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Subharmonic Orbits of a Strongly
Nonlinear Oscillator Forced by
Closely Spaced Harmonics
We study asymptotically the family of subharmonic responses of an essentially nonlinear
oscillator forced by two closely spaced harmonics. By expressing the original oscillator
in action-angle form, we reduce it to a dynamical system with three frequencies (two fast
and one slow), which is amenable to a singular perturbation analysis. We then restrict the
dynamics in neighborhoods of resonance manifolds and perform local bifurcation analy-
sis of the forced subharmonic orbits. We find increased complexity in the dynamics as the
frequency detuning between the forcing harmonics decreases or as the order of a sec-
ondary resonance condition increases. Moreover, we validate our asymptotic results by
comparing them to direct numerical simulations of the original dynamical system. The
method developed in this work can be applied to study the dynamics of strongly nonlinear
(nonlinearizable) oscillators forced by multiple closely spaced harmonics; in addition,
the formulation can be extended to the case of transient excitations.
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Introduction
The majority of techniques for the asymptotic analysis of non-

inear oscillators relies on the use of harmonic generation �1–3�.
n cases, however, where strong or even essential nonlinearities
re encountered, that is, degenerate systems with nonlinearizble
onlinearities, new approaches should be adopted that take into
ccount the nonlinearizable nature of the dynamics. Perturbation
ethods for strongly nonlinear systems have been developed

4–9� and were applied for studying the dynamics either in the
bsence of forcing �free responses� or when a single harmonic
xcitation is applied.

In this work, we develop an asymptotic methodology that is
pplicable to a general class of forced �or unforced� strongly non-
inear oscillators and apply it to the case of an essentially nonlin-
ar �i.e., nonlinearizable� oscillator forced by two closely spaced
armonics. This later problem often arises in engineering practice,
.g., in problems of wave transmission in weakly coupled periodic
tructures or in problems of resonance capture in dynamical sys-
ems with multiharmonic excitations. The asymptotic analysis
ields rich bifurcation structures in the forced dynamics, which
ecome increasingly more complicated as the frequency detuning
arameter denoting the difference between the frequencies of the
orcing harmonics tends to zero or as the order of the resulting
trongly nonlinear resonance interactions increases.

Nonlinear Boundary Value Problem Formulation
Consider the following strongly nonlinear oscillator forced by

wo harmonics with closely spaced frequencies:

w� + Ĉw3 = F̂ sin t + F̂ sin�1 + �1/4B̄�t = F̂�1 + cos��1/4B̄t��sin t

+ F̂ sin��1/4B̄t�cos t
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w�0� = 0, w��0� = W �1�

where B̄ represents the frequency detuning between the two har-
monics of the excitation and the prime denotes differentiation with
respect to the temporal variable t. As an initial step, we express
the nonautonomous dynamical system �1� in the following autono-
mous form:

w� = z

z� = − Ĉw3 + F̂�1 + cos �2�sin �1 + F̂ sin �2 cos �1

�1� = 1

�2� = �1/4B̄

w�0� = 0, z�0� = W �2�

where �w ,z ,�1 ,�2��R2�S1�S1.
To bring this system into a form better amenable to asymptotic

analysis, we introduce the action-angle variables �I ,���R+�S1

of the Hamiltonian oscillator obtained by setting F̂=0 in Eq. �1�
�10�. The explicit action-angle transformation applied to Eq. �1� is
given by

w = �I1/3cn�2K�1/2��/�,1/2�

w� = − ��I1/3�̃�I�2K�1/2�/��sn�2K�1/2��/�,1/2�

dn�2K�1/2��/�,1/2� �3�

where w, w�, I, and � are functions of the independent temporal
variable t, �̃�I�=�I1/3 is the instantaneous frequency of oscilla-
tion of the uncoupled nonlinear oscillator with �

= �3�4Ĉ /8K4�1 /2��1/3, �= �4Ĉ�−1/6�3� /K�1 /2��1/3, K�1 /2� the
complete elliptic integral of the first kind, and sn and dn are Ja-
cobi elliptic functions with modulus 1/2 �11�. Rescaling the forc-

ing amplitude according to F̂=�1/2 f̂ , we then express the dynami-

cal system �2� in the following canonical form:
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� = − �1/2 f̂
3I1/3���1 + cos �2�sin �1 + sin �2 cos �1�

2K�1/2���

sndn

cn4 + 2sn2dn2

� �1/2 f̃1�I,�,�1,�2�

�� = �̃�I� − �1/2 f̂
�2I−2/3��1 + cos �2�sin �1 + sin �2 cos �1�

4K2�1/2���

�
cn

cn4 + 2sn2dn2 � �̃�I� + �1/2 f̃2�I,�,�1,�2�

�1� = 1

�2� = �1/4B̄ �4a�

ith initial conditions

I2/3�0� =
− W�

21/2��K�1/2�
	 0, ��0� = 0 �4b�

n the relations above, sn, cn, and dn are Jacobi elliptic functions
ith argument �2K�1 /2���+� /2� /� ,1 /2�. For more details of

his computation, we refer to the work of Vakakis and Gendelman
12�.

The dynamics of system �4a� takes place on the three-torus
I ,� ,�1 ,�2��R+�S1�S1�S1. Moreover, this dynamical system
ossesses two fast frequencies equal to �̃�I�+O��1/2� and 1, re-

pectively, and a slow frequency equal to �1/4B̄. It follows that we
ay eliminate the independent slow frequency and reduce the

ynamics to the following dynamical system on a two-torus:

I� = �1/2 f̃1�I,�,�,�1/4B̄��

�� = �̃�I� − �1/2 f̃2�I,�,�,�1/4B̄��

�� = 1 �5�

here we introduced the renaming �1→�. The dynamical system
5� represents a global model of the dynamics since it is valid for
rbitrary values of the action-angle variables.

We wish to study the structure of the subharmonic orbits of the
ynamical system �5� in the limit of small �. To this end, we need
o construct a countable infinity of local models by considering
he unperturbed system with �=0 and imposing internal reso-
ance conditions to the two fast frequencies. For example, con-
idering the subharmonic orbits of system �5� �or, equivalently, of
ystem �4a�� satisfying an �m :n� ratio between the two fast fre-
uencies, we impose the following condition, which computed the
orresponding value of the action variable:

m�̃�I� − n = 0 ⇒ I = � n

m�
�3

� I�m/n�, n,m � N+ �6�

his relation couples the two fast frequencies of the reduced prob-
em and defines the �m :n� resonance manifold for the dynamics.

e then study the dynamics in the neighborhood of this resonant
anifold by defining the new dependent variable 
=m�−n�,
hich denotes deviations of the two fast angles from values sat-

sfying the condition of internal resonance when the O��1/2� per-
urbation terms are taken into account. Introducing the change in
ariables �� ,��→ �� ,�� and changing the independent variable
rom t to � �this is permissible since we can solve the last of Eq.
5� as, �= t+�0, so that � is a timelike fast angle—for simplicity,
e take �0=0�, we may further reduce the dynamical system �5�

o the following form:

1/2 1/4¯
I���� = � f1�I,
,�,� B��
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���� = �m�̃�I� − n� + �1/2f2�I,
,�,�1/4B̄�� �7�

where differentiations are carried out with respect to �, and the

right-hand-side terms are defined according to f i�I ,
 ,� ,�1/4B̄��
= f̂ i�I ,�= �
+n�� /m ,� ,�1/4B̄�� , i=1,2; note that in these defi-
nitions, the integers n and m �used in the internal resonance con-
dition �6�� enter implicitly. We now introduce the following action
coordinate change I���= I�m/n�+�1/4���� in order to study the dy-
namics of the reduced system close to the �m :n� resonance mani-
fold. Then, the following local reduced order model is obtained,
which in contrast to the global model �5� is valid only in the
neighborhood of the �m :n� resonance manifold,

����� = �1/4f1�I�m/n�,
,�,�1/4B̄�� + �1/2� f1�I�m/n�,
,�,�1/4B̄��
�I

+ O��3/4�


���� = �1/4m�����̃��I�m/n�� + �1/2��m/2��̃��I�m/n���2���

+ mf2�I�m/n�,
,�,�1/4B̄��	 + O��3/4� �8�

where the prime denotes differentiation of a function with respect
to its argument.

The local dynamical system �8� possesses a resonance capture
topology �12–15� in the O��1/4� neighborhood of the �m :n� reso-
nance manifold, with the main difference from previous studies
being the periodic dependence of the terms f1 and f2 on the slow

angle �1/4B̄�. Moreover, system �8� is in standard form for apply-
ing averaging �3� or for applying a singular perturbation analysis
such as the method of multiple scales �1�. In what follows, we will
adopt the later approach by introducing the new timelike scales

=� and �=�1/4� and express the solution of the local model in
the series form:

���� = ��
,�� = �0�
,�� + �1/4�1�
,�� + ¯


��� = 
�
,�� = 
0�
,�� + �1/4
1�
,�� + ¯ �9�

Substituting into the local model �8�, we derive a hierarchy of
subproblems at different orders of approximation, which we ana-
lyze separately.

The O�1� subproblem is solved as follows:

��0

�

= 0 ⇒ �0�
,�� = C1���

�
0

�

= 0 ⇒ 
0�
,�� = C2��� �10a�

where C1��� and C2��� are functions of the slow scale, which are
determined by considering terms in the next order of approxima-
tion.

Proceeding to the O��1/4� subproblem, this is given by

��1

�

= f1�I�m/n�,C2���,
,B̄�� − C1����

�
1

�

= m�̃��I�m/n��C1��� − C2���� �10b�

Terms that are constant in terms of the fast scale 
 represents
secular terms in the above system and need to be eliminated in
order to obtain uniformly valid solutions as 
→�. The conditions
for eliminating these secular terms lead to the following equa-
tions, determining the functions C1��� and C2��� of the O�1�
approximation:

− C1���� +
1

T

T

f1�I�m/n�,C2���,
,B̄��d
 = 0

0
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− C2���� + m�̃��I�m/n��C1��� = 0 �11a�

here T is the minimal period of the function f1 with respect to
he fast scale 
 and the prime denotes differentiation with respect
o the slow angle �. These equations can be combined to a single
econd order equation in terms of C2��� as follows:

C2���� −
m�̃��I�m/n��

T 

0

T

f1�I�m/n�,C2���,
,B̄��d
 = 0 �11b�

his equation provides the leading order approximation to the
esonance capture dynamics in the O��1/4� neighborhood of the
m :n� resonance manifold �formulated in full generality in the
ork of Verhulst �16�; Eq. 11.4, Sec. 11.6�. We note that in the

imit B̄→0, i.e., of no slow frequency dependence in the nonho-
ogeneous part of the oscillator �1�, relation �11b� provides the
ell-known pendulum equation that governs resonance capture
ynamics close to an invariant manifold for a system possessing
nly two “fast” frequencies; this topic has been studied in previ-
us works �13,12,15�. We wish to study how the resonance cap-
ure topology is perturbed when a third slow frequency is added to
he dynamics.

To perform a more detailed analysis of the resonance capture
ynamics in the problem under consideration, we set m=n=1 �for
implicity� and consider the dynamics in the neighborhood of the
:1 resonance manifold. For the oscillator �1�, the stable invariant
ubmanifolds of this specific manifold are expected to possess the
roadest domains of attraction and hence to most strongly influ-
nce the forced dynamics compared with other members of the
ountable infinity of �m :n� resonance manifolds �15�. For m=n
1, Eq. �11b� is expressed as

C2���� + G sin B̄� cos C2��� − G�1 + cos B̄��sin C2��� = 0

�12�

here

G = − f̂�̃��I�1/1��
3�0.4045I�1/1�1/3

2K�1/2���

he periodic orbits of system �12� in terms of the slow time scale
will be numerically computed utilizing the method of nons-

ooth coordinate transformations first developed by Pilipchuk
17,18� and then applied to strongly nonlinear oscillators by Pil-
pchuk et al. �19�. To apply the method, we express the sought
eriodic solutions in terms of two nonsmooth variables ���̂� and
��̂� defined as

���̂� =
2

�
sin−1�sin

��̂

2
�, e��̂� = ���u�

here �̂=� /a and a is the quarter-period of the solution �confer
ig. 1�. In addition, we impose the secondary resonance condition

=k� /2a , k=1,2 , . . ., which is necessary for the realization of
eriodic orbits in Eq. �12�. Then, we express the solution as

C2��̂� = C2����̂�,e��̂�� = X��� + e���� �13�

ubstitute this expression into Eq. �12� and set separately equal to
ero the components that depend or not on the nonsmooth variable
. Then, we obtain the following nonlinear boundary value prob-
ems �NLBVPs� over the finite interval −1���1: k=2p+1, p

N+,

X� + Ga2 sin��2p + 1���/2�cos X cos Y − Ga2 sin X cos Y

− Ga2 cos��2p + 1���/2�cos X sin Y = 0

Y� − Ga2 sin��2p + 1���/2�sin X sin Y − Ga2 cos X sin Y
2
− Ga cos��2p + 1���/2�sin X cos Y = 0

ournal of Computational and Nonlinear Dynamics
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X���1� = 0, Y��1� = 0 �14a�

k=2p , p�N+,

X� − Ga2 sin p�� sin X sin Y − Ga2 sin X cos Y

− Ga2 cos p�� sin X cos Y = 0

Y� + Ga2 sin p�� cos X cos Y − Ga2�1 + cos p���cos X sin Y = 0

X���1� = 0, Y��1� = 0 �14b�
where differentiations are carried out with respect to the nons-
mooth variable �. The boundary conditions in Eqs. �14a� and
�14b� are derived by imposing “smoothening conditions” �19� in
order to eliminate singular terms from the transformed equations
such as terms proportional to e���̂�=����̂�=2�k=−�

� �
��̂+1−4k�
−
��̂−1−4k��.

We note that the solutions of the NBVPs �14a� and �14b� cor-
respond to first-order approximations to the slow-varying solu-
tions of the reduced local model �7� under the condition of inter-
nal resonance �6� with m=n=1. Considering the action-angle
transformation �3�, the first-order approximation of the subhar-
monic response of the strongly nonlinear forced oscillator �1� is
then expressed as

w�t� = ��I�m/n� + �1/4C1��1/4t�

+ O��1/2��1/3cn�2K�1/2�
�


nt + C2��1/4t� + O��1/4�
m

+
�

2
�,1/2� �15a�

with m=n=1 and satisfying the initial conditions

w�0� = 0 and w��0� = ��I�m/n� + �1/4C1�0� + O��1/2��1/3 � W

�15b�

It follows that for a general case of �m :n� internal resonance the
forced subharmonic response of Eq. �1� is in the form of a slowly
modulated signal possessing two fast frequencies equal to 1 and

n /m, respectively, and a slow frequency equal to �1/4B̄. Typically,
this is a quasiperiodic response, unless the slow frequency is in
rational relation with respect to either one of the fast frequencies,

Fig. 1 Nonsmooth variables �„�̂… and e„�̂…
in which case the response is periodic.
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In the next section, we study in detail the solutions �and their
ifurcations� of the NLBVPs �14a� and �14b� �corresponding to
:1 internal resonance� and relate them to the subharmonic forced
esponses of the original problem �1�.

Forced Subharmonic Responses
In this section, we study the topology of the subharmonic orbits

f Eq. �1� under condition of 1:1 internal resonance �i.e., m=n
1� by numerically solving the NLBVPs �14a� and �14b�. As

¯

Fig. 2 Surfaces SX�„pY� ,pX… and SY„pY� ,pX… of th
=0.101; the lower plots show the zero contours o
for the online version and grey for the printed ve
entioned in the last section, in the limit B→0 �i.e., when the

11014-4 / Vol. 6, JANUARY 2011
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frequency detuning between the two forcing harmonics tends to
zero�, the dynamical system �12� takes the form of an unforced
pendulum equation; it is well known that this system possesses a
homoclinic loop that surrounds an infinite family of periodic or-
bits, which represents a classical resonance capture topology in
the dynamics of a single-degree-of-freedom nonlinear oscillator
forced by a single harmonic excitation �13�. We wish to study how
this resonance capture topology is perturbed as the frequency de-

tuning parameter B̄ increases from zero.

LBVP „14a… for k=1 and „a… B̄=0.671 and „b… B̄
X�„pY� ,pX… „black lines… and SY„pY� ,pX… „red lines
on…
e N
f S
rsi
It turns out that solving the NLBVPs �14a� and �14b� is not a
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imple task due to the occurrence of very complex bifurcations in

he dynamics of Eq. �12� for varying parameter B̄. To address this
roblem, we employed a special numerical technique by treating
he coupled equations in Eq. �14a� or Eq. �14b� as initial value
roblems (IVPs) with initial values prescribed at �=−1 given by

X�− 1� � pX, Y��− 1� � pY�, X��− 1� = 0, Y�− 1� = 0

�16�

y numerically solving the IVPs, we obtain the values X��+1� and
�+1� as functions of the initial conditions pX and pY�. Therefore,
e can numerically generate the following two two-dimensional

urfaces:

X��+ 1� � SX��pY�,pX�

Y�+ 1� � SY�pY�,pX�

learly, the solutions of NLBVP �14a� or NLBVP �14b� are the
oints �pY� , pX� satisfying the set of nonlinear relations

SX��pY�,pX� = 0

SY�pY�,pX� = 0

rom a geometrical point of view, each of the relations above
efines a one-dimensional line, so the intersections of these lines
efine the sought solutions. From a computational point of view,
n order to compute these points, first, we compute the zero con-
ours of each of the two-dimensional surfaces, i.e., the sets:

CX� = ��pY�,pX� � R � S1�SX��pY�,pX� = 0	

CY = ��pY�,pX� � R � S1�SY�pY�,pX� = 0	

hen, we compute the solutions of the NLBVP �14a� or NLBVP

Fig. 3 Bifurcation diagrams of the solutions of t
left, we depict some characteristic periodic orb
bifurcation diagram
14b� by calculating the intersections of the above curves

ournal of Computational and Nonlinear Dynamics
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� = ��pY�,pX� � R � S1�SY�pY�,pX� = SX��pY�,pX� = 0	 .

In this way, we obtain the solutions �and their bifurcations� of the
NLBVP as solutions of the sets of Eq. �14a� or Eq. �14b�, subject
to the initial conditions �16� with �pY� , pX���.

Note that the above method has the added advantage to predict
the existence of periodic orbits without having to determine the
corresponding pair �pY� , pX� with high accuracy. This is because
the existence of a solution of the NLBVP is guaranteed by the
existence of an intersection of the sets CX� and CY, even though
the intersection point does not need to be computed with high
accuracy. This is particularly important for determining unstable
solutions, whose computation is very sensitive to even small er-
rors in the estimates of �pY� , pX�.

This last feature of the outlined methodology plays a critical
role in the following computations since it will be shown that
even though for relatively large values of the detuning frequency

parameter B̄, the surfaces SX��pY� , pX� ,SY�pY� , pX� are sufficiently

smooth; this behavior does not persist when B̄ tends toward zero.
In this case, it will be shown that these surfaces have highly
oscillating regions and the curves CX� and CY have very complex
topologies, reflecting the complex bifurcation structure leading to
an infinite family of solutions �or equivalently periodic orbits� as

B̄→0; i.e., as the classical topology of resonance capture is
reached.

In Figs. 2�a� and 2�b�, we present the surfaces
SX��pY� , pX� ,SY�pY� , pX� �upper plots� along with their zero con-
tours �lower plots� for the NLBVP �14a� with k=1, parameters

Ĉ=1.0, �=0.001, �1=1.0, and f̂ =1.0, and two values of the fre-

quency detuning parameter B̄. In the lower plots, the black lines
represent the zero contours of the surface SX��pY� , pX�, whereas
the red curves correspond to the zero contours of the surface
SY�pY� , pX�. The intersections of the black and red lines �grey lines

NLBVP „14a… for 1:1 resonance and k=1; on the
of „12… corresponding to points marked in the
he
its
for the printed version� provide the special set of points � that are

JANUARY 2011, Vol. 6 / 011014-5
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olutions of the NLBVP �14a� �or, equivalently, periodic solutions
ith respect to the slow angle of the problem �12��.
For the larger value of B̄ �Fig. 2�a��, we observe that � consists

f two intersection points corresponding to two periodic orbits of

q. �12�. Hence, we find that for relatively large values of B̄ the
nfinity of periodic orbits encountered in the classical resonance

apture topology is restricted to only 2. Clearly, as B̄ decreases,
e anticipate that the topology of the two surfaces will become

Fig. 4 Surfaces SX�„pY� ,pX… and SY„pY� ,pX… of th
=0.101; the lower plots show the zero contours o
for the online version and grey lines for the print
11014-6 / Vol. 6, JANUARY 2011
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more complex in order to yield through their intersections a con-
tinuously increasing number of bifurcating periodic orbits and,

ultimately, an infinity of periodic orbits as the limit B̄→0 is
reached. This is confirmed in the lower plot of Fig. 2�b�, where we
note that the zero contours tend to align with each other, creating
a large number of intersection points �solutions of the NLBVP�. It
follows that with the above representation of solutions, we are
able to describe the transition from the finite number of periodic

LBVP „14b… for k=2 and „a… B̄=0.671 and „b… B̄
X�„pY� ,pX… „black lines… and SY„pY� ,pX… „red lines
version…
e N
f S
orbits of Eq. �12� to the infinite family of periodic solutions as
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→0. This transition is better illustrated in the bifurcation dia-
ram depicted in Fig. 3, where the values of X�−1� and Y��−1�
orresponding to solutions of the NLBVP are presented in a bi-

urcation diagram with respect to B̄. In the same figure, we depict
ome characteristic periodic orbits of system �12� in the
C2��� ,C2����� plane, each one corresponding to a pair of �X�
1� ,Y��−1�� marked in the bifurcation diagram.
In Fig. 4, we depict the surfaces SX��pY� , pX� ,SY�pY� , pX� and

heir zero contours for k=2 and two values of the frequency de-
uning parameter. Moreover, in Fig. 5, the corresponding bifurca-
ion diagrams are shown, where we observe that the complexity of
he topology of the subharmonic orbits is more complex compare
ith the case k=1. This enhancement of complexity is also mani-

ested in Fig. 6 where the zero contour curves for the cases k=3,

=4, and frequency detuning parameter B̄=0.671 are presented.

Fig. 5 Bifurcation diagrams of the solutions of t
left, we depict some characteristic periodic orbit
bifurcation diagram

Fig. 6 Surfaces SX�„pY� ,pX… and SY„pY� ,pX… of th
the zero contours of SX�„pY� ,pX… are denoted by

online version and grey lines for the printed version
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Finally, in order to test the validity of the derived asymptotic
approximations, we performed an additional numerical study
where the subharmonic solutions obtained by numerically solving
the NLBVPs �14a� and �14b� were compared with direct numeri-
cal simulations of the original strongly nonlinear oscillator �Eq.
�1�� �or, equivalently, Eq. �3�� subject to the theoretically predicted
initial conditions. In Fig. 7, we present two different periodic re-
sponses of the system for resonance parameter k=1, correspond-
ing to periodic orbits �a� and �c� in the bifurcation diagram of Fig.
3. Agreement between the results of the asymptotic analysis and
the direct numerical simulations is noted, validating our
asymptotic approach. In Fig. 8, we compare two additional sub-
harmonic responses of the oscillator for k=2, corresponding to
periodic orbits �b� and �h� in the bifurcation diagram of Fig. 5.
Again, the comparisons validate the asymptotic results.

NLBVP „14b… for 1:1 resonance and k=2; on the
f Eq. „12… corresponding to points marked in the

LBVPs „14a…, k=3, and „14b…, k=4, for B̄=0.671;
ack lines and of SY„pY� ,pX… by red lines for the
he
s o
e N
bl
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Concluding Remarks
We developed an asymptotic method for computing the subhar-
onic responses of a strongly nonlinear oscillator forced by two

losely spaced harmonics. The method is based on action-angle
ransformation of the original differential equation of motion,
hich brings the system into canonical form, which can be as-
mptotically analyzed by methods from singular perturbation
ethods. We emphasize that our analysis is not based on the use

f harmonic �i.e., linearized� generating functions as most current
echniques do; in fact, an approach based on linearization would

Fig. 7 Subharmonic responses com
k=1 „blue curves… and the original f
„black curves… for ε=0.001; the subh
„b… correspond to the periodic orbits
Fig. 3, respectively
ot be applicable in the system under consideration as it possesses

11014-8 / Vol. 6, JANUARY 2011
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an essentially nonlinear �i.e., nonlinearizable� stiffness element.
Comparisons of the asymptotic results to direct numerical simu-
lations proved the validity of our approach.

A bifurcation study was carried out for the case of 1:1 reso-
nance between the frequency of oscillation of the oscillator and
one of the forcing harmonics. Our analysis indicates that the
forced strongly nonlinear oscillator possesses very complex dy-
namics. Indeed, the bifurcation diagrams �which were constructed
using the frequency detuning parameter between the forcing har-
monics as bifurcation parameter� indicated that the forced dynam-

ted by solving the NLBVP „14a… for
ed strongly nonlinear oscillator „1…
onic responses depicted in „a… and

and „c… in the bifurcation diagram of
pu
orc
arm
„a…
ics becomes increasingly more complex as the frequency detuning
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arameter tends to zero or as the order of the secondary resonance
increases. This is a manifestation of the fact that in the limit of

ero detuning the strongly nonlinear oscillator is forced by a
ingle harmonic excitation and exhibits chaotic responses. De-
ending on the frequency detuning �1/4B̄, the subharmonic re-
ponse of the oscillator is periodic or quasiperiodic.

The developed action-angle based methodology can be ex-
ended to strongly nonlinear oscillators forced with more than two
losely spaced harmonics or even with nonperiodic �transient� ex-
itations.
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