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a b s t r a c t

In thiswork the problemof targeted energy transfer (TET) froma linearmedium to a nonlinear attachment
is studied in the presence of stochasticity. Using a Green’s function formulation, complexification-
averaging technique and diffusion approximation we derive a complex, nonlinear, Ito stochastic
differential equation that governs the slow dynamics of the system. Through the numerical solution of
the corresponding Fokker–Planck–Kolmogorov (FPK) equation we study the optimal regime of TET and
its robustness to stochasticity for the case of nonlinear interactions of the nonlinear attachment with a
single mode of the linear system. The probabilistic analysis reveals that in the presence of stochasticity
the optimal TET regime, predicted in the deterministic theory, is not only preserved but also is enhanced
due to the interaction of nonlinearity and stochasticity.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper the problem of targeted energy transfer (TET)
between a linear structure and a nonlinear attachment is
studied in the presence of stochasticity. Targeted energy transfer
is a mechanism met in a wide spectrum of both physical
phenomena and engineering applications. Examples of physical
phenomena connected with TET include resonance-driven solar
energy harvesting governing photosynthesis [1] and energy
self-focusing, localization and transport governing bioenergetic
processes [2]. In engineering applications, energy exchange
mechanisms are found in a wide spectrum of scales extending
from micro- and nano-applications such as molecular electronic
devices [3,4] to large scale structural applications including seismic
mitigation problems [5] and energy harvesting from ambient
vibrations [6].

Over the past several years, TET has been studied extensively
in a deterministic framework. The occurrence of nonlinear TET (or
nonlinear energy pumping) was first observed by Gendelman [7],
who studied the transient dynamics of a two-DOF system
consisting of a damped linear oscillator (designated as the ‘primary
system’) that was weakly coupled to an essentially (strongly)
nonlinear, damped attachment; e.g., an oscillator with zero

∗ Corresponding author.
E-mail addresses: sapsis@mit.edu (T.P. Sapsis), avakakis@illinois.edu

(A.F. Vakakis), lbergman@illinois.edu (L.A. Bergman).

0266-8920/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.probengmech.2010.11.006
linearized stiffness. A slightly different nonlinear attachment was
considered in [8,9]. In these papers the nonlinear oscillator was
connected to ground through an essential stiffness nonlinearity.
The underlying dynamical mechanism governing TET was found
to be a transient resonance capture [10] of the dynamics of the
nonlinear attachment on a 1:1 resonance manifold. Nonlinear
TET (or nonlinear energy pumping) in two-DOF systems was
further investigated in several recent studies. In [11], the onset
of nonlinear energy pumping was related to the zero crossing
of a frequency of envelope modulation, and a criterion (critical
threshold) for inducingnonlinear energypumpingwas formulated.
A procedure for designing passive nonlinear energy pumping
devices was developed in [12] while additional theoretical and
numerical results on nonlinear TET were reported in recent works
by Gourdon and Lamarque [13] and Gourdon et al. [14]. In [15],
the energy exchanges in the damped system were interpreted
based on the topological structure and bifurcations of the periodic
solutions of the underlying undamped system. Gendelman [16]
provided a different perspective of TET dynamics by computing
the damped nonlinear normal modes of a linear oscillator coupled
to a nonlinear attachment using the invariant manifold approach.
Manevitch et al. [17,18], Quinn et al. [19], Koz’min et al. [20] and
Sapsis et al. [21] discussed the conditions that should be satisfied
by the system and forcing parameters for optimal TET to occur.

In many applications of interest stochasticity or randomness
may be involved, which in some cases may drastically alter the
deterministic dynamics. For a mathematical model that character-
izes a given system, sources of stochasticity may be uncertainties
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in the initial and boundary conditions, parametric uncertainties
including random excitation as well as approximations inherent
in the deterministic model. For many of the above cases, deter-
ministic modeling may not be sufficient to give a complete charac-
terization of the system response. On the other hand, a stochastic
characterization of the system ismore suitable to take into account
all the above factors leading to a better understanding of the
dynamics under more realistic conditions. Moreover, it provides
us with a methodology to evaluate the robustness of the deter-
ministic mechanisms to stochastic perturbations that can model a
priori unknown deterministic excitations but with known statisti-
cal characteristics; e.g., stochastic spectrum.

Various methods have been developed for the statistical
characterization of the response of stochastic systems. These
can be categorized based on the nature and dimensionality of
the problems that are suitable to handle. For low-dimensional
systems a detailed characterization of the system response
in terms of the response probability density function (pdf)
can be given through a diffusion approximation [22,23] when
the stochastic excitation has finite but small correlation time
length, or through generalized transport equations governing
the joint response-excitation pdf for more general stochastic
excitation [24]. Even though the above methods are able to
describe complex behaviors of the system under consideration,
their applicability is limited to lower dimensional problems due
to the serious numerical constraints imposed by the solvability
of the corresponding transport equation for the pdf in higher
dimensions [25]. For this reason, approximation methods can be
applied leading to alternative statistical characterizations from
that of the response pdf. Those include closure techniques such as
the method of moments [26], cumulant-neglect techniques [27],
statistical linearization [28] and particle filter methods [29,30]
just to mention a few. For continuous systems the challenges
and difficulties are different and hence only very few of the
above methodologies can be applied in this context. For this case
methods leading to order reduction of the infinite dimensional
stochastic space may be applied such as proper orthogonal
decomposition [31–33], polynomial-chaos methods [34,35], and
dynamically orthogonal field equations [36].

Very few studies have been devoted to the analysis of
system responses involving TET in the presence of stochasticity
with current results restricted mainly to the numerical study
of the mechanism [37,38]. In the present work we consider a
general linear system connected with an essentially nonlinear
attachment in the presence of stochastic excitation to both the
linear system and the nonlinear attachment but also with random
initial conditions. Then using a Green’s function formulation we
transform the full problem to a single, stochastic, nonlinear,
intergro-differential equation that captures the full dynamics and
contains the complete probabilistic information of the problem. By
approximating the dynamics in the early time regime we show
that the integral terms may be neglected allowing us to describe
the stochastic response though a single stochastic, nonlinear
differential equation. The next step of our analysis involves
the application of the complexification-averaging technique [39]
suitably adapted to treat the stochastic terms of the equation.
This leads to a complex, stochastic differential equation governing
the slow dynamics of the system in the neighborhood of a
resonance capture region. The final step is the approximation of
the last equation by an Ito stochastic differential equation through
the application of the diffusion or Markov approximation [22,23].
To this end, closed expressions for the correlation time length of
the excitation term on the slow dynamics are derived, leading
to necessary conditions for the applicability of the Markov
approximation. We illustrate the usage of the derived SDE for the
slow dynamics in the study of the stochastic nonlinear interactions
and TET robustness between a nonlinear attachment and a single
mode of a linear structure in the presence of uncertainty.
Fig. 1. General linear medium coupled with nonlinear attachments through point
connections.

2. Definitions and problem statement

Let (Ω,B,P ) be a probability space withΩ being the sample
space containing the set of elementary events ϖ ∈ Ω,B is the
σ -algebra associatedwithΩ,P is a probabilitymeasure, and t ∈ T
denotes time. Then every measurable map of the form χ(t;ϖ),
ϖ ∈ Ω is a random function for which we define the mean value
operator as

χ̄ (t;ϖ) = Eϖ [χ (t;ϖ)] =

∫
Ω

χ (t;ϖ) dP (ϖ) .

A zero-mean stochastic process χ (t;ϖ) ,ϖ ∈ Ω will be called
weakly stationary if its correlation function exists for all times and
depends on the time difference of the time instants [26,27,22],

Cχχ (t1, t2) ≡ Eϖ [χ (t1;ϖ)χ (t2;ϖ)] = Cχχ (τ ) , τ = t1 − t2.

In this case we can define the correlation time length as [27,22]

τc =


∞

0 Cχχ (τ ) dτ
Cχχ (0)

which is a measure of ‘memory’ of the present χ (t;ϖ) with
respect to the past χ (s;ϖ).

In what follows we will consider a general system that consists
of a linear medium coupled with a set of essentially nonlinear
oscillators. We assume that the dynamics of the linear medium
(which can be discrete or continuous of finite or infinite spatial
extent) are governed by a linear operator of the form

∂2u (x, t)
∂t2

= L [u (x, t)] + F (x, t;ϖ) , x ∈ D,ϖ ∈ Ω (1)

M [u (x, t)] = h (x, t) , x ∈ ∂D

u (x, t0) = f0 (x;ϖ) , ut (x, t0) = g0 (x;ϖ) , ϖ ∈ Ω

where x is an index taking values in a discrete or continuous set
D (depending on the nature of the linear medium), u (x, t) is the
field describing the response of the linear medium, M [u (x, t)] is
the boundary conditions operator (if applicable), f0, g0 describe the
initial conditions (possibly stochastic), and F describes all of the
forces acting on the linear medium, deterministic and stochastic.

The linear structure is coupled with a set of essentially
nonlinear oscillators connected to the linear medium pointwise at
and xi (Fig. 1).

Following common practice in related literature (see [5], and
references therein) we consider the case of cubic nonlinearities
where the equation of motion for the attachment has the form

miq̈i + λi (q̇i − ut (xi, t))+ Ci (qi − u (xi, t))3 = Gi (t;ϖ) (2)

qi (t0;ϖ) = qi0 (ϖ) , q̇i (t0;ϖ) = q̇i0 (ϖ) , ϖ ∈ Ω (3)

and where mi, λi, Ci, and Gi are respectively, the mass, damping
coefficient, nonlinear stiffness and the external forces acting on
the nonlinear attachment. In this case the coupling with the linear
medium is taken into account through the relative displacement
(qi − u (xi, t)) across the nonlinear attachment. This particular
choice of nonlinear attachment is made since the deterministic
dynamics in this case has been studied extensively in the literature
(see [5], and references therein) and is well understood. However,
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the results presented in Sections 3 and 4 can be used for the case of
nonlinear stiffness models with general polynomial nonlinearities.

The forces acting on the linear medium can be split into the
internal forces due to the nonlinear attachments and the external
forces Fe (x, t;ϖ) as

F (x, t;ϖ) =

−
i


λi (q̇i − ut (xi, t))+ Ci (qi − u (xi, t))3


× δ (x − xi)+ Fe (x, t;ϖ) .

In the present work we will perform our analysis for the special
case of a single attachment coupled to the linear system. The
derivations below can be generalized for more attachments
although the analytical manipulations may become much more
complicated. Hence, for the case of a single nonlinear attachment
coupled to the linear system at point x0, the force acting on the
linear system has the form

F (x, t;ϖ) =

λ (q̇ − ut (x0, t))+ C (q − u (x0, t))3


× δ (x − x0)+ Fe (x, t;ϖ) . (4)

3. Reduction of the dynamics

Based on the linearity of the operators L and M we can char-
acterize the response of the linear medium in terms of a resolvent
operator, a Green’s function that satisfies the problem [40]

∂2G (x, t | y, s)
∂t2

= L [G (x, t | y, s)] + δ (x − y, t − s) (5a)

M [G (x, t | y, s)] = h (x, t) , x ∈ ∂D (5b)
G (x, t | y, s) = 0, t < s. (5c)

By integrating (5a) with respect to time t from s− to s+, at fixed
x, y and using (5c) to eliminate the lower-limit contributions on
the left, we can replace (5c) with more explicit conditions [40]

lim
t→s+

G (x, t | y, s) = 0 lim
t→s+

Gt (x, t | y, s) = δ (x − y) .

In this way we can express the response of the linear system as

u (x, t) =

∫ t

t0

∫
D
G (x, t | y, s)F (y, s;ϖ) dyds

+

∫
D


G (x, t | y, t0) g0 (y;ϖ)

−Gt (x, t | y, t0) f0 (y;ϖ)

dy.

Using form (4) for the forces F (y, s;ϖ) acting on the linear
medium, we obtain

u (x, t) =

∫ t

t0

∫
D
G (x, t | y, s)Fe (y, s;ϖ) dyds

+

∫
D


G (x, t | y, t0) g0 (y;ϖ)− Gt (x, t | y, t0)

× f0 (y;ϖ)

dy +

∫ t

t0
G (x, t | x0, s)

×

λ (q̇ − ut (x0, s))+ C (q − u (x0, s))3


ds. (6)

Combining the last expression with the equation of motion for the
nonlinear attachment (2),wehave the coupled systemof equations

mq̈ + λ

q̇ − ζ̇


+ C (q − ζ )3 = G (t;ϖ) (7a)

ζ (t) = H (t;ϖ)+

∫ t

t0
G (x0, t | x0, s)

×

λ

q̇ − ζ̇ (s)


+ C (q − ζ (s))3


ds (7b)

q (t0;ϖ) = q0 (ϖ) , q̇ (t0; (ϖ)) = q̇0 (ϖ) , ϖ ∈ Ω (7c)
where ζ (t) ≡ u (x0, t), and the stochastic forcing term H (t;ϖ)
consist of one component due to external random excitation acting
on the linear medium and a second component due to random
initial conditions. From Eq. (6) it follows that H (t;ϖ) is given by

H (t;ϖ) =

∫ t

t0

∫
D
G (x0, t | y, s)Fe (y, s;ϖ) dyds

+

∫
D


G (x0, t | y, t0) g0 (y;ϖ)

−Gt (x0, t | y, t0) f0 (y;ϖ)

dy.

Eq. (4) is a coupled system of a nonlinear ODE and a nonlinear
integral equation of the Volterra type of the second kind [41]. Note
that system (7) is an exact reformulation of the original problems
(1)–(4). Moreover, knowing the response y(t) of the nonlinear
attachment and the response of the linear medium at x0, ζ (t) we
may obtain the response of the whole linear medium through
Eq. (6).

Assuming further conditions on the form of the nonlinear
attachment as well as on the excitation and initial conditions
of the linear medium, we will prove that the coupled response
can be approximated by a single stochastic differential equation.
Following Vakakis et al. [5] we first apply the transformation

v = εq + ζ
w = q − ζ

⇔

q =
1

1 + ε
(v + w)

ζ =
1

1 + ε
(v − εw)

to obtain

ẅ +
(1 + ε) λ

m
ẇ +

(1 + ε) C
m

w3
=
(1 + ε)

m
G (t;ϖ)− v̈

1
1 + ε

(v(t)− εw (t))

= H (t;ϖ)+

∫ t

t0
G (x0, t | x0, s)


λẇ (s)+ C (w(s))3


ds

w (t0;ϖ) = q0 (ϖ) , ẇ (t0;ϖ) = −g0 (x0;ϖ)+ q̇0 (ϖ)

where we have assumed without loss of generality f0 (x0;ϖ) = 0.
Substituting the value v(t) from the second equation into the first
equation, we obtain

ẅ +
λ

m
ẇ +

C
m
w3

=
1
m

G (t;ϖ)− Ḧ (t;ϖ)

−
d2

dt2

[∫ t

t0
G (x0, t | x0, s)


λẇ (s)+ C (w(s))3


ds
]
. (8)

The last stochastic, nonlinear integrodifferential equation is an
exact reformulation of the original problem, and no approxima-
tions have beenmade. However, in order to proceedwith our anal-
ysis, we will now assume that the nonlinear attachment has small
mass and is weakly damped, and that the initial conditions and
external force acting on the linear medium are also small. More
specifically, we assume that

m → εm, λ → ελ, G → ε
3
2 G, Fe → ε

1
2 Fe

f0 → ε
1
2 f0, g0 → ε

1
2 g0, q0 → ε

1
2 q0, q̇0 → ε

1
2 q̇0

which also induce the rescalings

w → ε
1
2w, H → ε

1
2 H

where ε ≪ 1 is the scaling parameter. Applying the above
rescalings we obtain
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ẅ +
λ

m
ẇ +

C
m
w3

=
1
m

G (t;ϖ)− Ḧ (t;ϖ)

− ε
d2

dt2

[∫ t

t0
G (x0, t | x0, s)


λẇ (s)+ C (w(s))3


ds
]
. (9)

The first term on the right hand side expresses the external forces
acting directly on the nonlinear attachment. The second term is
the forces acting indirectly on the nonlinear attachment due to the
dynamics of the linear medium created by the initial conditions
and the external forces acting on it. Finally, the last term expresses
the force due to the modified dynamics of the linear medium due
to the presence of the nonlinear attachment. Its effect becomes
important in large time scales of order ε−1 and, therefore, for
the short time regime the dynamics can be approximated by the
nonlinear equation

ẅ + λ̂ẇ + Ĉw3
= G (t;ϖ)− Ḧ (t;ϖ)+ O (ε) (10a)

w (t0;ϖ) = q0 (ϖ) , ẇ (t0;ϖ) = −g0 (x0;ϖ)+ q̇0 (ϖ) (10b)

where λ̂ = λ/m, Ĉ = C/m, andG =
1
mG.

4. Equation governing the stochastic slow dynamics

We will now assume that the external forces acting directly
on the nonlinear attachment can be expressed as a zero-mean
stationary stochastic process; e.g., white noise. We also assume
that the forces acting on the linear medium can be decomposed
into a deterministic part and a zero-mean, stationary, stochastic
part so that

H (t;ϖ) = Hd(t)+ Hs (t;ϖ)+ H0 (t;ϖ)

where Hd(t) is the deterministic component, Hs (t;ϖ) is the
zero-mean stochastic component due to random forces acting
on the linear medium, and H0 (t;ϖ) is a zero-mean stochastic
component due to random initial conditions of the linear medium.
Each of the above terms is analyzed below.

4.1. Deterministic part Hd(t)

By considering the mean of H (t;ϖ) we have for the
deterministic part

Hd(t) =

∫ t

t0

∫
D
G (x0, t | y, s) F̄e (y, s) dyds (11)

where F̄e, is the deterministic (mean) part of the forcing acting on
the linear medium; i.e., Eϖ [Fe (y, s;ϖ)].

4.2. Stochastic part due to random forces Hs(t;ϖ)

The termHs (t;ϖ) is the zero-mean stochastic component due
to the randomness of the external forces and is given by

Hs (t;ϖ) =

∫ t

t0

∫
D
G (x0, t | y, s)F ′ (y, s;ϖ) dyds

with F ′ (y, s;ϖ) = Fe (y, s;ϖ) − F̄e (y, s;ϖ) being the zero-
mean stochastic fluctuation of the forces acting on the linear
medium, in general non-stationary. In this case its correlation
function will be given by

CHsHs (t1, t2) =

∫ t1

t0

∫ t2

t0

∫
D

∫
D
G (x0, t1 | y1, s1)G (x0, t2 | y2, s2)

× CF ′F ′ (s1, s2, y1, y2) dy1dy2ds1ds2
where

CF ′F ′ (t1, t2, y1, y2) = Eϖ

F ′ (y1, s1;ϖ)F ′ (y2, s2;ϖ)


.

Assuming a spatially decorrelation field F ′(y, s;ϖ) gives

CF ′F ′ (t1, t2, y1, y2) = C̃F ′F ′ (t1, t2, y1) δ (y1 − y2) .

This is the case where the forces acting on two different points
of the linear medium are statistically independent. Then, the
expression for the correlation function is given by

CHsHs (t1, t2) =

∫ t1

t0

∫ t2

t0

∫
D
G (x0, t1 | y, s1)G (x0, t2 | y, s2)

× C̃F ′F ′ (s1, s2, y) dyds1ds2. (12)

In what follows we will assume for simplicity that Hs (t;ϖ) is a
stationary stochastic process even though the analysis can be done
for the general case. The above assumption can be made for the
case of a linear time invariant medium where G(x, t | y, s) =

G(x, t− s | y), and the stochastic processF ′ (y, s;ϖ) is stationary.

4.3. Excitation term due to initial conditions H0(t;ϖ)

Finally, the term H0 (t;ϖ) reflects the effect of the stochastic
part of the initial conditions for the linear medium and is given by

H0 (t;ϖ) =

∫
D


G (x0, t | y, t0) g0 (y;ϖ)

−Gt (x0, t | y, t0) f0 (y;ϖ)

dy.

4.4. Stochastic averaging

We now write Eq. (10a) in the form

ẅ + λ̂ẇ + Ĉw3
= Φd(t)+ Φs (t;ϖ)+ O (ε) (13)

where Φd(t) = Ḧd(t) − Ḧ0 (t;ϖ), and Φs (t;ϖ) = G (t;ϖ) +

Ḧs (t;ϖ) is a zero-mean stochastic process with known statistical
characteristics defined by the forcing terms and the initial
conditions.

Clearly the linear mediummay have many natural frequencies.
As is demonstrated in [5] the nonlinear attachment engages
subsequently with each of the linear modes and dissipates energy
through a resonance capture cascade. Here, we want to study the
interaction of the nonlinear attachment with a single frequencyω0
of the linear system under the condition of 1:1 transient resonance
capture. Therefore, during this transient resonance capture, we
consider only the part of the spectrum of the linear system that is
close to the considered frequency ω0 and which can be expressed
as

Φd(t) = ejω0t
∫ δ

−δ

SΦd (ω + ω0) ejωtdω

where SΦd is the Fourier transformof the functionΦd(t), SΦd (ω) =
1
2π


e−jωtΦd(t)dt , and δ is a small parameter relative to ε which

allows us to take into account closely spaced modes that can
play a significant role in the dynamics of the attachment during
the 1:1 transient resonance capture. Now, the goal is to derive
a modulation equation governing the stochastic slow dynamics
of the system during this phase. To this end we will adapt the
complexfication-averaging method developed by Manevitch [39]
to the present casewhere uncertainty has to be taken into account.
We introduce the new complex variable

ψ (t;ϖ) = ẇ (t;ϖ)+ jw (t;ϖ) .
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Substituting, Eq. (13) is expressed as

ψ̇ −
j
2


ψ + ψ∗


+
λ̂

2


ψ + ψ∗


+

jĈ
8


ψ − ψ∗

3
= ejω0t

∫ δ

−δ

SΦd (ω + ω0) ejωtdω + ξ (t;ϖ) .

We represent the solution of the equation for ψ as

ψ (t;ϖ) = z (t;ϖ) ejω0t

where z (t;ϖ) is a slowly varying complex amplitude that
modulates the fast oscillation ejω0t . Subsequently, we average out
the fast frequency to obtain

ż +
j
2
z +

λ̂

2
z −

3jĈ
8

|z|2 z

=

∫ δ

−δ

SΦd (ω + ω0) ejωtdω + η (t;ϖ) (14)

z (t0) = e−jω0t0 (ẇ (t0)+ jw (t0)) (15)

where, as noted earlier, the spectral density SΦd is narrowly
distributed around ω0; therefore, the averaging of this term is
justified. The last term is a stochastic process given by

η (t;ϖ) =
ω0

2π

∫ t+ π
ω0

t− π
ω0

e−jω0sΦs (s;ϖ) ds. (16)

Clearly, the above process is zero-mean and, moreover, its
correlation function is given by

Cηη̄ (t1, t2) =

 ω0

2π

2 ∫ t1+
π
ω0

t1−
π
ω0

∫ t2+
π
ω0

t2−
π
ω0

e−jω0(s1−s2)

× CΦsΦs (s1 − s2) ds1ds2.

By applying the transformation si → si + ti we conclude that the
process is stationary and, by setting τ = t1 − t2, we obtain

Cηη∗ (τ ) =

 ω0

2π

2 ∫ π
ω0

−
π
ω0

∫ π
ω0

−
π
ω0

e−jω0(τ+s1−s2)

× CΦsΦs (τ + s1 − s2) ds1ds2

=
ω0

2π

∫ 2π
ω0

0


e−jω0(τ−s)CΦsΦs (τ − s)

+ e−jω0(τ+s)CΦsΦs (τ + s)
 

1 −
ω0s
2π


ds. (17)

Hence, we have derived the stochastic differential equation (14)
that governs the motion of the slow dynamics. Eq. (14) depends
on SΦd , the Fourier transform of Φd(t), and on the zero-mean
stochastic process η (t;ϖ) that has a correlation function given
by (17).

4.5. Correlation time length for η(t;ϖ)

We shall now derive a transport equation governing the
evolution of the probability density function χ (z, t) describing
the stochastic, slowly varying, complex amplitude z (t;ϖ). To
simplify our analysis we assume that the initial conditions that
characterize the linear medium are deterministic so that SΦd (ω)
is also a deterministic quantity.

To derive a transport equation for χ (z, t) we will apply
the diffusion approximation [22,23] to the stochastic differential
equation (14). To this end we need to estimate the correlation
length of the stochastic process η (t;ϖ). We have∫
∞

0
Cηη∗ (τ ) dτ ≤

∫
∞

0

Cηη∗ (τ )
 dτ

≤
ω0

2π

∫
∞

0

∫ 2π
ω0

0

CΦsΦs (τ − s)


+
CΦsΦs (τ + s)

 1 −
ω0s
2π


dsdτ

=
ω0

2π

∫ 2π
ω0

0


1 −

ω0s
2π

 ∫ ∞

0

CΦsΦs (τ − s)


+
CΦsΦs (τ + s)

dτds
=
ω0

2π

∫ 2π
ω0

0


1 −

ω0s
2π

∫ ∞

−s

CΦsΦs (τ )
 dτ

+

∫
∞

s

CΦsΦs (τ )
 dτds

=
ω0

2π

∫ 2π
ω0

0


1 −

ω0s
2π


ds
∫

∞

−∞

CΦsΦs (τ )
 dτ

=

∫
∞

0

CΦsΦs (τ )
 dτ .

Moreover,

Cηη∗(0) =
ω0

π

∫ 2π
ω0

0
cos (ω0s) CΦsΦs(s)


1 −

ω0s
2π


ds.

Therefore we have an upper bound for the correlation time length

τη ≤

π
ω0


∞

0

CΦsΦs (τ )
 dτ 2π

ω0
0 CΦsΦs(s)


1 −

ω0s
2π


cos (ω0s) ds

=
τΦs

2

∫ 1

0

CΦsΦs


sπ
ω−


CΦsΦs(0)

cos (πs) (1 − s) ds

−1

.

The first form is more suitable for fast decaying correlation
functions with respect to the time scale π

ω0
. For this case, in the

limit of very fast decaying CΦsΦs(s)we will have∫ 2π
ω0

0
CΦsΦs(s)


1 −

ω0s
π


cos (ω0s) ds

≃

∫ 2π
ω0

0
CΦsΦs(s)ds

=

∫
∞

0
CΦsΦs(s)ds ≃

∫
∞

0

CΦsΦs(s)
 ds

and therefore

τη ≤
π

ω0
.

Such a special case is whenΦs (t;ϖ) is white noisewherewe have
CΦsΦs (τ ) = ν2δ (τ ) (which is the correlation function with the
fastest possible decaying or with the smallest memory). Then we
can calculate directly from (17) that

τη,w =
π

2ω0
. (18)

This is the smallest possible correlation length that the stochastic
process η (t;ϖ) may have and is dominated not from the corre-
lation length of Φs (which is zero) but rather from the averaging
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procedure that is over a time scale T =
π
ω0

(averaging/integration
is a process that introduces memory to a stochastic process).

On the other hand if CΦsΦs is sufficiently slowly decaying with
respect to the time scale π

ω0
then the second form of the upper

bound is more suitable. Using the latter we obtain

τη <
τΦs

2

∫ 1

0

CΦsΦs


sπ
ω−


CΦsΦs(0)

cos (πs) (1 − s) ds

−1

≃
τΦs

2

[∫ 1

0
cos (πs) (1 − s) ds

]−1

=
π2

4
τΦs

and therefore in this case the primary role is played by the
correlation length of the stochastic processΦs.

The next step is to derive an estimate for the correlation time
length τΦs . SinceF ′(y, s;ϖ) andG(t;ϖ) are zero-mean stochastic
fluctuations acting on the linear medium and the nonlinear
attachment, respectively, we assume that they have characteristics
of white noise. Then, if the intensity of G(t;ϖ) is non-zero, the
correlation time length of the process Φs(t;ϖ) = G(t;ϖ) +

Ḧs(t;ϖ) is independent of the stochastic characteristics of
Ḧs(t;ϖ) and is equal to zero.

However, for the case where G (t;ϖ) = 0, the correlation
time length of Φs (t;ϖ) is governed completely by the stochastic
characteristics of the process F ′ (y, s;ϖ) and the dynamics of the
linear medium described by the Green’s function G. To proceed
with our analysis we consider a special form for the correlation
function for the stochastic fluctuation F ′ (y, s;ϖ) given by

CF ′F ′ (t1, t2, y1, y2) = ν2F ′ (y1, y2) δ (t1 − t2) .

In this case we will have from Eq. (12)

CḦsḦs (t + τ , t) =

∫ t+τ

t0

∫ t

t0

∫
D

∫
D
Gtt (x0, t + τ − s1 | y1)

×Gtt (x0, t − s2 | y2) ν2F ′ (y1, y2) δ (s1 − s2) dy1dy2ds1ds2

=

∫ t

t0

∫ t

t0

∫
D

∫
D
Gtt (x0, t + τ − s1 | y1)Gtt (x0, t − s2 | y2)

× ν2F ′ (y1, y2) δ (s1 − s2) dy1dy2ds1ds2

=

∫ t

t0

∫
D

∫
D
Gtt (x0, t + τ − s | y1)Gtt (x0, t − s | y2)

× ν2F ′ (y1, y2) dy1dy2ds.

Therefore,

CḦsḦs (τ , δt) =

∫ δt

0

∫
D

∫
D
Gtt (x0, τ + s | y1)Gtt (x0, s | y2)

× ν2F ′ (y1, y2) dy1dy2ds, δt = t − t0.

From this it follows that

CḦsḦs (0, δt) =

∫ δt

0

∫
D

∫
D
Gtt (x0, s | y1)Gtt (x0, s | y2)

× ν2F ′ (y1, y2) dy1dy2ds

and∫
∞

0
CḦsḦs (τ , δt) dτ =

∫ δt

0

∫
D

∫
D

∫
∞

0
Gtt (x0, τ + s | y1) dτ


×Gtt (x0, s | y2) ν2F ′ (y1, y2) dy1dy2ds

= −

∫ δt

0

∫
D

∫
D
Gt (x0, s | y1)Gtt (x0, s | y2)

× ν2F ′ (y1, y2) dy1dy2ds.
Then, the correlation length τΦs can be characterized by the
functional T


G, ν2

F ′; δt

defined as

τΦs (δt) = −

 δt
0


D


D Gt (x0, s | y1)Gtt (x0, s | y2) ν2F ′ (y1, y2) dy1dy2ds δt

0


D


D Gtt (x0, s | y1)Gtt (x0, s | y2) ν2F ′ (y1, y2) dy1dy2ds

≡ T

G, ν2

F ′


Thus, we have an expression for the correlation length in

terms of the Green’s function that characterizes the linear
medium, and now have upper bounds and approximations for
the correlation time length characterizing the stochastic process
η(t;ϖ) for various cases. Using those we will prove that the
diffusion approximation can be applied to system (14) in order
to derive a transport equation for the probability density function
characterizing the slow dynamics of the system.

4.6. Diffusion approximation

The diffusion method relies on the approximation of the
stochastic process η (t;ϖ) by a process with independent incre-
ments. The process η (t;ϖ) does not possess the property of in-
dependent increments since, as we proved, it has finite correla-
tion time length. However, if the deterministic dynamics governing
the evolution of the stochastic process acts on a sufficiently slower
time scale than the memory of the stochastic process, then the in-
dependent increment approximation is valid [22,23].

As we showed in the previous section, when the intensity of the
noise G (t;ϖ) is non-zero, then τΦs = 0 and, therefore, τη ≤

π
ω0

.
Hence, thememory of the stochastic processη (t;ϖ) is sufficiently
smaller than the slowdynamics described by the slow flow Eq. (14)
in the absence of noise, and the diffusion approximation is valid.

For the case whereG (t;ϖ) = 0, the correlation time length is
bounded by

τη <
π2

4
τΦs (δt) . (19)

Therefore, a sufficient condition for the validity of the diffusion
approximation is π2

4 τΦs (δt) = O

π
ω0


.

Under these assumptions, Eq. (14) can be approximated by the
Ito stochastic differential equation

dz =


−

j
2
z −

λ̂

2
z +

3jĈ
8

|z|2 z +

∫ δ

−δ

SΦd (ω + ω0) ejωtdω


× dt + σidWi (t;ϖ) (20)

where σi = σ1i + jσ2i is such that

σikσkj =
1
τη

∫ τη
2

−
τη
2

∫ τη
2

−
τη
2

Cηiηj (t1, t2) dt1dt2 (21)

with η (t1;ϖ) = η1 (t1;ϖ)+ jη2 (t1;ϖ).
Note that, for the case where the uncertainty is introduced only

through the forcing directly on the attachment (F ′ (y, s;ϖ) = 0)
which haswhite noise characteristics CΦsΦs (t, s) = ν2δ (t − s), we
can use Eq. (16) to obtain

σikσkj =
1
τη

∫ τη
2

−
τη
2

∫ τη
2

−
τη
2

Cηiηj (t1, t2) dt1dt2

= τη,w
ν2ω0

4π
δij =

ν2

8
δij (22)

where in the last equationwehaveused the correlation time length
that we computed in (18).
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Subsequently, we express the complex amplitude as real and
imaginary components z = z1+jz2. Then, Eq. (14) can be expressed
as

dz1 = Ξ1 (z1, z2, t) dt + σi1dWi (t;ϖ)
dz2 = Ξ2 (z1, z2, t) dt + σi2dWi (t;ϖ)

where

Ξ1 (z1, z2, t) =
1
2
z2 −

λ̂

2
z1 −

3Ĉ
8


z21 + z22


z2

+ Re
∫

SΦd (ω + ω0) ejωtdω

Ξ2 (z1, z2, t) = −
1
2
z1 −

λ̂

2
z2 +

3Ĉ
8


z21 + z22


z1

+ Im
∫

SΦd (ω + ω0) ejωtdω.

Moreover, the last SDE is equivalent to the following Fokker–
Planck–Kolmogorov (FPK) equation for the probability density
function χ (z1, z2, t)

∂χ

∂t
+
∂ (Ξ1 (z1, z2, t) χ)

∂z1
+
∂ (Ξ2 (z1, z2, t) χ)

∂z2

−
1
2
σikσkj

∂2χ

∂zi∂zj
= 0. (23)

5. Interaction with a single linear mode

We will now apply the above analysis to study the interaction
of the nonlinear attachment with a single mode of the linear
system under the condition of 1:1 transient resonance capture and
in the presence of noise having the same order of magnitude as
the response of the system. The deterministic dynamics of this
system have been studied previously [19,21,5] in the context of
TET.

Here we wish to study these dynamics in the presence of
stochasticity as well as the robustness of the TET mechanisms
observed in the deterministic context under the influence of
stochastic perturbations. We will assume that no external forces
act on the system except for a zero-mean stochastic perturbation
with white noise characteristics which acts directly on the
nonlinear attachment. The last assumption doesn’t introduce any
restrictions from treating the general case of stochastic excitation;
the only change is the calculation of the diffusion coefficient. In
what follows the diffusion coefficient will be chosen to be of the
same order as the system response near the critical TET regime
so that we can get a characterization of the robustness properties
of the system when randomness magnitude is comparable with
the system response. Moreover, we will consider the system to be
excited by deterministic initial conditions having the form

f0 (y;ϖ) = 0 and g0 (y;ϖ) = g0(y)
q0 = q̇0 = 0.

Then,

Φd(t) = −Ḧ0 (t;ϖ) = −

∫
D
Gtt (x0, t | y, t0) g0(y)dy.

Since our study will focus on the interaction of the nonlinear
attachment with a single mode of the linear medium (under
the condition of 1:1 transient resonance capture), we consider a
Green’s function that has the form

G (x, t | y, s) =

−
i

Ai (x | y) sin (ωi [t − s])
where the frequencies are well separated from each other (with
respect to the scale ε). Assuming interaction with a single mode
(at frequency ω0) we obtain∫ δ

−δ

SΦd (ω + ω0) ejωtdω = −
j
2
ω2

0

∫
D
A0 (x0 | y) g0(y)dy.

Then, Eq. (20) takes the form

dz =


−

j
2
z −

λ̂

2
z +

3jĈ
8

|z|2 z −
j
2
B1


dt + σidWi (t;ϖ) (24)

z(0) = −B2 (25)

where B1 = ω2
0


D A0 (x0 | y) g0(y)dy and B2 = g0 (x0) depend

on the initial conditions of the linear medium at t0 = 0. The
last equation approximates the dynamics up to times of O


ε−1


.

Moreover, since we assumed that the only external force is
the white noise acting on the nonlinear oscillator, the diffusion
coefficient for the FPK equation is given by (22). As mentioned
earlier, the assumption about the form of stochasticity doesn’t
introduce restrictions on the analysis since the general case of
stochastic excitation acting on both the linear system and the
nonlinear attachmentwill also lead to the slow flowEq. (24) having
a constant diffusion coefficient given by Eq. (21) and with the
assumption that condition (19) for a small correlation time length
is satisfied.

An importantmeasure thatwewill use in the sequel to evaluate
the performance of TET is the total energy dissipated by the
nonlinear oscillator. As shown in [21] this is given by (adapted for
the stochastic case)

Ed(t) =
ελ̂

2

∫ t

0
Eϖ


|z (t;ϖ)|2


dt. (26)

Therefore, we have strong dissipation of energy by the nonlinear
attachmentwhen themodulus of the slow-flow, |z (t;ϖ)|, is larger
during the initial stage of motion. In what follows we will assume
that B1 = B2 ≡ B, a case that occurs when the linear medium is a
single degree of freedom oscillator with natural frequencyω0 = 1.

5.1. An overview of the deterministic dynamics

As shown in [19,21], the deterministic dynamics of (24) are
strongly influenced by the underlying topological structure of the
periodic andquasi-periodic orbits of theHamiltonian system.More
specifically, the undamped, deterministic system is integrablewith
Hamiltonian
j
2

|z|2 −
j
4

|z|4 −
jB
2
z∗

+
jB
2
z = h.

Taking into account the integrability of the system we can reduce
it to a one-dimensional slow-flow

2ȧ = [f (a; B)]1/2 , f (a; B) = 4Ba −


a −

a2

2
+

B4

2
+ B2

2

where a(t) = |z(t)|2. Depending on the value of B, f (a; B) can
possess two, three or four real roots. For a critical value B = Bcr =

0.3672, two of the real roots coincide (case of three real roots) and,
as shown in [21] for this case the system possesses a homoclinic
orbit that is determined explicitly in terms of the two homoclinic
loops (Fig. 2)

|z(t)|2 = a(−)h (t)

= a2 −
γ1γ2

γ1 sinh2
√

γ1γ2
8 t


+ γ2 cosh2

√
γ1γ2
8 t

 (27)
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Fig. 2. Homoclinic orbit in terms of |z(t)|2 (upper plot) and also shown in the slow-
flow phase space: Re[z], Im[z] (lower plot).

and

|z(t)|2 = a(+)h (t)

= a2 +
γ1γ2

γ1 cosh2
√

γ1γ2
8 t


+ γ2 sinh2

√
γ1γ2
8 t


where a2, γ1, γ2 are constants that can be calculated numerically
(see [21]). Also, in both cases the argument of z will be given by

arg z(t) = δ
(±)
h (t) = sin−1

 2
Bcr

d

a(±)h (t)

dt

 . (28)

A regular perturbation analysis with respect to the damping
parameter (which is assumed to be weak, λ̂ = ε1/2λ̃) reveals
that these two homoclinic loops govern the global dynamics of
the slow flow even in the presence of damping; moreover, they
define the regime of optimal TET. Specifically, for aweakly damped
system, optimal TET is realized for initial energies that correspond
to trajectories that are in the neighborhood of the homoclinic
loop. In particular the perturbed homoclinic orbit (due to weak
damping) defines the boundary that separates trajectories that
perform large excursions in the slow-flow phase space (leading
to strong dissipation according to (26)) from those that are
‘trapped’ to the S11− region and lead to slow dissipation of energy
(Fig. 3).

Moreover, from those trajectories that perform large excursions
we can distinguish two different cases. In the first case the
trajectory is initiated so close to the perturbed homoclinic orbit
that the major part of the system energy is consumed rapidly
while the system remains close to the homoclinic orbit, leading to
optimum TET. In the second case the energy is sufficiently large
so that even though the trajectory passes close to the perturbed
Fig. 3. Damped transition of the system initiated close to the perturbed homoclinic
orbit defined by Bcr


λ̂


≃ 0.3814.

homoclinic orbit, it reaches the S11+ regime (Fig. 3) and starts
performing oscillations around it leading to dissipation of energy
through nonlinear beats (‘wiggles’) (see [21]). Note that for all the
above cases the slow-flow model is valid only for the initial stage
of the dynamics and cannot predict the eventual transition to the
low energy stage of the oscillation (where the system behaves
linearly).

5.2. Targeted energy transfer in the presence of noise

We will now proceed to the analysis of the stochastic, damped
transitions. Our study will be based on the numerical solution of
the FPK equation using a finite-difference scheme. The technical
details on the numerical schemeused for the solution of the FPK are
given in [42]. Alternativemethods for the analysis of this stochastic
dynamical system may also be used. These include methods
based on stochastic averaging and statistical linearization [43]
or methods based on numerical path integration [44]. Both of
these approaches rely explicitly on the Markovian assumption, are
efficient computationally, and easily applicable even for cases of
non-stationary processes with non-constant diffusion coefficients.

In the plots that follow we present the stochastic response
in terms of the probability density function χ (z1, z2, t) superim-
posedwith the deterministic solution (shown inwhite and black in
the left and right plots, respectively). We also show in a separate
plot the probability density function χ (|z| , t) for the modulus of
the slow variable which is connected with the amount of energy
that is dissipated (Eq. (26)). All the results presented correspond to
ε = 0.05, λ̂ = 0.1, Ĉ =

8
3 and diffusion coefficient ν

2

8 = 2 × 10−2

except if stated otherwise. Note that the value of the diffusion
coefficient (ν = 4×10−1) has been chosen to be of the same order
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Fig. 4. Probability density function describing the slow-flow stochastic, damped transitions in the optimal TET regime (presented for different time instants).
as the response of the deterministic system near the optimal TET
regime as this is predicted by the deterministic analysis.

5.2.1. Optimal TET regime
To study the stochastic transitions in the optimal TET regime

we initiate the pdf on the critical value Bcr(λ̂) predicted by the
deterministic analysis (Fig. 4(a)). In Fig. 4(b) we observe the
stretching of the probability measure along the geometry imposed
by the outer homoclinic loop. Through this process, larger amounts
of probability are moving to regions of large |z| causing the pdf for
|z| to move towards higher values (see Fig. 5 for t < 10 − 15),
consistent with the deterministic theory (black solid curve in
Fig. 5).

As time evolves the stretching of the probability measure along
the outer homoclinic orbit continues, with diffusion causing an
almost uniform distribution of probability along the complete
length of the outer homoclinic loop (Fig. 4(c)). As it is shown in
Fig. 5 (t ∼ 15) this process results in very large amounts of mean
energy dissipation (because of the concentration of probability
around large values of |z|). The governing mechanism in this case
is the combined action of strong stretching (since the period of the
homoclinic orbit is infinite and, therefore, the stretching occurring
close to it is maximum) which enhances the process of diffusion
causing a more rapid transfer of probability along the homoclinic
loop and finally a uniform distribution along it. This mechanism
results in a peak probability around large values of |z| (see Fig. 5 for
t ∼ 17)which reveals its robustness since ‘most’ of the trajectories
will reach this high value of |z| at t ∼ 17. This is the point of
maximum dissipation since the mean-square distance from the
origin Eϖ


|z (t;ϖ)|2


is maximum.

The last strong dissipation regime is followed by a rapid
decrease of the probability density function occurring uniformly
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Fig. 4. (continued)
Fig. 5. Probability density function of the modulus |z (t;ϖ)| with respect to time.
The black solid line shows the deterministic response and the white solid line the
mean Eϖ [|z (t;ϖ)|].

along the length of the outer homoclinic loop (Fig. 5(d)–(e)) and a
simultaneous transfer of probability in regions of small |z|. This is
also observed in Fig. 5 (t ∼ 20 − 25) where we see the transport
of the probability density function towards smaller values of |z|.

Note that during this stochastic transition some probability has
been ‘trapped’ into the S11-region because, as we mentioned, the
initial conditions are normally distributed along the critical value.
Therefore, some amount of probability remains in the domain of
attraction for the low energy dynamics (inefficient regime).

5.2.2. Supercritical TET regime
We now consider an initial probability density function

initialized in the supercritical TET regime as predicted by the
deterministic analysis. In this case, since we are further away
from the homoclinic orbit, stretching is smaller, and the governing
mechanism in this case is the translation of the probability
measure along the direction of the homoclinic orbit (Fig. 6(b)).
In this way the probability measure performs a full excursion
around the outer homoclinic loop and ends up in the S11+ region
(Fig. 6(c)) consistent with the deterministic orbit. At this point
the oscillations (‘wiggles’ [21]) around the S11+ region begin
(Fig. 6(d)–(e)) and last until the energy is dissipated and the system
ends up in the low-energy regime (this transition is not captured
by this early approximation model).

These observation are consistent with the probability density
function χ (|z| , t) shown in Fig. 7. Note that in this case the
deterministic and the mean stochastic dynamics are very close,
a result that is expected if we take into account the common
mechanism that governs the two cases; i.e., in this case diffusion
doesn’t interact with nonlinearity as in the optimal TET regime.
Also, similar to the previous case, we observe that the extremes
of the Eϖ [|z (t;ϖ)|] curve have concentrated probability which
shows the robustness of the mechanism, since most of the
trajectories will pass over these points.

Finally, we note that in contrast with the previous case no
amount of probability is trapped into the suboptimal region
since the initial probability is defined sufficiently far from the
corresponding domain of attraction.

5.2.3. Suboptimal TET regime
Similar to the previous cases, we initiate the probability density

function in the suboptimal regime (as defined by the deterministic
analysis). The results show a ‘trapping’ of the probability density
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Fig. 6. Probability density function describing the slow-flow stochastic, damped transitions in the supercritical TET regime (presented for different time instants).
function in the low |z| regime (Fig. 8) causing slow dissipation of
the system energy. The same results are shown in Fig. 9 in terms of
the probability density function for themodulus |z|.We emphasize
that the constant value of Eϖ [|z (t;ϖ)|] corresponds to a mean
decay of energy observed in a linear system.

5.3. Robustness of stochastic targeted energy transfer

In this section we study the robustness of the optimal and
supercritical TET regimes by measuring the mean instantaneous
energy that is dissipated

ϵ̄d(t) =
ελ̂

2
Eϖ


|z (t;ϖ)|2


as well as the percentage of the initial energy that remains in the
system after time t
ᾱ(t) = 1 −

ελ̂Eϖ
 t

0 |z (t;ϖ)|2 dt


B2

= 1 −
ελ̂
 t
0 Eϖ


|z (t;ϖ)|2


dt

B2
.

In Fig. 10 we present these two measures of robustness and
efficiency for three different values of diffusion (noise intensity). In
the first case (Fig. 10(a)) we have the deterministic system, where
we observe from both measures the well defined separation of
the optimal TET regime from the linear dissipation region. After
the addition of a small amount of noise (Fig. 10(b)), we see that
this transition becomes much smoother while the optimal TET
region efficiency remains invariant. Therefore, in the presence
of noise the optimal TET regime is not only maintained but it
is enhanced and becomes more robust due to the interaction of
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Fig. 6. (continued)
Fig. 7. Probability density function of themodulus |z (t;ϖ)|with respect to time in
the supercritical TET regime. The black solid line shows the deterministic response
and the white solid line the mean Eϖ [|z (t;ϖ)|].

the stretching occurring near the homoclinic orbit (deterministic
nonlinear dynamics) with diffusion (uncertainty) as described in
the optimal TET section. As we increase the uncertainty of the
system (Fig. 10(c)), we observe that the three distinct domains
of TET performance begin to homogenize with an even smoother
transition from the sub-optimal TET regime to the optimal TET. At
the same time, the maximum energy dissipation (occurring close
to B = 0.4) does not decrease.

5.3.1. Stochastic initial conditions—probability of escape from the
homoclinic orbit

The analysis presented so far describes the stochastic transi-
tions with deterministic initial conditions. Note that for the case of
stochastic initial conditions, described through the random vari-
able B (ϖ), the FPK equation cannot be used directly since the
stochastic differential equation (24) contains the random param-
eter B1 ≡ B (ϖ). To overcome the above technical difficulty and
characterize the robustness of the TET mechanism, we note that
the probability of the state χ (z1, z2, t | B (ϖ)) given the stochas-
tic characteristics of the random variable B (ϖ) through the prob-
ability density function χB(B), will be given by

χ (z1, z2, t | B (ϖ)) =

∫
χ (z1, z2, t | B0) χB (B0) dB0 (29)

where χ (z1, z2, t | B0) is the probability density function char-
acterizing the state of the system when the initial conditions
are deterministic and equal to B0. For the determination of
χ (z1, z2, t | B0), we use the FPK equation as before.

Using the expression (29) we can then characterize the
robustness for any given distribution χB(B) by calculation of the
energy dissipated. An alternative measure that can be used to
characterize robustness of energy dissipation is the probability
of escape Pesc (B0) from the inner homoclinic loop Dh defined by
Eqs. (27), (28) (Fig. 2 (lower plot)). To calculate this probability we
allow the system to evolve for a time interval of O


λ̂−1


and then

compute the probability that it remains ‘trapped’ in the homoclinic
loop Dh. Therefore, we have

Pesc (B0) ≡ 1 −

∫
Dh

χ (z1, z2, t | B0) dz1dz2, t ∼ O

λ̂−1


. (30)

Using Pesc (B0) we can calculate the probability of escape for any
set of random initial conditions B (ϖ) using Eq. (29)

Pesc =

∫
Pesc (B0) χB (B0) dB0.
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Fig. 8. Probability density function describing the slow-flow stochastic, damped transitions in the suboptimal TET regime (presented for different time instants).
In Fig. 11 we present the probability of trapping in the linear
dissipation regime as computed through Eq. (30). We observe
that the regions of suboptimal and optimal TET indeed can be
characterized by this probability; however, this is not the case
for the supercritical TET regime where the probability of escape
remains uniform and equal to 1. Thus, it cannot be connected with
the amount of dissipation in this region. This is expected if we take
into account that the mechanism responsible for dissipation in the
optimal and supercritical regime is the stretching and transport
along the homoclinic orbit occurring away from the S11− region.

Conclusions

In this work the problem of nonlinear interactions between a
general linear structure and an essentially nonlinear attachment
has been considered in a stochastic framework. Through a Green’s
function formulation we have shown that the full dynamics can be
equivalently described by a single integro-differential equation. By
restricting our analysis to the early time regime and subsequently
applying complexification-averaging combined with the diffusion
approximation, we derive a complex SDE that governs the system
slow flow at its early stage. This equation is accompanied by
analytical conditions which set the limits of its validity in terms
of the linear subsystem and stochastic excitation characteristics.

We apply the derived SDE to the analysis of the stochastic
slow dynamics of a single linear mode interacting with a nonlinear
attachment. By considering the case of stochasticity comparable
with the system response, we numerically solve the corresponding
FPK equation and conclude that the optimal TET regime predicted
by the deterministic analysis is not only preserved in the presence
Fig. 9. Probability density function of the modulus |z (t;ϖ)| with respect to time
in the suboptimal TET regime. The black solid line shows the deterministic response
and the white solid line the mean Eϖ [|z (t;ϖ)|].

of stochasticity but is also enhanced due to the complex interaction
of the diffusion in phase space (due to the presence of noise)
and nonlinear advection. The basic nonlinear mechanisms such
as the homoclinic orbit and the nonlinear beats observed in the
deterministic analysis are also found in the stochastic context
illustrating the robustness of the TET mechanism.

Future research directions include the application of the
developed framework to the stochastic analysis of more complex
systems such as interactions between closely spaced linear modes
with a nonlinear attachment met in linear chains coupled with
nonlinear oscillators. The analysis may also be useful for analyzing
the problem of passive nonlinear energy harvesting from a
stochastic environment such as water waves or general ambient
vibrations in engineering systems.
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Fig. 10. Instantaneous energy dissipation from the nonlinear attachment and percentage of the initial energy that remains into the system after time t for (a) zero diffusion,
(b) ν

2

8 = 2 × 10−2 , and (c) ν
2

8 = 4 × 10−2 .
a

b

Fig. 11. (a) Probability that remains in the linear dissipation regime for ν2

8 =

2 × 10−2 at t = 30. (b) Percentage of the initial energy that remains in the system
at t = 30.
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