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Effective Stiffening and Damping
Enhancement of Structures With
Strongly Nonlinear Local
Attachments

We study the stiffening and damping effects that local essentially nonlinear attachments
can have on the dynamics of a primary linear structure. These local attachments can be
designed to act as nonlinear energy sinks (NESs) of shock-induced energy by engaging in
isolated resonance captures or resonance capture cascades with structural modes. After
the introduction of the NESs, the effective stiffness and damping properties of the struc-
ture are characterized through appropriate measures, developed within this work, which
are based on the energy contained within the modes of the primary structure. Three types
of NESs are introduced in this work, and their effects on the stiffness and damping prop-
erties of the linear structure are studied via (local) instantaneous and (global) weighted-
averaged effective stiffness and damping measures. Three different applications are con-
sidered and show that these attachments can drastically increase the effective damping
properties of a two-degrees-of-freedom system and, to a lesser degree, the stiffening
properties as well. An interesting finding reported herein is that the essentially nonlinear
attachments can introduce significant nonlinear coupling between distinct structural
modes, thus paving the way for nonlinear energy redistribution between structural modes.
This feature, coupled with the well-established capacity of NESs to passively absorb and
locally dissipate shock energy, can be used to create effective passive mitigation designs
of structures under impulsive loads. [DOI: 10.1115/1.4005005]
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1 Introduction

It is well established that stiffness nonlinearity can lead to hard-
ening (or softening) effects in the dynamics of mechanical oscilla-
tors [1]. This effect is evidenced by an increase (or decrease) in
the frequency of oscillation of a system with increasing energy,
and in weakly nonlinear systems it can be analytically studied by
applying qualitative and quantitative methodologies. Indeed, most
studies in the current literature consider weakly nonlinear stiffen-
ing effects in structures possessing nonlinear (but linearizable)
stiffness or damping elements (e.g., weakly nonlinear springs) [1].
Manevitch extended this analysis to strongly nonlinear (i.e., nonli-
nearizable) mechanical oscillators through a complexification/
averaging approach [2]. In additional works, stiffening effects in
material systems, biophysical, and biomedical applications have
been investigated. Aboudi [3] studied the combined nonlinear
effects of stiffening fibers in a softening resin matrix on the over-
all behavior of graphite/epoxy composites following a microme-
chanical approach. In biophysics-related studies, Karray et al. [4]
proposed a control procedure for the active stiffening motion of a
class of flexible structures with nonlinear affine dynamics. Xu and
Kup [22] studied stress stiffening in models of dendritic actin net-
works of living cells, and Kasza et al. [5] studied the stiffening of
the dynamics of cells under large applied forces.

In a separate series of works, metamaterials with the property
of negative stiffness have been considered. Negative stiffness was
achieved on a local basis via the incorporation into a matrix mate-
rial of tailored inclusions that exhibit post-buckled behavior and,
thus, negative stiffness over a portion of their load-deformation
behavior. According to Lakes [6] and Wang and Lakes [7], as the
matrix damping becomes small, the composite damping and stiff-
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ness are driven higher, even for a minute concentration of inclu-
sions, exceeding the properties of either the inclusions or matrix
materials alone. An additional metamaterial concept providing
enhanced performance can be found, for example, in the work of
Huang and Sun [8], who employ negative effective mass density
in order to achieve wave attenuation.

The enhancement of the damping properties of a (linear) struc-
ture and its capacity for enhanced energy dissipation due to non-
linear structural modifications has been less studied, with most
current studies focusing on stiffening effects. This work investi-
gates the enhancement of the stiffness and damping properties of
a linear structure via structural modification through the addition
of strongly nonlinear structural modules that behave, in essence,
as nonlinear energy sinks (NESs) [9]. The premise of this work is
that properly designed NESs can affect significantly the stiffness
and damping properties of the structures to which they are
attached by rapidly and passively absorbing and dissipating vibra-
tion energy in a one-way process through a series of transient res-
onance captures [10]. The dynamical mechanism that governs the
operation of the NESs is passive targeted energy transfer (TET),
and it has been analyzed analytically, numerically, and experi-
mentally [9,11-14]. This is enabled by the absence of linear com-
ponents in the dynamics of the NESs, so that /ocal NESs can
induce global nonlinear effects in the dynamics of the structures
to which they are attached. As discussed in Ref. [9] and the refer-
ences therein, essentially nonlinear stiffnesses can be reliably
reproduced through the geometric nonlinearity of linear stiffness
elements. In particular, an elastic wire with no pretension when
fixed at its ends and forced by a transverse force reacts in an
essentially nonlinear manner [15].

A manifestation of these global effects is the nonlinear stiffen-
ing (or softening) of the dynamics of the structure, as well as
damping enhancement, as evidenced by the increased rate of the
decrease of specific energy norms that is defined in this work. We
define quantitative measures characterizing the stiffening and
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damping enhancement of a structure with attached NESs, and we
demonstrate the efficacy of these measures for different types of
essentially nonlinear attachments. Fundamentally, we aim to show
that the use of intentional nonlinearity can provide a new paradigm
for the stiffness and damping enhancement of a (linear) structure.

2 Effective Measures for Linear Structures With
Essentially Nonlinear Attachments

The principal aim of this work is the exploitation of intentional
strong nonlinearities introduced through strongly nonlinear
attachments within a linear structure for the purpose of enhancing
its stiffness and drastically enhancing its effective damping. The
intentional strong nonlinearities will be implemented via the addi-
tion of specially designed structural modules with essential stiff-
ness and/or damping nonlinearities to the structure. These will act,
in essence, as passiveNESs, i.e., as broadband absorbers of shock-
induced vibrations of the large-scale structure to which they
will be attached. This energy absorption is achieved by means of
transient (i.e., occurring over finite time windows) nonlinear
resonances—transient resonance captures—between the essen-
tially nonlinear NESs and highly energetic modes. This in turn
leads toTETs [9] from linear structural modes to the NESs where
energy is confined and locally dissipated without “spreading”
back to the linear structure. What makes TET possible in the aug-
mented system is the essential nonlinearity of the NESs, which do
not possess linear components in their dynamics and thus do not
possess preferential resonance frequencies. This means that the
capacity of an NES for resonance depends only on the instantane-
ous frequency and energy of the augmented structure, so the fully
passive NES is adaptive in its capacity to engage in transient reso-
nance with either isolated or a series of structural modes at differ-
ent frequencies and energies, leading to broadband vibration
energy absorption that drastically affects the overall stiffness and
damping properties of the augmented structure.

In that context, the addition of local NESs can induce global
changes to the structural dynamics in two ways: (a) through the
generation of new nonlinear modes in the modified structure-NES
system that amount to a stiffening of the dynamics [9], and (b) by
drastically increasing the effective damping factors of the struc-
tural modes due to rapid (fast-scale) TET from the structure to the
NESs, where energy is localized and dissipated. In summary, our
nonlinear approach aims to drastically enhance the capacity of a
linear structure to passively mitigate shock-induced vibrations via
the synergistic stiffening of the structural dynamics and an
enhanced capacity to rapidly dissipate vibration energy.

Three types of essentially nonlinear attachments (NESs) are
considered; these are depicted in Fig. 1. A type-I NES [Fig. 1(a)]
is a single-degree-of-freedom (SDOF) oscillator with essential
stiffness nonlinearity of the third degree and linear viscous damp-
ing. The force (F)-response (x,x) characteristic is given approxi-

Linear spring

Linear spring Linear damper

ANES

Fig.2 SDOF linear oscillator with type-I NES attached

mately by F = kx® + dx and lacks a linear stiffness component. A
type-II NES [Fig. 1(b)] is an SDOF oscillator with essential stiff-
ness nonlinearity of the third degree and geometrically nonlinear
viscous damping, with the force-response characteristic given by
F = kx® + %% [16,17]; we emphasize that both stiffness and
damping nonlinearities in these devices are caused solely by the
geometry and kinematics of the motion, as all of their structural
elements exhibit /inear behavior. Finally, a type-IIl NES [Fig.
1(c)] possesses two degrees of freedom that are coupled by means
of essentially nonlinear stiffnesses of the third degree and linear
viscous damping. The rationale for introducing the type-III NES
is that, if properly designed, it can broaden the energy and fre-
quency ranges of efficient nonlinear energy absorption from the
linear structure [18]. The capacity of these devices to engage in
transient resonance captures and resonance capture cascades with
different modes of a linear structure and to induce broadband pas-
sive TET has been analytically, computationally, and experimen-
tally demonstrated [9].

The study of the stiffness and damping enhancement of a linear
structure due to the addition of a single or multiple NESs requires
the formulation of appropriate quantitative measures. These meas-
ures should have applicability to linear structures with arbitrarily
many degrees of freedom (DOFs) and augmented by an arbitrary
number of NESs of different types. In addition, they should be ca-
pable of effectively capturing the enhancement of the stiffness
and damping of the structure caused by the strongly nonlinear dy-
namical interactions with the NESs.

We start with the simplest possible case: a linear SDOF oscilla-
tor (the structure) coupled to a single type-I NES (Fig. 2). For any
specific damped transition, the goal of our analysis is to derive
time-dependent effective stiffness and damping coefficients that
will allow for the definition of an “effective” linear oscillator ca-
pable of reproducing the coupled system. In this way we aim to
characterize locally in time the stiffness and damping enhance-
ment of the linear structure due to the presence of the NES. The
equations of motion are given as

méj + 24+ kq + Ayes(q — V) + C(g —v)’=0
&l + Anps(V — §) + C(v — 9)*=0 M

, Linear

Linear spring d
amper

Linear damper

Fig. 1

Essentially nonlinear energy sinks (NESs) considered: (a) type-l NES, (b) type-ll NES, and (c) type-Ill NES. All linear

springs and viscous dampers are uncompressed when horizontal.
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Fig. 3 Averaging of the time series of the kinetic energy of the linear oscillator in Eq. (1).
(a) Averaged kinetic energy Ei(t) using spline interpolation of local maxima. (b) Total me-
chanical energy in the linear oscillator. (¢) Instantaneous kinetic energy.

with initial conditions of ¢(0) = +/2Ey/m,q(0) = v(0) = v(0)
= 0, where E is the energy induced in the system at ¢ = 0. These
initial conditions correspond to an impulse applied to the linear
oscillator with the system being initially at rest. Our analysis is
based on energetic arguments. Specifically, the time-dependent
stiffness ko (f) is computed so that the effective linear oscillator
has an instantaneous potential energy that locally in time approxi-
mates (in a locally averaged sense) the actual potential energy of
the nonlinear system; similarly, the time dependent damping
Zefr () is such that the instantaneous kinetic energy of the effective
linear oscillator locally approximates that of the nonlinear system.

Even though the above definitions allow us to obtain effective
measures for the stiffness and damping in the system, their practi-
cal use is limited, because the instantaneous vanishing of either
displacement or velocity leads to singularities in the above meas-
ures. In addition, the computation of the potential energy is not
always a straightforward process, especially in the case of com-
plex NES configurations or, most important, in experimentally
measured responses. To this end, we first need to develop an aver-
aging process that can be applied to a time series that is pointwise
positive, say, 4%(t). The averaging is performed by constructing a
spline interpolation of the local maxima of the time series,
denoted by <h2> .- For the system of Fig. 2, the averaging process
is illustrated in Fig. 3, in which the instantaneous kinetic energy
computed directly from the velocity time series of the linear oscil-
lator is examined; both the averaged energy Ej(r) as obtained
from the spline interpolation and the instantaneous mechanical
energy in the oscillator are also depicted. The spline-based aver-
aging scheme also enables the estimation of the time-averaged
potential energy of the linear oscillator E,(¢) directly from the
time-averaged kinetic energy Ej (7). This property follows from
the fact that the spline-based averaging applied to the instantane-
ous kinetic energy essentially estimates the time-averaged total
energy Epo(t) = 2E(t) contained in the linear oscillator,

E,(t) = Ei(t) = %ELO(t) = <%qu> )

Note that Hilbert transformation could be used as an alternative to
the spline averaging method, although, because its numerical
computation is based on the fast Fourier transform, numerical
boundary artifacts might be introduced in the initial and final parts
of the signal. We emphasize that through the above-described
averaging approach we are able to define the effective stiffness
and damping measures without prior knowledge of the NES
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configuration attached to the SDOF linear oscillator, because it
directly analyzes the measured displacement or velocity time se-
ries. Thus, the described methodology is ideal for analyzing ex-
perimental responses. Based on the above discussion, we define
the time-dependent effective stiffness measure as

26,(1) 2<%’"q>

ke (1) = = (3a)
)
and the time-dependent effective damping measure as
dELo(t) zi <lmq'2>
deplt) = ——di___d\2 7/, (3b)
v (@), (@),

These “local” instantaneous measures enable us to study over
time the stiffening and dissipative effects of the NES for a given
damped transition of the linear structure. However, in many situa-
tions (e.g., in optimization studies) it is useful to characterize the
overall effect of the NES for an entire damped transition by defin-
ing the global time-independent effective measures @ and .
To this end, we define time-independent weighted-averaged quan-
tities based on the above-described time-dependent measures. A
trivial choice would be to consider the time average of the instan-
taneous measures; however, this choice would not emphasize the
performance characteristics of the NES in the regions where it is
most important, i.e., in the initial, highly energetic regime of the
damped transition. In order to avoid this issue, we define a
weighted-average according to the instantaneous square of the
displacement (for the stiffness) or velocity (for the damping),

— _ o ky(s)(a?)ds 2] Gmd?) ds

kt’ {o.0] OO0 4
=T () ds I () ds )
wd /1,
— B a <5’"‘1 >" __m0)
T ) ds Ko@ds (@) ds
(4b)

These weighted-average effective stiffness and damping measures
are time-independent and provide overall characterizations of the
stiffness and damping effects of the NES for an entire damped
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Fig. 4 Weighted-averaged effective measures for varying ini-
tial energy Ep for the impulsively excited system (1): (a) ker/ K,
(b) Jetr /4

transition of the linear oscillator of system (1). Similar to the
corresponding local measures in Egs. (3a) and (3b), they are ap-
plicable to linear systems with more complex types of NESs
attached (i.e., type-II and type-III NESs), and as shown below
they can be easily extended to multi-DOF linear primary struc-
tures. We emphasize that the descriptions of “local’” and “global”
in the above-mentioned effective measures refer to the temporal
scale of the response, as opposed to the spatial scale of the
structure.

As a first demonstration of the application of the global effec-
tive measures, in Fig. 4 we depict the variations of @ and Ay
for linear oscillator system (1) as functions of the initial energy Eg
with the parameters m = 1,¢ = 0.05, k = 1,2 = Aygs = 0.005,
and C = 1. The significant increase of the weighted-average
effective measures above the critical energy threshold
Eog = 5.5 x 1073 is associated with enhanced targeted energy
transfer from the directly excited linear oscillator to the type-I
NES as discussed in Ref. [9]. We note the significant enhancement
of ey to nearly 1400%, compared to the nominal damping value
/ immediately after the energy threshold, and the much smaller
enhancement of @ in the same energy range; with increasing
energy, both measures deteriorate, indicating their sensitivity to
energy for the type-I NES. This result shows that the addition of a
type-I NES with 5% of the mass of a linear oscillator can increase
drastically the effective damping measure when it is excited by
impulsive loads in a specific energy range.

In order to demonstrate the local effective measures, we con-
sider two specific damped transitions corresponding to applied
impulses with Eg = 9 x 1073 (Fig. 5, optimal case) and Ey = 0.3
(Fig. 6, suboptimal case). In Figs. 5(a) and 6(a) we depict the
damped response of the linear oscillator computed by system (1)
and compare it to the response of the effective (time-dependent)
linear oscillator,

mg + Aeﬂ'(t)q. + keﬂ'(t)q =0

which takes into account the nonlinear effects induced by the NES
through the time-varying instantaneous effective measures ke (1)
and . (f). Good correspondence between the exact (simulated)
response and the response of the effective oscillator is noted, dem-
onstrating that the previously defined effective measures can suc-
cessfully capture the effects of the NES in the transient dynamics.
In the same plots we depict the response of the damped linear os-
cillator in Eq. (1) with no NES attached, in order to demonstrate
the profound effect that the NES has on the damped dynamics.

Velocity

©

100

Fig. 5 Damped transition of system (1) for initial energy E; = 9x10-3. (a) Velocity of the lin-
ear oscillator with NES attached (——), of the effective oscillator (- - - -), and of the linear os-
cillator with no NES attached (--------- ). (b) Instantaneous normalized effective damping
Jert(t)/ 4. (¢) Instantaneous energies of the linear oscillator and the NES.
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Fig. 6 Damped transition of system (1) for
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initial energy Ep = 0.3. (a) Velocity of the linear

oscillator with NES attached (—), of the effective oscillator (- - - -), and of the linear os-

cillator with no NES attached ( ). (b)
Jert(t)/ 4. (¢) Instantaneous energies of the li

In Figs. 5(a) and 6(a) we present the normalized transient effec-
tive measure A (7)// for the two energy levels (the effective stiff-
ness measures in both cases are close to unity, so they are not
presented). We note that in the optimal case [Fig. 5(b)] the nor-
malized effective damping measure attains large positive values
in the early, highly energetic regime of the damped dynamics,
which explains the high effectiveness of the NES in this case.
Lower positive values are noted in the suboptimal case [Fig. 6(b)],
which explains the lesser performance of the NES for that value
of initial energy. In the same plots we note that the instantaneous
effective damping assumes negative values in certain time inter-
vals. This is explained when we consider the corresponding in-
stantaneous energy exchanges between the linear oscillator and
the NES shown in Figs. 5(c) and 6(c). From these plots we deduce
that negative instantaneous effective damping of the linear oscilla-
tor occurs over time intervals in which it absorbs energy from the
NES through nonlinear beats; this reverse energy exchange is cap-
tured by the negative values of effective damping when the NES
acts as an energy source.

The previous local and global effective measures can be con-
veniently extended to multi-DOF linear structures with an arbitrary
number of NESs of different types attached to them. This is due to
the fact that, as defined, the effective measures are based solely on
the response time series of the linear structure, and so modal analy-
sis can be applied toward this aim. To this end, we consider the fol-
lowing undamped and unforced N-DOFs linear system,

Mi+Kx=0, x(0)=x, i(0)=y )
where the underlined capital variables denote matrices and the
lowercase bold variables are vectors (and zeros are defined appro-
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Instantaneous normalized effective damping
near oscillator and the NES.

priately). In Eq. (5), M and K are (N x N) matrices and x is an N-
vector. Assuming that the system has distinct eigenvalues, it
admits a modal decomposition from the solution to the eigenvalue
problem,

i=1,..,.N (6)

w?Mﬂi =Ku,

where @? is the ith natural frequency squared and u; is the corre-
sponding eigenvector. By introducing the coordinate transforma-
tion x(f) = ®g(¢), where @ is the modal matrix, system (5) is
decoupled. Furthermore, assuming that the modal matrix is mass-
normalized, it can be expressed as

G +Qq() =0, ¢(0)=0"Mx,=qy, §(0)="My,=go
(7

where Q7 is the (N x N) diagonal matrix of natural frequencies
squared. Then, the (conserved) total energy £ of system (5) can be
decomposed in terms of the N modal energies E;, which are them-
selves conserved and thus represent invariants of the motion.

1. 1. . .
E= EQT(f)Q(f) + EQT(I)ng(f) = ZEh
i=1
1, 15,
E = 54 (1) + 5 9i4i (1) (8)

We now consider the N-DOFs linear system with general viscous
damping distribution and k NESs attached to it.
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Mi+Ci+Kx=f, (xy), x0)=x, 0)=y
Pyes( ¥(0) = wy
)

M nes ¥+ Prps(3:9) = —fyps@ ), 3(0) =y,

where fNES(x y) and f (x,y) represent the N- and k-vectors,

respectively, of the nonlinear interaction forces between the linear
structure and the attached NESs, and y is the k-vector of internal
variables describing the motion of the k NESs. Introducing again
the modal transformation x(z) = @ ¢(¢), the N equations of motion
of the linear structure can be expressed as

@TM X0 = 4o

q(0) =
(10)

where C = ®'C @ and G5(q,y) = QTf~'NES(Qq,y). We note that
due to their essential nonlinearities, the NESs now couple each of
the linear structural modes, allowing not only for passive energy
absorption and dissipation (as in the previously discussed SDOF
case), but also for passive modal energy redistribution within the
linear structure itself. This latter effect can have significant ben-
eficial effects in shock mitigation designs, because scattering
shock energy from low- to high-frequency structural modes can
significantly reduce the amplitude of vibration of the linear
structure (in general, higher frequencies are associated with
lower amplitudes). In addition, it is well established that higher
modes more effectively dissipate vibration energy through struc-
tural damping. Such high-frequency scattering has already been
reported in seismic mitigation designs based on vibro-impact
NESs [19,20].

We define again the (now nonconserved) total energy of the
system E(¢),

E() =54 (0d(0) + 54" 0940 = 3" Ei)
i=1
Ei(r) = %g’?(r) + %w?q?(t) (1n

We note that again we can express it as a superposition of N
modal energies E;(¢); in this case, however, the modal energies
are not conserved, because each mode is damped and interacts
with the essentially nonlinear NESs, and also with the other
modes (with modal coupling provided by the essential nonlinear-
ities of the attached NESs). However, because each of the linear
modes represents an SDOF linear oscillator coupled to the NESs,
and because the local and global effective measures defined previ-
ously rely only on the response time series of the linear structure
(with the effects of the attached NESs being implicitly accounted
for, only through the variations of the instantaneous modal ener-
gies), we can employ the definitions in Egs. (3a), (3b), (4a), and
(4b) to define effective stiffness and damping modal measures for
system (9).

In order to provide an example of nonlinear coupling between
linear structural modes due to the action of an essentially nonlin-
ear NES, we consider the transient dynamics of a two-DOFs
damped linear oscillator with a type-I NES attached to it, for im-
pulsive excitation of its lower frequency mode 1. The governing
equations of motion are given by

Gl S0 0
__{?wfs(xl §) +Cln — }

005y+/1NES(y —Xl) +C( —.Xl =0 (12)

011016-6 / Vol. 134, FEBRUARY 2012

with parameters A = 0.004469, /ygs = 44, and C = 1. We assume
that at time ¢ = 0+ we apply the energy input £;(0) = 1 to mode
1 through an impulsive excitation with the appropriate magnitude
and spatial distribution, and we depict the corresponding transient
modal responses in Fig. 7. We note that due to the essential nonli-
nearity of the NES, the (not directly excited) higher mode 2
engages in nonlinear interaction with the directly excited mode 1.
This is evidenced by the beat phenomenon in the velocity time se-
ries of mode 2 [Fig. 7(d)], as well as in the high negative values of
the instantaneous effective damping measure Ay (r) in the highly
energetic initial phase of the response, and indicates that energy
flows into that mode from the first linear mode and/or the NES. In
the absence of an NES, the two (distinct) linear modes are
uncoupled, so we conclude that the transfer of energy to the higher
mode is provided by nonlinear modal coupling due to the essential
nonlinearity of the NES.

This result demonstrates that the instantaneous effective damp-
ing measures are capable of capturing positive or negative energy
flows in structural modes caused by nonlinear modal interac-
tions induced by the essential nonlinearities of the attached
NESs. The capacity of the NESs to not only absorb and locally
dissipate energy from all structural modes but also redistribute
energy within the structural modes (e.g., transferring energy
from lower to higher frequencies) can be used effectively for
passive mitigation designs of blast induced structural vibrations
based on the modification of the structure by intentional strong
nonlinearities. In the next section we employ the defined local
and global effective measures in order to assess the enhance-
ment in the stiffness and damping of the structural dynamics of
a two-DOFs linear system with different types of NESs
attached to it.

3 Parametric Studies of Effective Stiffness and
Damping for Type-I, -II, and -III NESs

In all applications presented in this section, we consider the
same two-DOFs (two-floor) linear system with different configu-
rations of NESs forced by an impulsive excitation.

{il}”{i ?H;}%i _IIHQ}:JENES(XMLX)

MNEsy+PNEs X?X ~f yps(X1,%2,Y)

{Egi}:{} { { } ¥(0)=0, 3(0)=0

13)
These initial conditions correspond to impulsive excitations
2F5(t) and Fo(t) applied to the first and second floors, respec-
tively, with the system being initially at rest at # = 0—. In all cases
considered, the attached NESs have a mass equal to 5% of the
mass (floor) of the structures to which they are attached.

The first application concerns a type-I NES attached to the first
floor of the system and governed by the equation of motion (12)
and the parameters 4 = 0.004469, Aygs = 44, and C = 1. In Fig. 8
we depict the global effective measures for varying energy input
into the system. We note a small increase in the effective stiffness
for both modes that, depending on the level of input energy, can
reach up to 7% for mode 2. A much more substantial increase in
the effective damping measures is found, however, which can
reach as high as 2.5 times the modal damping for mode 1 and 8 times
for mode 2. However, the energy ranges of increased effective meas-
ures are rather narrow and differ for the two modes. Clearly, these
results are unoptimized and are provided here to demonstrate the
application of the effective measures; even for these unoptimized
results, however, we show later that we can get significant
improvement when we consider type-11I NESs instead.

In Fig. 9 we present the instantaneous effective measures for a
specific damped transition at initial energy E(0) = 0.4,
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corresponding to  weighted-averaged effective  damping
Joefr /22 = 8.54 for mode 2. In this case the second mode is
damped very effectively, in contrast to mode 1, which has the
weighted-averaged effective damping measure Ay.;/4 = 1.21.
The normalization constants A;,i = 1,2 refer to the modal con-
stants of the two modes (under the assumption of proportional vis-
cous damping). An interesting feature of these results is that there
are time intervals in which the effective damping for mode 2
attains negative values; indeed, in these time intervals there occur
beat phenomena (induced by the essential nonlinearity of the
NES) as evidenced by the study of the percentages of instantane-
ous modal energies in Figs. 9(d) and 9(%). This result further con-
firms that the defined instantaneous (local) effective measures are
capable not only of describing the efficacy of the NES in absorb-
ing and dissipating modal energies, but also of capturing the
energy transactions between modes caused by the intentional
strong nonlinearity introduced in the system.

We now consider the case of a type-II NES (combining both
nonlinear stiffness and damping) attached to the second floor of
the two-DOFs system. In Ref. [16] it is shown that geometric non-
linear damping of the type incorporated in the type-II NES can
give rise to interesting transient instability phenomena in the dy-

Total Initial Energy = 0.4 - MODE 1

Velocity

(©)

5
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time
Percentage of energy contained in mode 1
100 . T
=
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99 : - : =
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namics of the system to which it is attached. It follows that the
introduction of essentially nonlinear damping into the system
has the potential to generate new nonlinear dynamical phenom-
ena, so its effect is not parasitic (as in the case of weak linear
viscous damping). For this second application, the equations of
motion governing the dynamics of the NES in Eq. (13) assume
the form

i B 0
Fps(x152,3) = _{ IngsaL(¥2 = ¥)(x2 =y +C(x2 — )’ }

0.055 + Angsar(§ — %2) (v — 12)*+C(y — x2)°= 0 (14)

with parameters 4 = 0.004469, Zygsn. = 104, and C = 1. In Fig.
10 we present the weighted-averaged effective measures for this
system. Again, there is an enhancement of the dissipative capacity
of the system, as evidenced by the significant increase of the
effective dissipative measures of both modes over broader energy
intervals as compared to the previous case. Similar to the previous
application, however, no significant enhancement of the stiffness
measures is noted over the same energy intervals.
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Fig. 9 Transient response of system (12) for impulsive excitation of impulse excitation with ini-
tial energy E(0) = 0.4. (a),(e) Velocity time series, (b),(f) normalized instantaneous effective stiff-
ness, (c),(g) normalized effective damping measure, and (d),(h) percentage of instantaneous
total energy of modes 1 and 2, respectively; k; and 4; denote the modal stiffness and damping,

respectively, of mode i.
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In an attempt to broaden the energy intervals of enhanced
damping performance, in our third application we consider the
addition of two identical type-III NESs, one to each of the two
floors of the linear system [Figure 11(a)]. The equations govern-
ing the dynamics of the two NESs are then given by

= Ings (¥ — 1) +Ci (v —y1)?
f (-x17-x27y) = . .
—NES - Ings (¥ — ¥3) + Ca(x2 — y3)?

0.025§1 + Angs (291 — 2 — 1) + C1(y1 —x1)’+0C1 (y1 —y2)’=0
0.025§, + Anes(y2 — y1) + aCi(y2 *Y1)3= 0

0.025§3 + Angs (293 — Ya —i2) + Calys — x2) +0Ca(y3 — y4)'=0
0.025§4 + Aves (4 — ¥3) + 6Ca(vs — y3)°=0 (15)

with parameters 1 = 0.004469, iygs = p4,C1 = 4,C, = 0.04,
and ¢ = 0.01. We note that the total mass of each type-III NES is
5% of the mass of the floor to which it is attached, so no added
mass effect is anticipated compared with the previous two appli-
cations. In addition, the two NESs are highly asymmetric; this is
indicated by the small parameter ¢ that scales the two essential
stiffness nonlinearities in each NES. The introduction of such high
asymmetry is motivated by previous studies [9,18,21] in which it
was shown that highly asymmetric multi-DOF NESs are very effec-
tive broadband passive absorbers of vibration energy, with the
stiffer parts enabling the realization of strong resonance captures
and the softer parts being effective dissipaters of vibration energy
flowing in the NESs due to targeted energy transfer [9].

In Fig. 11 we depict the weighted-averaged effective measures
for this system for three different values of the parameter p scal-
ing the damping of the NESs. We note that an increase in the
damping of the NESs does not necessarily lead to an enhancement
of the effective modal damping measures; an optimization study
is called for in order to design the NESs for efficient shock mitiga-
tion over defined energy ranges of interest. Considering the results

Journal of Vibration and Acoustics

of Fig. 11, we conclude that, in general, the addition of type-III
NESs broadens the energy ranges of effective damping enhance-
ment, but again no significant improvement in the stiffness is
noted. Moreover, in contrast to the previous two applications, in
which single-DOF NESs were considered, in this case there are
two distinct energy ranges of increased effective damping meas-
ures, so it is possible to achieve increased effective damping
measures for both modes over the same energy intervals. Typi-
cally, increasing the damping of the NESs increases the energy
ranges of significant effective modal damping measures but
decreases the peaks of the optimal increase of these measures.

In order to illustrate the broadband nature of the passive absorp-
tion of energy by the NESs, in Fig. 12 we study a specific damped
transition corresponding to p = 1 and an initial energy E(0) = 1.2
corresponding to the weighted-averaged effective measures
M/)] = 3‘06, quﬂf/kl = 0.97, ),zgﬁf/),z = 3‘44, and
kaefr /Ko = 1.02, where k; and Z; are normalization constants refer-
ring to the ith modal stiffness and damping, respectively. In Figs.
12(c) and 12(d) we depict the wavelet spectra of the relative
responses between the first floor and the left mass of the NES
attached to it, and between the two masses of the same NES,
respectively. In Figs. 12(e) and 12(f) we provide the correspond-
ing wavelet spectra for the upper floor and the NES attached to it.
Wavelet transform spectra provide us with the temporal evolution
of the basic harmonic components of the transient nonlinear
responses, in contrast to the classical Fourier transform, which
provides only a “static” description of the harmonic content of the
time series. As discussed and demonstrated in numerous applica-
tions in Ref. [9], the wavelet transform is a powerful signal proc-
essing method for analyzing the transient dynamics of strongly
nonlinear systems, so it represents a very useful tool for studying
the dynamics of highly complex, strongly nonlinear dynamical
systems such as the ones considered herein. The wavelet spectra
of Figs. 12(c) and 12(d) illustrate clearly that the NES attached to
the first floor engages in high-frequency broadband resonance
interaction with the linear structure, absorbing energy by exciting
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high-frequency modes above the linear modes of the structure. As
discussed in Ref. [9], such modes are essentially nonlinear (i.e.,
they have no counterparts in linear theory) and are induced in the
augmented structure by the strong intentional nonlinearities of the
NESs. Additional lower frequency modes exist as well, as evi-
denced by the excitation shown in Fig. 12(d) of an intermediate-
frequency nonlinear mode between the two linear structural
modes. The introduction and excitation of strongly nonlinear
modes in the augmented structure is one of the possible dynamical
mechanisms through which the NESs passively absorb and redis-
tribute (scatter) shock energy with the linear structure. No such
broadband energy absorption and scattering is noted in the wavelet
spectra of Figs. 12(e) and 12(f), indicating that the upper-level NES
resonantly interacts with the linear structural modes, as well as with
a strongly nonlinear mode lying between the structural modes.

4 Concluding Remarks

The results reported in this work demonstrate that the use of
intentional strong stiffness and/or damping nonlinearities can

011016-10 / Vol. 134, FEBRUARY 2012

2,—p=1.

enhance the effective damping properties of a linear structure.
The implementation of strong nonlinearity was achieved through
the use of local NESs with the capacity to affect the global dy-
namics of the structure to which they are attached. This is made
possible by the essential (nonlinearizable) dynamics of the NESs
and the complete lack of linear components in their dynamics,
which enables them to engage in resonance capture with single or
multiple structural modes over broad frequency and energy
ranges. In turn, such resonance interactions lead to targeted energy
transfer from structural modes to the NESs and to the possibility
of a redistribution of nonlinear vibration energy within the struc-
tural modes. In particular, the possibility of low- to high-energy
energy transfer between structural modes offers an interesting
new way of reducing and dissipating shock-induced energy in a
structure, resulting in effective passive shock mitigation designs.
Single or multi-DOF NESs can increase drastically the effective
modal damping of a linear structure, although their effective stiff-
ening effects are less profound. Clearly, optimization studies are
needed in order to design essentially nonlinear attachments that
lead to stiffness and damping enhancement over broad energy
ranges for shock inputs of varied frequency content. In particular,
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the capacity of the multi-DOF type-III NES to engage in broad-
band dynamical interaction with structural modes offers encourag-
ing progress toward that goal.

The strongly nonlinear system considered here involves two
fundamental assumptions. First, the nonlinear stiffness elements
did not possess any linear stiffness components. As discussed in
Vakakis et al. (2008), a small linear component would not qualita-
tively affect the response, introducing only a small perturbation to
the derived results and not restricting the practical results of the
analysis. Another important assumption is the absence of other
sources of dissipation, such as dry friction effects. In current prac-
tical implementations of the proposed designs, special attention is
given to reducing the dry friction effects as much as possible,
because these unmodeled forces would affect the nonlinear dy-
namics. Future work will demonstrate the practical implementa-
tion of the proposed designs to reliably reproduce the theoretically
predicted results. We conclude by emphasizing that the effective
measures of stiffening and damping introduced in this work are
able to capture the effect of the essentially nonlinear attachment
on the response of the structural system. In particular, these effec-
tive measures can be used to quantify the augmentation of damp-
ing, as well as the coupling that is introduced between the linear
structural modes of the system.

Journal of Vibration and Acoustics

Acknowledgment

This research program is sponsored by the Defense Advanced
Research Projects Agency through grant HR0011-10-1-0077; Dr.
Aaron Lazarus is the program manager. The content of this paper
does not necessarily reflect the position or the policy of the gov-
ernment, and no official endorsement should be inferred.

References

[1] Nayfeh, A. H., and Mook D., 1990, Nonlinear Oscillations, Wiley, New York.

[2] Manevitch, L. I., 1999, “Complex Representation of Dynamics of Coupled Oscil-
lators,” in Mathematical Models of Nonlinear Excitations, Transfer Dynamics
and Control in Condensed Systems, Kluwer Academic/Plenum, New York.

[3] Aboudi, J., 1993, “Response Prediction of Composites Composed of Stiffening
Fibers and Nonlinear Resin Matrix,” Compos. Sci. Technol., 46, pp. 51-58.

[4] Karray, F., Grewal, A., Glaum, M., and Modi, V., 1997, “Stiffening Control of
a Class of Nonlinear Affine Systems,” IEEE Trans. Aerosp. Electron. Syst.,
33(2), pp. 473-484.

[5] Kasza, K. E., Nakamura, F., Hu, S., Kollmannsberger, P., Bonakdar, N., Fabry,
B., Stossel, T. P., Wang, N., and Weitz, D. A., 2009, “Filamin A Is Essential for
Active Cell Stiffening but Not Passive Stiffening Under External Force,” Bio-
phys. J., 96, pp. 4326-4335.

[6] Lakes, R. S., 2001, “Extreme Damping in Composite Materials With a Negative
Stiffness Phase,” Phys. Rev. Lett., 86(13), pp. 2897-2900.

[7] Wang, Y. C., and Lakes, R. S., 2003, “Extreme Stiffness Systems Due to Nega-
tive Stiffness Elements,” Am. J. Phys., 72(1), pp. 40-50.

FEBRUARY 2012, Vol. 134 / 011016-11

Downloaded 09 Jan 2012 to 18.7.29.240. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


http://dx.doi.org/10.1016/0266-3538(93)90080-Z
http://dx.doi.org/10.1109/7.575886
http://dx.doi.org/10.1016/j.bpj.2009.02.035
http://dx.doi.org/10.1016/j.bpj.2009.02.035
http://dx.doi.org/10.1103/PhysRevLett.86.2897
http://dx.doi.org/10.1119/1.1619140

[8] Huang, H. H., and Sun, C. T., 2009, “Wave Attenuation Mechanism in an
Acoustic Metamaterial With Negative Effective Mass Density,” New J. Phys.,
11, 013003.

[9] Vakakis, A. F., Gendelman, O., Bergman, L. A., McFarland, D. M., Kerschen,
G., and Lee, Y. S., 2008, Passive Nonlinear Targeted Energy Transfer in Me-
chanical and Structural Systems: I and 11, Springer, New York.

[10] Arnold, V. I, ed., 1988, Encyclopedia of Mathematical Sciences, Dynamical
Systems 111, Springer-Verlag, Berlin, 1988.

[11] Geldenman, O. V., Manevitch, L. L., Vakakis, A. F., and M’Closkey, R., 2001,
“Energy Pumping in Nonlinear Mechanical Oscillators I: Dynamics of the
Underlying Hamiltonian Systems,” J. Appl. Mech., 68(1), pp. 34—41.

[12] Vakakis, A. F., and Gendelman, O. V., 2001, “Energy Pumping in Nonlinear
Mechanical Oscillators II: Resonance Capture,” J. Appl. Mech., 68, pp.
42-48.

[13] Vakakis, A. F., 2001, “Inducing Passive Nonlinear Energy Sinks in Vibrating
Systems,” J. Vibr. Acoust., 123, pp. 324-332.

[14] Gourdon, E., Coutel, S., Lamarque, C. H., and Pernot, S., 2005, “Nonlinear
Energy Pumping With Strongly Nonlinear Coupling: Identification of Reso-
nance Captures in Numerical and Experimental Results,” Proceedings of the
20th ASME Biennial Conference on Mechanical Vibration and Noise, Long
Beach, CA, Sept. 24-28.

[15] McFarland, D. M., Bergman, L. A., and Vakakis, A. F., 2005, “Experimental
Study of Nonlinear Energy Pumping Occurring at a Single Fast Frequency,”
Int. J. Non-Linear Mech., 40, pp. 891-899.

011016-12 / Vol. 134, FEBRUARY 2012

[16] Andersen, D., Starosvetsky, Y., Vakakis, A. F., and Bergman, L. A., “Dynamic
Instabilities in Coupled Oscillators Induced by Geometrically Nonlinear Vis-
cous Damping,” Nonlinear Dyn.

[17] Quinn, D. D., Triplett, A. L., Vakakis, A. F., and Bergman, L. A., “Energy Har-
vesting from Impulsive Loads Using Intentional Essential Nonlinearities,” J.
Vibr. Acoust., 133, 011004.

[18] Gendelman, O. V., Sapsis, T., Vakakis, A. F., and Bergman, L. A., 2011,
“Enhanced Passive Targeted Energy Transfer in Strongly Nonlinear Mechanical
Oscillators,” J. Sound Vib., 330, pp. 1-8.

[19] Nucera, F., Lo Iacono, F., McFarland, D. M., Bergman, L. A., and Vakakis,
A. F., 2008, “Application of Broadband Nonlinear Targeted Energy Transfers
for Seismic Mitigation of a Shear Frame: Part II, Experimental Results,”
J. Sound Vib., 313, pp. 57-76.

[20] Nucera, F., McFarland, D. M., Bergman, L. A., and Vakakis, A. F., 2010,
“Application of Broadband Nonlinear Targeted Energy Transfers for Seismic
Mitigation of a Shear Frame: Part I, Computational Results,” J. Sound Vib.,
329(15), pp. 2973-2994.

[21] Tsakirtzis, S., Panagopoulos, P. N., Kerschen, G., Gendelman, O., Vakakis,
A. F., and Bergman, L. A., 2007, “Complex Dynamics and Targeted Energy
Transfer in Systems of Linear Oscillators Coupled to Multi-Degree-of-Freedom
Essentially Nonlinear Attachments,” Nonlinear Dyn., 48, pp. 285-318.

[22] Xu, X., and Kup, Y., “Tensegrity Structures With Buckling Members Explain
Nonlinear Stiffening and Reversible Softening of Actin Networks,” J. Eng.
Mech., 135(12), pp. 1368-1374.

Transactions of the ASME

Downloaded 09 Jan 2012 to 18.7.29.240. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


http://dx.doi.org/10.1088/1367-2630/11/1/013003
http://dx.doi.org/10.1115/1.1345524
http://dx.doi.org/10.1115/1.1345525
http://dx.doi.org/10.1115/1.1368883
http://dx.doi.org/10.1016/j.ijnonlinmec.2004.11.001
http://dx.doi.org/10.1007/s11071-011-0028-0
http://dx.doi.org/10.1115/1.4002787
http://dx.doi.org/10.1115/1.4002787
http://dx.doi.org/10.1016/j.jsv.2010.08.014
http://dx.doi.org/10.1016/j.jsv.2007.11.018
http://dx.doi.org/10.1016/j.jsv.2010.01.020
http://dx.doi.org/10.1007/s11071-006-9089-x
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000060
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000060

	s1
	l
	s2
	E1
	F1
	F2
	E2
	E3a
	E3b
	E4a
	E4b
	F3
	E5a
	F4
	F5
	E5a
	E6
	E7
	E8
	E9
	F6
	E10
	E11
	E12
	s3
	E13
	F8
	F7
	E14
	F9
	E15
	F10
	s4
	F11
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	F12
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22

