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ABSTRACT

The motion of inertial (i.e., finite-size) particles is analyzed in a three-dimensional unsteady simulation of

Hurricane Isabel. As established recently, the long-term dynamics of inertial particles in a fluid is governed

by a reduced-order inertial equation, obtained as a small perturbation of passive fluid advection on a globally

attracting slow manifold in the phase space of particle motions. Use of the inertial equation enables the

visualization of three-dimensional inertial Lagrangian coherent structures (ILCS) on the slow manifold.

These ILCS govern the asymptotic behavior of finite-size particles within a hurricane. A comparison of the

attracting ILCS with conventional Eulerian fields reveals the Lagrangian footprint of the hurricane eyewall

and of a large rainband. By contrast, repelling ILCS within the eye region admit a more complex geometry

that cannot be compared directly with Eulerian features.

1. Introduction

Our focus here is the dynamics of inertial (i.e., small

but finite) particles in the three-dimensional flow field of

Hurricane Isabel (cf. Fig. 1). Inertial particles in a fluid

are typically modeled as small spherical objects whose

velocity differs from the local flow velocity. This dif-

ference in velocities is due partly to the mechanical in-

ertia of the particle and partly to viscous drag, buoyancy,

and a local alteration of the flow by the particle. All

these effects are relevant for the dynamics of dust,

droplets, and debris in a hurricane.

Three-dimensional unsteady inertial particle motion

satisfies a time-dependent, six-dimensional system of

differential equations with a singular perturbation term

(see, e.g., Maxey and Riley 1983; Babiano et al. 2000).

Understanding the phase space dynamics of this six-

dimensional system for a specific fluid flow has not been

attempted elsewhere to our knowledge. For this reason,

beyond analyzing a specific atmospheric flow, our study

also aims to introduce a set of new dynamical systems

techniques to the atmospheric literature.

a. Prior work on coherent structures in hurricanes

Although the prediction of hurricane tracks has consid-

erably improved over the past decades, there is still sub-

stantial room for improvement in hurricane intensity

forecasting (Houze et al. 2007). In a series of papers

(Emanuel 1986, 1988, 1995), Emanuel introduced the

energetically based maximum potential intensity (E-MPI)

theory to calculate maximal hurricane intensity by em-

ploying a frictional boundary layer beneath a conditionally

neutral outflow layer. While efficient in some cases, the

theory neglects critical aspects of the inner-core struc-

ture of mature hurricanes such as Isabel (see, e.g.,

Montgomery et al. 2006). In general, there is a strong

correlation between the storm intensity and the spatial

structure of smaller-scale cloud and precipitation features

internal to the storm. These features have so far been

characterized in terms of conventional meteorological

fields, such as temperature, vorticity, and vertical velocity.

The Okubo–Weiss and Hua–Klein criteria have also been

applied to study the rapid filamentation of convective

clouds (Rozoff et al. 2006; Wang 2008) and the geometry

of hurricane-like mesovortices (Schubert et al. 1999).

Finally, effective diffusivity calculations (Shuckburgh and

Haynes 2003) have been employed to identify mixing

barriers and regions of efficient wave breaking in 2D

hurricane-like vortices (Hendricks and Schubert 2008).
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b. Lagrangian coherent structures

Coherent structures are broadly recognized to play a

crucial role in fluid transport, yet an objective (i.e.,

frame independent) extraction of such structures from

velocity data has proven to be challenging. One diffi-

culty is the lack of an accepted definition for coherence

in the Eulerian frame: high or low values of vorticity,

pressure, strain, and energy have all been suggested as

defining quantities (see Jeong and Hussain 1995; Dávila

and Vassilicos 2003).

Another difficulty is that typical Eulerian indicators

of coherence (such as vorticity and the Okubo–Weiss

parameter) are frame dependent (Jeong and Hussain

1995; Haller 2005); that is, they will give different re-

sults in frames that rotate relative to each other. Be-

cause in unsteady flows with several vortices there is no

single distinguished frame, Eulerian coherent structure

criteria are often unsuccessful in capturing intrinsic flow

properties.

By contrast, Lagrangian coherent structures (LCS) can

be defined as smooth sets of fluid particles with distin-

guished stability properties. Specifically, repelling LCS

are material surfaces that repel all neighboring fluid tra-

jectories; similarly, attracting LCS attract all neighboring

fluid trajectories. These definitions are objective, that

is, invariant with respect to translations and even time-

varying rotations of the coordinate frame. Therefore,

LCS can be used to explain the forward and backward

time behavior of typical infinitesimal fluid particles.

To extract Lagrangian structures from the flow, one may

use the direct Lyapunov exponent (DLE) method devel-

oped in (Haller 2001). This method has been applied to

laminar flow experiments with periodic (Voth et al. 2002)

and aperiodic (Shadden et al. 2006) time dependence,

as well as to two-dimensional turbulence experiments

FIG. 1. NASA satellite photo (visible) taken at 11:50 a.m. EDT on 18 Sep 2003 just as the center

of Isabel was making landfall.
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(Mathur et al. 2007) and three-dimensional turbulence

simulations (Green et al. 2007). Notably, Mathur et al.

(2007) show that attracting and repelling LCS form cha-

otic tangles in turbulent experimental flows; Green et al.

(2007) identify similar tangling structures as the Lagrang-

ian boundaries of three-dimensional hairpin vortices.

c. Inertial Lagrangian coherent structures
in hurricanes

Here we are specifically concerned with an objective

identification of observable material structures from the

flow field. Observable material structures (such as the

eyewall and rainbands) are formed by droplets, dust,

and debris (i.e., by inertial particles as opposed to in-

finitesimal fluid particles). This prompts us to extend the

theory of LCS from the infinitesimal particle setting to

the finite-size particle setting.

In Haller and Sapsis (2008), we derived a general

reduced-order equation (inertial equation) for the as-

ymptotic motion of spherical finite-size particles in un-

steady fluid flows. The corresponding reduced inertial

velocity field is a small perturbation of the ambient ve-

locity field, with the order of the perturbation defined as

the size of the inertial particle relative to characteristic

length scales in the flow. Because of this perturbation in

velocity, inertial particle motion can develop substantial

differences from infinitesimal particle motion in the same

ambient flow field.

Here we define inertial Lagrangian coherent struc-

tures (ILCS) as LCS extracted from the inertial equa-

tion by the DLE method mentioned above. Specifically,

attracting ILCS attract finite-size particles, whereas re-

pelling ILCS repel finite-size particles. The network of

repelling and attracting ILCS form the inertial analog of

tangled networks known from simple examples of cha-

otic advection of infinitesimal fluid particles.

It turns out, however, that for larger particle sizes, in-

stabilities in the dynamics of inertial particles may de-

velop [Sapsis and Haller 2008b; G. Haller and T. Sapsis

(2008, unpublished manuscript, hereafter HASA)]. These

instabilities drive away inertial particle trajectories from

the slow manifold on which the inertial equation is valid.

As a result, in a given flow, an attracting ILCS may only

stay attracting for smaller particles, whereas larger par-

ticles ultimately spin away from the ILCS because of their

inertia. Such spinoffs happen in regions of high strain; the

exact strain threshold is derived in Sapsis and Haller

(2008b) for neutrally buoyant particles and in HASA for

general particles.

d. Results

In this paper, we locate key three-dimensional struc-

tures that govern dust and droplet dynamics in a hur-

ricane. These structures are 1) attracting ILCS that form

visible boundaries between regions of similar particle

behavior and 2) repelling ILCS that slice up streams of

particles and send them toward different flow regions.

We obtain the ILCS from a reduced three-dimensional

(as opposed to six-dimensional) calculation, directly

from the inertial equation. For repelling LCS, this is

merely a computational advantage. For attracting LCS,

use of the inertial equation is a must: the backward-time

DLE method applied to the six-dimensional Maxey–

Riley equations leads to a numerical blowup due to a

strong exponential instability.

In a tropical cyclone, the radius of maximum wind is

located in an annular region of heavily precipitating

cloud, called the eyewall. This eyewall encircles the rel-

atively calm eye of the storm. Our Lagrangian methods

provide a clear and unambiguous (i.e., frame indepen-

dent) location of the eyewall, as well as of a neighboring

rainband, for Hurricane Isabel.

Additionally, applying the results from HASA, we

determine the critical particle size over which dynami-

cal instabilities arise in the inertial equation. As a result

of these instabilities, larger bodies such as debris or

dropsondes will depart from visible surfaces formed by

smaller particles, such as droplets and dust.

2. Inertial particles dynamics background

Let x refer to three-dimensional spatial locations and

let t denote time. Let u(x, t) denote the three-dimensional

velocity field of an unsteady flow of density rf, observed

in a rotating coordinate frame with angular velocity V.

For a spherical particle p of density rp and radius a im-

mersed in the fluid, we denote the particle path by x(t).

Let L and U denote a characteristic length scale and

a characteristic velocity of the flow, respectively. If the

particle is spherical, its Lagrangian velocity _x(t) 5 v(t)

satisfies the equation of motion (cf. Maxey and Riley

1983; Babiano et al. 2000):
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Here rp and rf denote the particle and fluid densities,

respectively; a is the radius of the particle; g is the

constant vector of gravity; 2V 3 v is the Coriolis ac-

celeration including all three components; and n is the

kinematic viscosity of the fluid. The individual force

terms listed in separate lines on the right-hand side of

(1) have the following physical meanings: 1) force exerted

on the particle by the undisturbed flow, 2) buoyancy

force, 3) Stokes drag, 4) an added mass term resulting

from part of the fluid moving with the particle, and 5)

Basset–Boussinesq memory term.

The terms involving a2Du are usually referred to as

the Fauxén corrections. For simplicity, we assume that

the particle is very small (a � L), in which case the

Fauxén corrections are negligible. We note that the

coefficient of the Basset–Boussinesq memory term is

equal to the coefficient of the Stokes drag term times

a/
ffiffiffiffiffiffi
pn
p

. Therefore, assuming that a/
ffiffiffi
n
p

is also very small,

we neglect the last term in (1), following common

practice in the related literature (Michaelides 1997). We

finally rescale space, time, and velocity to obtain the

simplified equations of motion
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3R

2

Du(x, t)

Dt
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and with t, v, u, V, and g now denoting nondimensional

variables.

In Eq. (2), St denotes the particle Stokes number and

Re 5 UL/n is the Reynolds number. The density ratio R

distinguishes neutrally buoyant particles (R 5 2/3) from

aerosols (0 , R , 2/3) and bubbles (2/3 , R , 2). The

3R/2 coefficient represents the added mass effect: an

inertial particle brings into motion a certain amount of

fluid that is proportional to half of its mass. For neu-

trally buoyant particles, the equation of motion is sim-

ply (D/Dt)(v 2 u) 5 2m(v 2 u); that is, the relative

acceleration of the particle is equal to the Stokes drag

acting on the particle.

Note that (2) is a nonautonomous six-dimensional

differential equation. In addition to its temporal and

dimensional complexity, (2) also involves a singular per-

turbation problem because of the small parameter « on the

left-hand side. This causes a strong exponential instability

when one attempts to solve the equations in backward

time to locate attracting invariant manifolds in the six-

dimensional phase space (see, e.g., Haller and Yuan 2000).

Haller and Sapsis (2008) proved that for « . 0 small

enough, Eq. (2) written in a nonrotating frame admits a

globally attracting invariant slow manifold. This three-

dimensional time-dependent surface of particle trajec-

tories can be calculated explicitly up to any order of

precision. Inclusion of the Coriolis term does not change

this result (Sapsis and Haller 2008a): the slow manifold

can then be written in the form

M
�
5 (x, v

s
) : v

s
5 u(x, t) 1 �

3R

2
� 1

� �
Du

Dt
� g

� �	

� 2�V 3 u(x, t) 1O(�2)



, (3)

where {} denotes a set.
At leading order, the dynamics on M« is governed by

the inertial equation

_x 5 u(x, t) 1 �
3R

2
� 1

� �
Du

Dt
� g

� �
� 2�V 3 u(x, t),

(4)

a three-dimensional differential equation that has no

singular perturbation terms, and hence no associated

instability in forward or backward time. Thus, the slow

manifold provides us with an Eulerian description of a

modified velocity field that governs the motion of in-

ertial particles with given size and density.

In forward time, the inertial equation enables us to track

particles efficiently by solving the reduced set of Eq. (4).

The forward-time analysis of finite-time Lyapunov expo-

nents allows us to identify repelling Lagrangian structures

that are the source of stretching in the flow (cf. below).

In backward time, the inertial Eq. (4) enables the

extraction of attracting Lagrangian structures along

which particles congregate to form observable patterns

(cf. below). Still in backward time, (3) allows for source

inversion, that is, the identification of a source from

which a dispersed set of particles was originally released.

Note that for « 5 0 (infinitesimally small particles),

the inertial equation is reduced to the equation of mo-

tion for fluid particles. Hence, finite-size particle motion

is a small perturbation of passive fluid advection. Also

observe that the effects of gravity, the Coriolis force,

and force exerted by the flow are of the same order «.

This sheds some doubt on the accuracy of ignoring all

forces but gravity on the particle, a common approxi-

mation in the weather literature. This approximation

appears to be least justifiable near high-velocity and

high-strain regions, such as the eyewall.
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For larger values of «, the slow manifold M« will start

losing its stability on larger and larger spatial domains.

Sapsis and Haller (2008b) and HASA show that such

instabilities develop at high-strain regions of M« that

violate the stability condition

s(x, t) [ l
max
�

$v
s
(x, t) 1 [$v

s
(x, t)]T

2

� �
� 1

�
, 0; (5)

here lmax[A] denotes the maximal eigenvalue of a tensor

A; AT is the transpose of A; and $vs(x, t) 5 $u(x, t) 1

�(3R/2 2 1)$(Du/Dt) 2 2�V 3 $u(x, t).

3. Hurricane Isabel dataset

a. Hurricane overview

Isabel formed from a tropical wave that moved west-

ward from the coast of Africa on 1 September. Over the

next several days, the wave moved slowly westward and

gradually became better organized. Isabel turned west-

northwestward on 7 September, intensifying into a hur-

ricane. Its strengthening continued for the next two days

while it moved between west-northwest and northwest.

Isabel turned westward on 10 September, then main-

tained its direction until 13 September on the south side

of the Azores–Bermuda high.

Isabel subsequently strengthened to a category-5 hur-

ricane on 11 September, with maximum sustained winds

estimated at 145 kt at 1800 UTC that day. After this peak,

the maximum winds remained in the 130–140-kt range

until 15 September. During this time, Isabel displayed a

persistent eye of 35–45 nautical miles in diameter. Isabel

approached a weakness in the western portion of the

Azores–Bermuda high, which allowed the hurricane to

turn west-northwestward on 13 September, northwest-

ward on 15 September, and north-northwestward on

16 September. The latter motion would continue for the

rest of Isabel’s life as a tropical cyclone.

Increased vertical wind shear on 15 September caused

Isabel to gradually weaken. The system weakened be-

low major hurricane status (96 kt or category 3 on the

Saffir–Simpson scale) on 16 September. It maintained

category-2 status with 85–90-kt maximum winds for the

next two days, while the overall size of the hurricane

increased. During that time, Isabel’s intensity is some-

what uncertain as a large outer eyewall was formed,

which disrupted the inner core wind structure (Beven

and Cobb 2003). Isabel made landfall near Drum Inlet,

North Carolina, around 1700 UTC on 18 September as a

category-2 hurricane and then weakened as it moved

across eastern North Carolina.

b. The dataset

The numerical data we use here for the velocity field

u(x, t) and for other Eulerian quantities describe Hur-

ricane Isabel from 1700 UTC 16 September 16 until

1700 UTC 18 September. The data was produced by the

Weather Research and Forecast (WRF) model, cour-

tesy of the national center for Atmospheric Research

(NCAR), and the U.S. National Science Foundation

(NSF). Details for the WRF model can be found in

Skamarock et al. (2005).

The simulation covers a period of 48 time steps

(hours), where time steps refer to model output times.

Each time step contains the instantaneous velocity field

with a grid resolution of 500 3 500 3 100 and horizontal

grid spacing of 4 km, covering an atmospheric volume

with coordinates running from 838W to 628W (longi-

tude: x axis), 23.78N to 41.78N (latitude: y axis), and

0.035 km to 19.835 km (height: z axis).

To nondimensionalize the data, we choose the char-

acteristic length scale L 5 10 km, the characteristic

velocity U 5 10 m s21, and the characteristic time scale

T 5 L/U 5 1000 s. The earth rotates with angular ve-

locity V, which we will take for our analysis to be con-

stant and equal to T 3 7.29 3 1025 s21.

4. Slow manifold in the flow

We first determine the critical value of « below which

the inertial Eq. (4) governs inertial particle dynamics

(i.e., the slow manifold M« attracts exponentially all

finite-size particle trajectories). To this end, we compute

the quantity s(x, t) at t 5 18 for two different values of «

(Fig. 2). The space enclosed by the blue surfaces indi-

cates regions of instability, where the inequality (5) is

violated, and hence particle velocities diverge from

those observed at the same spatial location on the slow

manifold M«. Note that for « 5 0.1, the unstable high-

strain regions are small and therefore the inertial

equation governs particle asymptotics practically ev-

erywhere. For reference, this value of « corresponds to

objects of a typical diameter d 5 10 cm in our flow.

Thus, the instability of the slow manifold mainly con-

cerns particles of larger size such as dropsondes, which

are dropped from high altitude to obtain data on hur-

ricanes. On the other hand, common meteorological

species such as dust or raindrops converge rapidly on

the slow manifold, and the motion in this case is de-

scribed completely by the inertial equation.

Now we show that for small enough « values, the slow

manifold M« indeed gives the correct asymptotic motion

of finite-size particles when compared with the Maxey–

Riley equations. For particles, we choose aerosols with
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parameters R 5 1023 and « 5 1023 that describe rain-

drops. We solve the full six-dimensional Maxey–Riley

Eq. (2) on the time interval [17, 18] using a fourth-order

Runge–Kutta algorithm with absolute integration tol-

erance 1026. The initial velocity of the particle was

taken to be much larger in absolute value than the ve-

locity corresponding to the same initial location on the

slow manifold; this is to illustrate the rapid convergence

of order O(1/«) of particle paths to the slow manifold.

In Fig. 3, we show the projection of the six-dimen-

sional solution of (2) onto the {x, y, jv[�, �, zp(t), (t)]j}
space, where zp(t) is the instantaneous z coordinate of

the particle. We also show the slow manifold M« (blue

surface); we use color to indicate the third dimension of

M«, computed at t 5 18 at the instantaneous vertical

particle position zp(t). Specifically, colors ranging from

dark blue to dark red indicate increasing values of jvj 5

ju[�, �, zp(t), T], which is a measure of the ‘‘height’’ of the

three-dimensional slow manifold at leading order in the

full (x, v) coordinate space. Note the rapid exponential

convergence of the particle trajectory to M«.

5. Inertial Lagrangian coherent structures

a. Extraction of ILCS

Lagrangian coherent structures are distinguished sets

of fluid trajectories that govern the forward- and backward-

time asymptotics of other fluid particles. They can

be located by calculating direct Lyapunov exponents

(see below) from the Lagrangian equation of motion
_x 5 u(x, t) for infinitesimal particles (see, e.g., Haller

and Yuan 2000; Lekien et al. 2007; Shadden et al. 2005;

Mathur et al. 2007). The DLE method has several

FIG. 3. Convergence of an inertial particle (aerosol) to the slow manifold M� shown in the

(x, y, jvj) space at t 5 18. The particle is advected under the full Maxey–Riley equation; the slow

manifold is computed directly from the analytic Eq. (2).

FIG. 2. Unstable regions at t 5 18 for aerosols (R 5 0.5) with (left) � 5 0.2 and (right) � 5 0.1. The axes here and hereafter are in

nondimensional units (with characteristic length L 5 10 km) and the center of the hurricane is located at (145, 120).
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advantages over Eulerian methods, including frame in-

dependence, greater detail, and the ability to define

structure boundaries without relying on a preselected

threshold. On the downside, as with all Lagrangian

methods, DLE relies on the generation of particle paths

and hence is more computationally intensive than

Eulerian methods.

As an advance in the current paper, we locate LCS

that impact the motion of finite-size particles. Such in-

ertial LCS are obtained by applying the DLE method to

the inertial Eq. (4). Note that ILCS differ from LCS in

that the latter are calculated for the infinitesimal parti-

cle dynamics governed by _x 5 u(x, t). Such classic LCS

were computed recently by Du Toit et al. (2007) for a

two-dimensional hurricane model.

By solving numerically the inertial Eq. (4) for a grid of

initial conditions x0 at t0, we determine the asymptotic

inertial particle trajectories x(t, x0). For the numerical

solution of the inertial equation, a fourth-order Runge–

Kutta algorithm is combined with a cubic interpolation

scheme for both space and time to improve resolution of

the dataset. As initial time, we choose t0 5 18; the in-

tegration time interval is chosen for both backward and

forward integration DT 5 5. By numerical differentiation,

we compute the largest singular-value field lmax(t, t0, x0)

of the deformation-gradient tensor field ›x(t, t0, x0)/›x0.

We then use the local maximizing sets of the DLE

field st
t0
(x0) 5 [lnlmax(t, t0, x0)]/ $ [2(t 2 t0)], plotted

over initial positions x0, to visualize the ILCS.

b. Identification of hurricane structures
through ILCS

In Figs. 4a,b and 4c,d, we present various sections

of the scalar backward and forward DLE field, re-

spectively. Red regions indicate the lower-dimensional

surfaces where the DLE reaches its maximum value; these

ridges coincide with attracting ILCS in the backward-time

case and with repelling ILCS in the forward-time case.

In Fig. 5 we compare the backward DLE field with

various conventional meteorological fields including

vertical velocity, vorticity, the Okubo–Weiss criterion,

rain mixing ratio, and cloud mixing ratio. Note that the

main attracting ILCS in the hurricane consist of the

local maximizing surfaces shown in Fig. 6a. The central

cylindrical sheath depicts the eyewall, as confirmed by

the strong correlation between the horizontal Eulerian

fields (Fig. 5) and the local maximizing curves of the

FIG. 4. (a) Backward-time DLE field close to the core of the hurricane for t0 5 18 and aerosols with R 5 1023 and

�5 1023; (b) z section of the backward DLE field for z 5 1. (c),(d) As in (a),(b), respectively, but for the forward-time

DLE field. For all the plots shown red regions indicate the lower-dimensional manifolds where the DLE reaches its

maximum value.
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backward DLE field. We note the sharpness of the eye-

wall (Fig. 6a) relative to the pictures provided by Eulerian

indicators such as the Okubo–Weiss criterion (Fig. 5).

In Figs. 4b and 6a, we can also observe an outer

concentric ‘‘mantle’’ positioned across the northern azi-

muths of the storm, emerging from the core region of

the hurricane near the west azimuths. We note that the

above structure is strongly correlated with both the

Okubo–Weiss criterion and the potential vorticity (Fig. 5)

as well as with the rain mixing ratio. Specifically, by

comparing the backward DLE field (Fig. 4b or 5) with

the rain mixing ratio (Fig. 5), we observe that this outer

concentric mantle is on the boundary that separates two

rainbands having coordinates (120, 80) and (130, 100).

Additionally, a calculation of the 200–850-mb vertical

wind shear (method described in Emanuel et al. 2004)

shows that Isabel was experiencing a strong westerly

wind shear of 11.2 m s21. As was found in Corbosiero

and Molinari (2002), there is a strong correlation be-

tween the azimuthal distribution of convection and the

direction of the vertical wind shear, suggesting that

this outer structure is correlated with the boundary of

a large rainband. Although Beven and Cobb (2003) re-

port the formation of a large outer eyewall, this cannot

be fully confirmed from either the ILCS or the Eulerian

indicators, probably because of insufficient accuracy of

the hurricane simulation to reproduce all the structures

that are apparent in the real storm. Hence, based on the

simulated data, the above asymmetric structure may

be the Lagrangian signature of a vortex Rossby wave

FIG. 5. Horizontal sections of rain mixing ratio (kg kg21), vertical velocity (nondimensionalized with U), cloud

mixing ratio (kg kg21), potential vorticity (nondimensionalized with U/L), backward DLE field, and Okubo–Weiss

criterion [nondimensionalized with (U/L)2] for z 5 1.
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FIG. 6. (a) Attracting manifold at t0 5 18 extracted from the inertial equation as ridges of the backward-time DLE fields. Green

particles are aerosols with �5 0.1 for which the slow manifold is attracting. (b) Repelling manifold consisting of the set of points for which

the DLE is greater than 80% of its maximum value. The coloring is with respect to the spatial x variable to illustrate the three-

dimensionality of the objects involved. (c) Attracting ILCS computed through the inertial equation and colored according to stability

criterion (4) for � 5 0.2. (Red regions on the ILCS indicate locations where the velocities of the inertial particles will diverge from the

velocity field induced by the slow dynamics; blue regions indicate locations where the velocity of inertial particles will be described

accurately by the slow manifold).
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previously studied in Möller and Montgomery (1999,

2000) or a convectively coupled vortex Rossby wave

studied in Schecter and Montgomery (2007).

Ridges of the forward-time DLE field correspond to

repelling ILCS that are not highlighted by particle ac-

cumulation. Still, they play a crucial role in organizing

horizontal and vertical mixing in the flow. In the flow

field of Isabel, repelling ILCS display a more complex

structure than attracting ILCS. Specifically, repelling

ILCS appear to consist of local DLE maximizer sets that

are not always smooth two-dimensional submanifolds

(surfaces) (Fig. 4d). Hence, the extraction of repelling

ILCS as maximizing two-dimensional surfaces is not

always feasible; instead, the repelling ILCS are shown

as the set of points with DLE greater than 80% of its

maximum value (Fig. 6b). The coloring we use for

repelling ILCS is with respect to the spatial x variable

to illustrate the three-dimensionality of the objects

involved.

The altitude corresponding to Fig. 4d (i.e., z 5 10 km)

is the beginning of the outflow jet and therefore the

complex repelling structures shown in Fig. 4d are cor-

related with the strong shear from the structure of the

hurricane on the underside of the outflow jet. Although

repelling ILCS generally possess a complicated struc-

ture, this is not the case inside the hurricane eyewall

where well-defined structures can be observed (Figs.

4c,d). These structures play the role of mixing barriers,

which are determined in Hendricks and Schubert (2008)

using the method of effective diffusivity. This method is

an established diagnostic tool (Shuckburgh and Haynes

2003) but does not reveal the specific, highly tangled,

geometric structure of the flow in as much detail as

ILCS does. In particular, inertial particles are subject to

repulsion by repelling ILCS and simultaneously attrac-

tion by attracting ILCS. Therefore, the complex tangle

formed by these two sets of manifolds defines the global

geometry of the flow, revealing the locations that iner-

tial particles came from and will move to. Using the

geometry of the ILCS, one should be able to describe

and quantify small-scale mixing and transport in hurri-

cane cores, such as mixing between the eye and the

eyewall (Cram et al. 2007) or entrainment of high-

entropy air into the eyewall, a process related to su-

perintensity (Persing and Montgomery 2003). All this

will undoubtedly require higher-resolution data.

c. Inertial particles in the flow

In Fig. 6a, we show the trajectories of a set of inertial

particles released near the hurricane (with green dots

denoting the end of those trajectories) and then ad-

vected using the full Maxey–Riley equation [(2)]. This

set of particles are aerosols with R 5 0.5 and « 5 0.1

(parameters that correspond to a typical dropsonde) for

which the slow manifold is stable almost everywhere

(see Fig. 2, right). Accordingly, we observe their rapid

converge to the attracting ILCS we have computed.

In Fig. 6c, we show the ILCS computed using the in-

ertial equation for « 5 0.2, colored according to the

stability criterion [(5)] for the same value of «. Specifi-

cally, red regions on the ILCS indicate locations where

the velocities of the inertial particles will diverge from

the velocity field induced by the slow dynamics, whereas

blue regions indicate locations where the ILCS com-

puted through the slow dynamics will indeed attract

finite-size particles with « 5 0.2.

The complete three-dimensional description of the

stability regions for inertial particles with « 5 0.2 is

given in Fig. 2 (left). In Fig. 6c (left), we show a set of

inertial particles (R 5 0.5 and « 5 0.2) initialized near a

blue region of the ILCS. Observe that these particles

tend to align with the ILCS. In Fig. 6c (right) we choose

to initialize another set of inertial particles in a different

location where an instability of the slow manifold is

FIG. 7. ILCS for � 5 0.2 from two different viewing angles. Yellow (red) regions indicate the parts of the attracting (repelling) ILCS

where inertial particle velocity will diverge from the slow manifold. Green (blue) regions indicate the parts of the attracting (repelling)

ILCS where particles’ velocity will converge to the slow manifold velocity exponentially fast.
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predicted by Eq. (5). Observe that these particles cross

the projection of ILCS and then subsequently (when

they approach a stable region of the slow manifold)

align with the ILCS.

In Fig. 7, we show both the attracting and repelling

ILCS from two different view angles, colored accord-

ing to the stability criterion (5) for « 5 0.2. More

specifically, yellow (red) regions indicate the parts of

the attracting (repelling) ILCS where inertial particle

velocity will diverge from the velocity field given by the

slow manifold; over these regions the extracted ILCS

will not govern the motion of inertial particles. On the

other hand, green (blue) regions indicate the parts of

the attracting (repelling) ILCS where particle veloci-

ties will converge to the slow manifold velocity expo-

nentially fast. Thus, over these regions the extracted

ILCS will efficiently describe the motion of inertial

particles.

The differences between the ILCS computed for dif-

ferent « values (e.g., Figs. 6a,c) are not significant. How-

ever, individual particle behavior differs dramatically

in the two cases in accordance with the different sta-

bility properties of the slow manifold. This confirms that

ILCS computed for the inertial equation are the rele-

vant governing structures for finite-size particle motion,

as long as the particles are small enough to satisfy the

stability criterion (5).

6. Conclusions

In this work we have identified inertial Lagrangian

coherent structures (ILCS) that govern the motion

of inertial particles in a numerical model of Hurricane

Isabel. Through a slow manifold reduction and the nu-

merical solution of the corresponding inertial equation,

we have calculated the backward- and forward-time

direct Lyapunov exponent (DLE) fields on the slow

manifold. The ridges of these scalar fields mark the lo-

cation of attracting and repelling ILCS, respectively.

Additionally, we have determined the critical size of

inertial particles below which ILCS derived from the

inertial equation govern the asymptotic particle motion

in forward and backward time.

The attracting ILCS we have identified are consistent

with features observed in more conventional meteoro-

logical fields, such as potential vorticity, rain mixing ratio,

and the Okubo–Weiss criterion. Through a comparison

of the attracting ILCS and Eulerian quantities, we have

identified the eyewall of the hurricane as well as an outer

region of enhanced vorticity that is strongly correlated

with a large rainband caused by a vertical wind shear.

By contrast, repelling ILCS (which create mixing and

disperse particles toward various attracting ILCS) show

a more complex geometry. Because of their instability,

repelling ILCS are not directly observable in flow ex-

periments, and hence their detailed topology and im-

plications on global mixing within a hurricane deserves

further numerical study.
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