinear oscillators under modulated excitation.
In: Deodatis G, Spanos PD, editors. Proceedings of this conference,
Presented in the 5th conference of computational stochastic mechanics.
Rotterdam: Millpress; 2007. p. 603–12.

[51] Soize C. The Fokker–Planck equation and its explicit steady state
solutions. Singapore: World Scientific; 1994.

[52] Soong TT, Grigoriu M. Random vibration of mechanical and structural
systems. Englewood Cliffs (NJ): Prentice-Hall; 1993.

[53] Tvrdy M. Linear bounded functionals on the space of regular regulated
functions. Tatra Mountains Mathematical Publications 1996;8:203–10.

[54] Tvrdy M. Differential and integral equations in the space of regulated
functions. Memoirs on Differential Equations and Mathematical Physics
2002;25:1–104.

[55] Vakhania NN, Tarieladze VI, Chobanyan SA. Probability distributions on
banach spaces. Dordrecht: D.Reidel Publ. Co.; 1987.

[56] Vasta M. Exact stationary solution for a class of non-linear systems driven
by a non-normal delta-correlated process. International Journal of Non-
Linear Mechanics 1995;30(4):407–18.

[57] Volterra V. Theory of functionals and of integral and integro-differential
equations. Blackie & Sons Lim.; 1930. Re-published by Dover Publ. Inc.
(1959/2005). 1930/1959/2005.

[58] Wilson JF, editor. Dynamics of offshore structures. 2nd ed. Chichester
(New York): John Wiley & Sons; 2002.

[59] Zhu WQ, Huang ZL, Suzuki Y. Equivalent non-linear system method
for stochastically excited and dissipated partially integrable Hamiltonian
systems. International Journal of Non-Linear Mechanics 2003;36:
773–786.


	New partial differential equations governing the joint, response--excitation, probability distributions of nonlinear systems, under  general stochastic excitation
	Introduction
	Preliminaries and notation
	A brief review on the characteristic functional and its basic properties
	Definition of the characteristic functional
	Infinite-dimensional (global) moments
	Finite-dimensional (point) moments

	Hopf-type equation for the characteristic functional
	Derivation of new PDEs for joint response--excitation characteristic functions
	Derivation of the FPK equation for the case of independent increment excitation
	Moment equations from the new PDE (5.6)
	Kernel density representation of joint pdfs
	Reformulation of the problem by using kernel density representations
	A two-level numerical solution scheme for the set of Eq. (9.8)
	A local-moment method for the numerical solution of Eq. (10.3b)

	Numerical examples
	Discussion and conclusions
	Acknowledgements
	References


