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ABSTRACT

In this paper the authors study the interactions of additive noise and nonlinear dynamics in a quasi-

geostrophic model of the double-gyre wind-driven ocean circulation. The recently developed framework of

dynamically orthogonal field theory is used to determine the statistics of the flows that arise through suc-

cessive bifurcations of the system as the ratio of forcing to friction is increased. This study focuses on the

understanding of the role of the spatial and temporal coherence of the noise in the wind stress forcing. When

the wind stress noise is temporally white, the statistics of the stochastic double-gyre flow does not depend on

the spatial structure and amplitude of the noise. This implies that a spatially inhomogeneous noise forcing

in the wind stress field only has an effect on the dynamics of the flow when the noise is temporally colored.

The latter kind of stochastic forcing may cause more complex or more coherent dynamics depending on its

spatial correlation properties.

1. Introduction

The barotropic vorticity equation forms the corner-

stone model of the wind-driven ocean circulation. With

the solutions of the linear part of this equation one can

explain the origin of western boundary currents in the

ocean (see e.g., Pedlosky 1987). The successive bifur-

cation behavior of solutions of the nonlinear equation

has been actively studied, both for the single- (SG) and

the double-gyre (DG) wind stress forcing (see Dijkstra

2005, chapter 5). The behavior of DG solutions of the

barotropic vorticity equation in a square basin has been

shown to display qualitatively similar features as those

of shallow-water models in realistic basins. In this way,

a relation can be established between different DG solu-

tions and Kuroshio path transitions (Pierini et al. 2009)

and the DG case is considered to be an important model

for further theory development on the variability of

(equivalent) barotropic ocean flows.

An important issue in the behavior of wind-driven

flows is the effect of time-dependent wind forcing. The

wind stress over the midlatitude oceans displays strict

periodic components but otherwise is quite a large-

amplitude noisy signal (Schmeits and Dijkstra 2001; Sura

2003). For the North Pacific, the spatial correlation scale

is found to be about 1000 km and a typical decorrelation

time scale is about one day (Sura 2003). The effect of

additive, spatially coherent and temporally white noise

on the behavior of the DG flows has been studied in a

reduced gravity model (Sura et al. 2000, 2001). In a unique

regime (relatively high friction), the low-frequency

variability of the double-gyre flow can be understood as

a red noise response (set 1 and set 3 in Sura et al. 2000).

In a multiple equilibrium regime, the noise induces re-

gime transitions and the spatial coherence of the noise

appears crucial for these transitions to occur (Sura et al.

2001). In Sura and Penland (2002), it is shown that de-

tails in the stochastic forcing, in particular its temporal

correlations, can have a significant effect on the sta-

tistics of regime transitions. Pierini (2010) also shows
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that a red noise wind forcing can induce low-frequency

variability in a shallow-water model through a coherence

resonance mechanism when the temporal decorrelation

time scale is large enough. However, the precise role of

wind stress noise in the path transitions of the Kuroshio

current and the low-frequency variability of the Kuroshio

Extension is still unclear.

The effect of additive noise in the wind stress forcing

on the dynamics of the double-gyre flows has not been

systematically studied because of the huge computa-

tional effort involved of solving the stochastic partial

differential equations. Recently, however, new methods

have become available that make such a study feasible.

The dynamically orthogonal (DO) field method was de-

veloped to determine solutions to stochastic partial dif-

ferential equations. It was applied to two-dimensional

Navier–Stokes equations with a fixed number of

modes in Sapsis and Lermusiaux (2009) and with an

adaptive number of modes that vary according to the

characteristics of the solution in Sapsis and Lermu-

siaux (2012) In the present paper we apply the DO

method to the DG problem to study the effect of

additive noise on the nonlinear DG flows. While the

configuration (small basin, quasigeostrophic approxi-

mation) is strongly idealized, the results form the basis

(just as those of the deterministic problem (Cessi and

Ierley 1995; Dijkstra and Katsman 1997) to interpret

results from more realistic models (and eventually of

observations).

In section 2, the DGmodel and the DOmethodology

are shortly presented. Section 3 contains the results of

the study of the effects of different types of noise on

the statistics of the DG flows. We in detail analyze the

effect of the spatial and temporal coherence on the

statistical properties of the DG flows by determining

the energy transfer between the different DOmodes as

well as the properties of the probability density func-

tions. In this way, we provide links between the sta-

tistical responses of the system, its linear instabilities,

and the effect of stochastic noise (with various prop-

erties) on the stabilization or destabilization of the

flows. The results are summarized and discussed in

section 4.

2. Methodology

To be self-consistent we give a brief summary of the

barotropic DG model and the DO methodology (with

additional details in the appendix).

a. The barotropic double-gyre model

Consider an idealized model of the midlatitude wind-

driven ocean ocean circulation consisting of water with

constant density r0 in an idealized square (L 3 L) ba-

sin. The basin is located on a midlatitude b-plane with

Coriolis parameter f 5 f0 1 b0y. The ocean flow is

driven by a wind stress t 5 (tx, ty) and characterized by

a horizontal length scale L and a horizontal velocity

scale U. When the Rossby number � 5 U/(f0L) is small,

quasigeostrophic theory is an adequate description of

the large-scale flow (Pedlosky 1987). Let c indicate the

geostrophic streamfunction in the horizontal plane, then

the vorticity z is given by and z 5 =2c.

The governing equation in this theory is the baro-

tropic vorticity equation, given by

›q

›t
1 J(c, q)5AH=4c1

$3 t

r0H
, and (1a)

q5=2c1b0y . (1b)

Here, q is the potential vorticity and the Jacobian op-

erator J is defined as J(F, G) 5 FxGy 2 FyGx where

the subscripts indicate differentiation. The quantity AH

represents the turbulent lateral friction coefficient. No-

slip boundary conditions are prescribed at the east-

west boundaries and slip conditions at the north-south

boundaries, that is

x5 0,L :c5 0,
›c

›x
5 0, and (2a)

y5 0,L :c5 0,
›2c

›y2
5 0. (2b)

The total wind stress is written as t 5 td 1 t0, with
t0 indicating the stochastic component. The deter-

ministic double-gyre wind stress profile td considered

with (1) is

txd(x, y)52t0 cos2p
y

L
; t

y
d(x, y)5 0, (3)

where t0 is a typical amplitude.

Note that the Eqs. (1a,b) can also be formulated in

velocity [v 5 (yx, yy)] and pressure (p) formulation as

›v

›t
1 v � $v1 fk3 v52

1

r0
$p1AH=

2v1
t

r0H
, and

(4a)

$ � v5 0, (4b)

where k is the unit vector in the z direction. In this

formulation, the boundary conditions become
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x5 0,L : yx 5 yy5 0, and (5a)

y5 0,L : yy 5
›yx
›y

5 0. (5b)

The velocity–pressure formulation will be used in the

DO method as discussed in the next section.

b. Dynamically orthogonal field equations

If a general random state vector is denoted by u(x, y, t;v),

the starting point of the DO method is to use a general-

ized, time-dependent, Karhoenen–Loeve expansion

u(x, y, t;v)5 u(x, y, t)1 �
s

i51

Yi(t;v)ui(x, y, t) , (6)

where the ui are orthogonal under the inner product

hu,wi5
ð
V
�
k

ukwk d
2x , (7)

with V being the flow domain and the coefficients Yi(t;

v) are scalar stochastic processes with arbitrary proba-

bility distribution functions. The employed representa-

tion follows from the assumption that the stochastic part

of the solution ‘‘lives’’ in a finite-dimensional space, the

stochastic subspace VS. Alternatively, one could say that

the probability measure associated with the stochastic

response has nonnegligible spread of probability, that is,

variance, only along a finite number of dimensions.

The finite-dimensionality of the representation is

crucial toward the derivation of closed field equations

although it is not sufficient. The choice to have all un-

known terms varying with time leads to redundancy is-

sues and therefore additional constraints are necessary

to obtain independent equations for all the quantities

involved. In Sapsis and Lermusiaux (2009) it is shown

that a suitable constraint, which arises naturally to over-

come this redundancy issue, is the DO condition. It

requires that the time-dependent basis should vary

orthogonally to the space VS that defines on every time

instant:

�
›ui(�, t)

›t
,uj(�, t)

�
5 0, i5 1, . . . , s, j5 1, . . . , s . (8)

The use of time-dependence in the basis elements

ui(x, y, t) (the so-called DO modes) allows the repre-

sentation of the transient character of the solution us-

ing much fewer modes. From a physical point of view

what the constraint (8) imposes is the natural need for

the computational algorithm to evolve the shape of

the perturbations only if there is an important new

direction which is not already covered by the existing

modes.

The orthogonality condition leads to a closed set of

equations that allows for the evolution of the mean field

u(x, y, t), the DO modes ui(x, y, t), and the stochastic

coefficientsYi(t;v). This set of equations has the form of

s 1 1 deterministic PDEs, defining the evolution of the

mean and the DO modes, coupled to an s-dimensional

stochastic (ordinary) differential equation that defines

the evolution of the random coefficients. The DO prop-

erty implies the preservation of orthonormality for the

time-dependent basis ui(x, y, t). In this way the solution is

obtained in the form of random realizations for the scalar

stochastic coefficientsYi(t; v) (having low-computational

and storage cost since they are low-dimensional) and in

terms of s 1 1 deterministic fields containing the full de-

terministic information (mean field) and the s time-

dependent directions (theDOmodes)where stochasticity

is important. The mean, the time-dependent patterns of

the DO modes plus the distribution of the stochastic co-

efficients Y (at a certain time t) totally specify the proba-

bility of the state vector at that time.

The expansion (6) is only exact for finite dimensional

systems or for infinite dimensional systems as long as

they have a finite dimensional attractor. For the case

considered in this paper, the complexity of the flow is

sufficiently large to capture the dynamical features that

we are interested in and at the same time sufficiently

small so that a small truncation dimension s is adequate.

The dimension s can be estimated during the time de-

velopment by monitoring the eigenvalues of the co-

variance matrix CYi(t)Yj(t) (Sapsis and Lermusiaux 2012).

The criteria for evolving the subspace size are based on

stability arguments which follow directly from the sys-

tem differential equations. When an eigenvalue of the

covariance matrix CYi(t)Yj(t) exceeds a critical value, s is

increased by one; when it drops below a critical value,

s is decreased by one. The algorithm also provides the

instantaneously most unstable perturbation which is not

included into the stochastic subspace.

The specific details and technicalities associated with

DG equations through the DO framework can be found

in the appendix; more details on the methodology can

be found in Sapsis (2010). For the numerical solution

of these equations a finite-volume scheme presented in

Ueckermann et al. (2013) for the case of deterministic

systems with random initial conditions is employed, suit-

ably modified to take into account the stochastic part of

the model.

Having the random coefficients expressed in the form

of random realizations [in the simulations that follow

the ensemble size is of O(104)] has important advan-

tages especially for oceanic applications since it allows
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for the simple and efficient representation of any in-

teresting statistical quantity of the solution such as single

or joint moments of any order and probability density

functions of the velocity field in specific points of the

domain but also spatiotemporal correlation functions

and length scales. This can be done by directly using the

DO representation for fixed locations and subsequently

computing sets of realizations for the velocity (or any

quantity of interest) at these locations. Based on these

realizations one may compute statistical moments or the

associated probability density functions.

3. Results

In section 3a below, we present results of the bifur-

cation diagram for the deterministic case with the stan-

dard values of the parameters as given in Table 1. These

results are useful as (i) they serve as a reference for the

stochastic problem and (ii) they are needed for a vali-

dation of the spatial resolution used in the DO solution

method. In section 3b, we focus on the effect of spatially

coherent but temporally white noise on the statistics of

DG flows and in section 3c we consider wind stress noise

that is both temporally and spatially correlated.

a. The deterministic case

For large values of AH, a unique and globally stable

flow state for both single- and double-gyre cases is found

(Dijkstra and De Ruijter 1996). To investigate the so-

lution structure of Eq. (1) when AH is decreased, con-

tinuationmethods (Dijkstra andKatsman 1997; Dijkstra

2005) have been used on discretized versions of (1).

When the streamfunction–vorticity equations are non-

dimensionalized using scales L for length, U for velocity,

L/U for time, and t0 for wind stress, then the dimen-

sionless parameter Re 5 UL/AH appears, which we will

use as a control parameter. For the value ofAH inTable 1,

the value of Re 5 20.

A 128 3 128 equidistant grid is used, and the steady

states are computed using a pseudoarclength continuation

method. For the DGwind stress forcing (3), the structure

of the steady solutions is shown through the bifurcation

diagram in Fig. 1a, where the value of the dimensionless

streamfunction at a point in the southwest part of the

domain [cR5 c(x5L/4, y5L/4)/(UL)] is plotted versus

Re 5 UL/AH.

At large values of AH (small Re), the antisymmetric

double-gyre flow (Fig. 1b) is a unique state.When lateral

friction is decreased, this flow becomes unstable at the

pitchfork bifurcation P1 and two branches (indicated by

A1d and A1u in Fig. 1a) of stable asymmetric states ap-

pear for smaller values of AH (larger Re). The solutions

on these branches have the jet displaced either southward

or northward (Fig. 1c) and are exactly symmetrically

related for the same value of Re. The asymmetric so-

lutions become unstable at a Hopf bifurcation H lo-

cated at Re 5 52.

The branch S2 of unstable steady solutions is the con-

tinuation of the antisymmetric solution branch. For

even smaller friction, this antisymmetric flow becomes

inertially dominated and cR increases rapidly while

going through the saddle-node bifurcation L. A pitch-

fork bifurcation P2 occurs on the antisymmetric branch

where an additional pair of asymmetric solution branches

appear (indicated by A2d and A2u in Fig. 1a); all these

solutions are unstable.

The results above serve as a check for the DOmethod

in case there is no noise in the wind stress forcing. In this

case, the time evolution of the DO modes combined

with their statistics through the Yi can be seen as a large

ensemble of simulations with different initial conditions.

For Re 5 20, we know that all modes are damped and

based on adaptive criteria (Sapsis and Lermusiaux 2012)

it turns out that s5 1 is sufficient to capture the statistics

of the flow. The initial variance of the mode is chosen as

1025 such that nonlinear interactions of the mode are

initially small. The DO model is integrated for about

1 year (dimensionless time of about 0.5; the scaling fac-

tor isL/U) by which the evolution of the ensemble mean

state, that of 104 initial conditions and the first DO-mode

is determined. As can be seen in Fig. 2a, the variance of

the first DO mode (the expectation value of the square

of the amplitudeY1) decreases monotonically to zero and

the ensemble mean flow approaches a steady double gyre

flow. During the transient development, the pattern of

the mean flow and the DO mode change and only the

pattern at the end point of the integration (t 5 0.48) is

shown in Fig. 2a. For this case, the pattern of the DO

mode, which resembles that of a Rossby–basin mode,

hardly changes after t 5 0.1.

To determine the spatial resolution of the DO method

and to be sure that both numerical methods give the

same results for the deterministic case, we compare the

equilibrium solutions of both methods for Re 5 20. In

Table 2, a comparison is made of the maximum and

minimum values of the zonal and meridional velocity of

the solution determined by the DO method and the one

computed by the model in the streamfunction-vorticity

TABLE 1. Standard values of parameters used in the computations.

Parameter Value Parameter Value

L 1.0 3 106 m t0 1.5 3 1021 Pa

H 6.0 3 102 m b0 1.6 3 10211 (m s)21

f0 1.0 3 1024 s21 U 5 t0/(b0Lr0H) 1.56 3 1022 m s21

r0 103 kg m23 AH 7.8 3 102 m2 s21
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formulation (1). This indicates that the DO code pro-

vides the same results as the code to solve (1) and a

64 3 64 grid is sufficient to obtain accurate results (an

error of at most a few percent is made).

Next we consider the case Re 5 40, which is in the

multiple equilibrium regime (Fig. 1) with only the two

asymmetric states being linearly stable. In this case, we

take s 5 4 in the DO method (again based on adaptive

criteria (Sapsis and Lermusiaux 2012), s5 4 turns out to

be sufficient to capture the statistics of the flow) and also

with each mode having an initial variance of 1025. The

DO equations are integrated for about 12 years (up to

FIG. 1. (a) Bifurcation diagram for the DG barotropic quasigeostrophic model for a square basin with Re 5 UL/AH as the control

parameter. On the y axis, the dimensionless streamfunction value cR 5 c(x 5 L/4, y 5 L/4)/(UL) is plotted. The Hopf bifurcation H on

both branchesA1 (Dijkstra and Katsman 1997) is located at Re5 52. Drawn (dashed) branches indicate linearly stable (unstable) steady

states. (b) Pattern of c near Re5 10 on the lower stable branch in (a); all contour values are with respect to the maximum value of c and

the contour spacing is 0.1. The x and y coordinate are scaled with the basin size L. (c) Same for Re5 60 along the branchA1u; the pattern

on the branch A1d at Re 5 60 is the mirror image of (c) with respect to reflection through the mid axis of the basin. (d) The pattern at

Re 5 60 on the branch A2d.
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a dimensionless time T5 6) and the results are shown in

Fig. 2b. The streamfunction (contours) and vorticity

(color) of the mean and DO modes are shown in the

upper panels, the time development of the DOmodes in

the lower-left panel and two three-dimensional repre-

sentations of the four-dimensional PDF of the system

are presented in the lower-right panel. In the latter

panel, regions with high probability are shown in red.

As can be seen in Fig. 2b, the amplitudes of the DO

modes approach finite amplitude values. The pattern of

DO mode 1 is similar to that of the so-called P mode

(Simonnet andDijkstra 2002), which is the pattern of the

eigenmode that destabilizes the symmetric steady state

at the pitchfork bifurcation P1 (Fig. 1b) through sym-

metry breaking. The pattern of DO mode 2 is the so-

called L mode (Simonnet and Dijkstra 2002), which is

here slightly asymmetric as the mean state is asymmet-

ric. The patterns of DOmodes 3 and 4 are similar to DO

modes 1 and 2, but with higher zonal wavenumbers.

From the results in Fig. 2 we deduce that different

statistical regimes can be distinguished by looking at the

decay of the DO modes. In Fig. 3b, the logarithm of the

amplitude of the leading DO mode is plotted as a func-

tion of time for different values of Re. This shows that

for values Re , 30, the amplitudes of the DO modes

decay whereas some of them do not decay for Re . 30.

This result is in correspondence with the occurrence

of the pitchfork bifurcation P1 in Fig. 1. Note that the

patterns of the mean and the DO modes change with

FIG. 2. (a) Solution at about one year (dimensionless time t5 0.48) for the DOmethod for Re5 20 with s5 1, initial variance 1025 and

a 643 64 grid (b) As in (a), but for Re5 40, s5 4, and t5 6. The color in the three-dimensional probability density functions fY1Y2Y3
and

fY2Y3Y4
indicates its amplitude with red being high and blue being low. Since the surface corresponds to the ‘‘iso-probabilistic’’ location (i.

e., fY1Y2Y3
5 1026), the color shows the relative probability that is contained inside each location.

TABLE 2. Comparison of dimensionless maximum andminimum

values of zonal and meridional velocities of the steady state in both

streamfunction–vorticity (indicated by QG below) and velocity–

pressure (DO) models for Re5 20 and different spatial resolutions.

Resolution umin umax ymax 5 2ymin

DO 64 3 64 24.2360 14.7943 11.6493

QG 64 3 64 24.2669 14.4148 11.6233

DO 96 3 96 24.4387 14.9021 11.8784

QG 96 3 96 24.4014 14.8310 11.7839

DO 128 3 128 24.4351 14.9342 11.8945

QG 128 3 128 24.4646 14.9720 11.8997
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time and are not yet equilibrated for t 5 6 (for which

their pattern is shown in Fig. 2b). The logarithm of the

energy of the mean is plotted in Fig. 3a and for 30 ,
Re , 50 it gradually increases. Figure 1 indicates that

there are only two stable asymmetric states in this Re

regime and hence the time mean is expected to be the

antisymmetric state, which has a nonzero mean energy

and increases in amplitude with Re. The energy of the

mean undergoes a rapid increase for values of Re . 50.

This is associated with the occurrence of the Hopf bi-

furcation H on the branches of asymmetric solutions

(Fig. 1a) and the subsequent rectification of the mean

flow through the periodic solutions arising from this bi-

furcation (Dijkstra and Katsman 1997). There are also

two regimes of variance of the leadingDOmode (Fig. 3b),

one associated with the multiple equilibrium regime

(Re , 50) and one with an essentially transient regime

(Re . 50). In the analysis of the effects of noise, we

focus only (as also did Sura et al. 2001 and Pierini 2010)

on the first (multiple equilibrium) regime.

b. Additive white noise wind stress forcing

For the stochastic wind stress component t0 we follow
Sura et al. (2001) and prescribe it as

t0 5 raCDju0ju0 (9)

with

u0 5shx(t)f (x, y); y05shy(t)f (x, y) (10a)

f (x, y; l)5
affiffiffiffi
p

p
�
lErf

�
1

2l

��21

e
2

�
x

L
2
1

2

�2

1

�
y

L
2
1

2

�2

2l2 (10b)

where l 5 Lx/L 5 Ly/L is a scale factor controlling the

spatial extent (Lx 5 Ly in Sura et al. 2001) of the sto-

chastic noise and a controls the amplitude. In this sub-

section, the quantities hx and hy represent uncorrelated

(white) noise with a unit intensity.

Similarly to the choice in Sura et al. (2001), the am-

plitude a is normalized so that it is the same for every

value of l, that is, a is computed from a 5 1/f(0, 0; 1/4).

The reference amplitude for l 5 1/4 is chosen such that

the variance in the noise s2 5 28 m2 s22, similar to that

in Sura et al. (2001), with also values of ra 5 1.2 kg m23

and CD 5 2.0 3 1023. In this case, we have only two

control parameters to which we want to investigate the

sensitivity of the response, that is, l and Re.

The DO results for Re 5 35 are shown in Fig. 4 for

three values of l in the same format as Fig. 2b. For each

value of l, the amplitudes of all DO modes approach

steady values in time and the first DO mode (of which

the pattern corresponds to the normal mode associated

with the symmetry breaking at the bifurcation point

P1 in Fig. 1) has the largest amplitude. The remarkable

result here is that for each of the three values of l, we

find that the spatial structure of the DO modes is the

same. Also the geometry of the probability density func-

tion the same for different noise forcing although the

probabilitymeasure ismore spread for smaller values of l.

To understand this behavior, we first reformulate cor-

ollary 2 from Sapsis and Lermusiaux (2009) to the fol-

lowing form, most appropriate for this context. Consider

the stochastic partial differential equation

dut(x, t;v)5L[u(x, t;v)]dt1 �
s

k51

dWk(t;v)sk(x, t),

x 2 V, t 2 T, v 2 V ,

FIG. 3. Logarithm of (a) the energy of the mean and logarithm of (b) total variance of the leading DOmode, both vs

time for different values of Re.
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FIG. 4. DO results in time for Re5 35 as determined on a 643 64 grid, with s5 4, initial variance 1025, a scaled noise amplitude a, and

three values of (a) l 5 0.125, (b) l 5 0.25, and (c) l 5 0.5. The total time integrated is about 20 years (T 5 10).
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where L is a general (nonlinear), differential operator,

and Wk(t; v) are independent Wiener processes. Then

the stochastic excitation has zero effect on the instan-

taneous evolution of the mean field, and the shape of

the stochastic subspace VS, while for the stochastic co-

efficients we have the following two cases.

(i) If sk(x, t) 2 VS then the effect of the excitation is

expressed as diffusion in the reduced order stochas-

tic subspace and only on the stochastic coefficients

Yi(t; v) for which we have hsk(x, t), ui(x, t)i 6¼ 0 for

some k 5 1, . . . , se.

(ii) The forcing components for which sk(x, t) ; VS

have zero effect on the instantaneous evolution of

the DO solution.

According to the results in Fig. 4, we expect that white

noise excitation will not cause significant changes on

the form of the reduced-order space since its effect can

only be indirect to it (through the influence on the sto-

chastic coefficients). To give a more quantitative char-

acterization of the effect of white-noise on the system

dynamics we compute the rate of energy transfer and

dissipation involving each DO mode and the mean. We

will use «diss,i to indicate the dissipation of energy by

DO mode i, «mean/i the energy transfer from the mean

to DO mode i, «DO/i the exchange of energy from all

other DOmodes to DOmode i and «ext,i the exchange of

energy of the stochastic forcing to DO mode i. When the

wind stress forcing is written in general as (see appendix)

t0(x, t)5 �
s

k51

Zk(t;v)sk(x, t)

the energy transfer rates can be expressed analytically in

terms of the statistics of the system as (see Sapsis 2010,

section 5.5 or Sapsis 2012, manuscript submitted toProc.

Roy. Soc.)

«diss,i52Ev[Y2
i ]

ð
V

1

Re
$ui,$ui dx,

«mean/i52Ev[Y2
i ]

ð
V
uTi Suui dx,

«DO/i52

ð
V
uTqSu

i
up dxE

v[YiYpYq],

«ext,i5CZ
k
(t)Y

i
(t)

ð
V
sk(x, t) � ui(x, t) dx

where in the integrals above, the Einstein summation

convention is applied. In addition, Ev indicates the ex-

pectation value, C the covariance matrix and

(Sy)nm 5
1

2

�
›yn
›xm

1
›ym
›xn

�
.

We consider the following three cases: the system

without any external stochastic noise, and the system

under white stochastic excitation in the wind stress with

two different length scales l of the spatial structure of

the noise. We emphasize that due to the nonanticipative

property of white-noise the energy transferred from the

stochastic excitation to the DO modes is zero. In partic-

ular, one can prove from Eq. (A1) in the appendix that

the energy transfer rate from the external stochastic

forcing to each DO mode for white-noise «ext,i 5 0 since

we always have CWk(t)Yi(t) 5 0.

By plotting the above energy transfer rates in Fig. 5 we

observe that the response of the system in these three

cases is almost identical in terms of energy transfer

properties. Because the white noise in the forcing is

uncorrelated with the amplitudes of the DO modes,

there is only a relative shift of the time series, while the

overall energetics remains the same. In particular the

deterministic system is the one where the instability

takes longer to develop while the system subjected to

noise with the smaller length scale (or noise with sharper

spatial characteristics) is the one that develops sub-

stantial uncertainty the earliest.

In addition, in all three cases considered in Fig. 5, we

notice that there are two (linearly unstable) DO modes

that absorb energy from the mean flow (DO modes 1

and 2). However, these two modes behave completely

differently if we take into account the nonlinear energy

transfer properties. In particular, DO mode 1 absorbs

energy not only from the mean flow but also from the

other DO modes through nonlinear interactions. These

two kinds of energy fluxes (linear and nonlinear) are

balanced by the strong rate of energy dissipation. On the

other hand, DO mode 2 transfers an important amount

of its energy to DO modes 3 and 4 which dissipate some

of it and return the rest to the mean flow. In all cases we

observe that the presence of white-noise does not dis-

turb this energy cycle.

To emphasize the similarity between the different

excitation scenarios we present in Fig. 6 the response for

each one with an appropriate time shift relative to the

deterministic case which is chosen in accordance with

the time delay of the energy time series. Consistently

with the general formulation, the stochastic subspace

and the mean remain almost unchanged in all three ca-

ses of excitation albeit the time delay. In Fig. 6 we also

present a visualization of the probability density func-

tion through the contours f(Y1,Y2,Y3) j fY1Y2Y3
5 1026g

and f(Y2,Y3,Y4) j fY2Y3Y4
5 1026g for the three cases.

Because of the low value that these contours corre-

spond to, most of the probability mass is contained in-

side these closed surfaces. Moreover, the coloring of

the surfaces is according to the contained probability at
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each location of the contour (red regions corresponding

to high probability and blue to low values).

For both the deterministic and the stochastic cases

we see that the probability density function essentially

consists of two different kinds of regions: (i) locations

where the probability is spreading along a 1-dimensional

manifold and, (ii) regions where the probability density

function ‘‘lives’’ in two-dimensional sets. As discussed

in detail in Sapsis (2012, manuscript submitted to Proc.

Roy. Soc.) these two different regions indicate locations

of the reduced-order subspace where a different number

of linear instabilities occur. In particular in regions where

we have a one-dimensional probability density function

there is only one linearly unstable mode (in this case

this is Mode 1) while in locations where we have a two-

dimensional probability density function there are two

linear instabilities coexisting. The presented results are

in full consistency with the energy transfer properties

presented and discussed previously.

c. The case of temporally correlated stochastic
excitation

We now consider the most general case where the

wind stress noise has a correlated-in-time component to

FIG. 5. Rates of energy transfer to each mode for the case of deterministic excitation (blue solid curve) and in the presence of white noise

excitation for two different spatial correlation length scales l.
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determine the effect of memory in the stochastic exci-

tation on the statistics of the DG flows. In particular we

assume that the stochastic processes hx(t; v) and hy(t; v)

in (10) are solutions of the following stochastic differ-

ential equations

dhx(t;v)52
1

t
hx(t;v) dt1

ffiffiffi
2

t

r
dWx(t;v) (11a)

dhy(t;v)52
1

t
hy(t;v) dt1

ffiffiffi
2

t

r
dWy(t;v) . (11b)

The solution of each of the SDEs (11) are zero mean

Gaussians (Gitterman 2005; Henderson and Plaschko

2006) with covariance function C(t)5 e2t/t . Therefore

each of those stochastic processes will correspond to a

decorrelation time scale t and variance Ev[h2
x(t;v)]5

Ev[h2
y(t;v)]5 1. We emphasize that as t / 0, each of

the processes h converges to a white noise process with

a
ffiffiffiffiffi
2t

p
intensity (Gardiner 2002). Therefore for the limit

of t 5 0, we should recover the deterministic dynamics.

However, as we will see below, this is not the case and

a singular limit behavior occurs. Note that the particular

choice of model for each h (having constant variance)

is made so that we examine exclusively the effect of

memory in the excitation process and not the effect of

its magnitude.

In Fig. 7 we present the energy transfer rates for three

cases of decorrelation time scale t as in (18) with fixed

l 5 1/8. We observe that as the decorrelation time (or

memory) exceeds a certain limit the system behaves com-

pletely different from the deterministic or the white noise

excitation (effectively t 5 0) and it is characterized by

much stronger energy transfer rates and energy content.

This is also the case for theDOmodes which characterize

the reduced order stochastic subspace, shown in Fig. 8.

FIG. 6. Mean flow and stochastic subspace in terms of the streamfunction (contours) and vorticity field (colors) as well as contour plots

of the three-dimensional marginals fY1Y2Y3
and fY2Y3Y4

for the case of deterministic forcing and for two cases of white-noise stochastic

forcing with two different spatial characteristics. The three cases have been plotted with appropriate time delay (obtained by the energy

curves) so that we have correspondence to the same dynamical regime.
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As the decorrelation time scale t increases, essen-

tially the excitation behaves more deterministically

(longer memory) and the system enters into a com-

pletely different dynamical regime characterized by a

different set of modes but most importantly different

energy transfer properties (Fig. 7). In contrary to the

deterministic or white-noise excitation cases, here we

have only a single linearly unstable mode (mode 1). In

the white-noise case this mode was also absorbing en-

ergy from the other DO modes. The presence of long-

memory excitation changes this behavior and now this

mode transfers energy to all the other DOmodes which

dissipate some and return the rest to the mean flow.

Note that in addition to the internal energy transfers

here we have all the stochastic modes to absorb energy

directly from the random excitation. The above facts

are also consistent with the geometry of the probability

density function (Fig. 8) that has a one-dimensional

structure with a small two-dimensional component

(which corresponds to a dynamical regime where we

have two DO modes absorbing energy from the mean

flow).

FIG. 7. Energy transfer rates for the cases of correlated in time stochastic excitation and for three different decorrelation time scales t. For all

cases the spatial parameter l is fixed and equal to 1/8 while the decorrelation time scale t is taken 0.01 (blue), 1 (black) and 4 (red).
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The case t 5 0.01 is considered in more detail in

Fig. 9. We see that for the small decorrelation time

scale the energy transfer rates are closer in magnitude

to that of the white-noise excitation. However, the en-

ergy transfer properties are completely different from

those of the deterministic or white-noise excitation cases

as for small t the amplitudes do not become stationary

but keep fluctuating. We see that DO modes 1 and 2 re-

main linearly unstable but with amplitudes that fluctuate

in time in a statistically stationary faction. Moreover,

DO modes 3 and 4 lose their robustly stable character

and in many time instants they absorb energy directly

from the mean flow. However, the major role on im-

porting energy to them is played by their direct inter-

action with the stochastic excitation but also the energy

in-flux through nonlinear interactions with the other

DO modes. These differences are also expressed in the

probability density functions (Fig. 8, for t 5 0.01) where

we see that the dimensionality of their support is larger

than two (which was the dimensionality in the case of

deterministic excitation) a fact that is connected to the

number of unstable modes as we discussed previously.

The limit t / 0 appears to be a singular limit and its

discussion is outside the scope of this paper.

In summary, we have shown that stochastic noise

characterized by finite-memory acts drastically on the

reduced order dynamics of the system causing changes

in the stability of the flow. Depending on the memory of

the excitation, this may destabilize modes of the de-

terministic system pushing the dynamics into a statisti-

cally stationary regime (small memory), or bring the

system into a less complex behavior characterized only

by a single unstable mode (long memory).

4. Summary and discussion

Using the dynamically orthogonal (DO) field method,

the effect of additive noise on the double-gyre wind-

driven flows was studied using an idealized quasigeo-

strophic model. In the DO method the solution of the

stochastic barotropic vorticity equation is found by a

Karhoenen–Loeve expansion into so-called DO modes

FIG. 8. Mean flow, DOmodes 1–3 and probability density functions for the case of temporally and spatially correlated noise excitation for

l 5 1/8 and three different decorrelation time scales: t 5 0.01, 1, and 4.
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with stochastic coefficients, the latter satisfying a sto-

chastic ordinary differential equation. From the ampli-

tude of the mean, the DO-modes and the stochastic

coefficients, the flow solution can be determined.

The bifurcation diagram of the deterministic case in-

dicates different dynamical regimes, which are sepa-

rated by specific bifurcation points (Dijkstra 2005).

These different regimes are also found in the DO solu-

tions for the case without noise and can be distinguished

by the saturation of their amplitude in time. For exam-

ple, the pitchfork P1 distinguishes the regime where all

DOmodes decay in time from the regime where at least

one of them grows to finite amplitude.

When spatially coherent but temporally white noise

is added to the mean wind stress, we found that the DO

mode patterns do not depend on the spatial structure

of the noise. The analysis in section 3b has shown that

there is no exchange of energy from the stochastic ex-

citation to the DO modes. From these results and the-

oretical arguments presented we may conclude that

temporally uncorrelated additive noise has minimal ef-

fect on the reduced order dynamics of the system (both

their statistics and their form, i.e., the basis elements)

and the only effects observed are time-shifted transition

behavior. This is consistent with the simulations in

Pierini (2010), where no coherence resonance is found

under white-noise wind forcing. The white-noise will also

lead to an enhancement of probability spread around

the chaotic attractor. This explains why in Sura et al.

(2001), the noise is found to be important to induce

transitions between different equilibrium states.

When there is memory in the noise, here induced

by the temporal coherence in the wind stress forcing,

modes take up energy from the stochastic excitation and

there is a strong effect of the noise on the reduced dy-

namics and the energy transfers. Depending on the

memory of the excitation, the system may be stabilized

or destabilized. In the cases studied in Pierini (2010), co-

herence resonance occurs only when the decorrelation

time scale is long enough and in his shallow-water model,

it leads to more complex behavior. However, noise may

also push the system into a completely different attractor

with much less complex behavior characterized only by

one unstable mode. This result is remarkable as it in-

dicates that noise may induce relatively coherent behav-

ior, resembling low-order behavior of the deterministic

system.

The idealized configuration and model used here are

obviously too simple to make any statement on the be-

havior of more complex ocean models and observations.

The results should be seen as a first but important step

in the study of the interaction of noise and nonlinear

dynamics in spatially extended systems described by

stochastic partial differential equations. As it has been

FIG. 9. Energy transfer rates for the case of temporally and spatially correlated stochastic excitation with decorrelation time scale t5 0.01

and l 5 1/8.
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shown that in the deterministic case, much of the be-

havior of solutions of the barotropic DGmodels is found

in more complex models, such as shallow water equa-

tions (Pierini 2006; Pierini et al. 2009), we anticipate

also that the effects of noise on the solutions may be

similar, making the study here potentially relevant to

understand the dynamics of midlatitude western bound-

ary currents in the ocean.
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APPENDIX

DO Equations for the DG Problem

When the horizontal velocity is scaled with the scale

U, length with L, time with L/U and the pressure with

r0U
2, the dimensionless Eq. (4) become

›v

›t
52$p1

1

Re
=2v2 v � $v2 fk3 v1 td(x, t)

1 �
s
e

k51

Zk(t;v)sk(x, t)

$ � v5 0,

where v 5 [yx(x, t; v), yy(x, t; v)] is the flow velocity

field, and k is the unit vector in the z direction. The

pressure field is denoted with p(x, t; v), f 5 f 1 y (with

f 5 f0L
2r0Hb0/t0 being irrelevant for the vorticity dy-

namics) is the Coriolis parameter under the b-plane

approximation, td(x, t)5 [txd(x, t), t
y
d(x, t)] is the exter-

nal deterministic stress acting on the fluid, Zk(t; v) are

scalar stochastic processes, and sk(x, t) 5 [sk,x(x, t),

sk,y(x, t)] is the zero-mean stochastic component of the

wind stress for which we assume known complete prob-

abilistic information.

In what follows we will use the inner product

hv,wi5
ð
V
(yxwx 1 yywy) dx .

where V is the volume of the ocean basin. We assume

that the boundary conditions for the velocity vector v

and the pressure are described by the linear differential

operator B
By[v(j, t;v)]5 v›V(j, t),

Bp[p(j, t;v)]5p›V(j, t), j 2 ›V .

We also assume that the initial conditions are stochastic

with known statistics given by

v(x, t0;v)5 v0(x;v), x 2 V, v 2 V .

As state vector u, we now take the velocity field v and

by using a DO representation for the solution

u(x, t;v)5 u(x, t)1 �
s

i51

Yi(t;v)ui(x, t)

we obtain the following set of equations.

d Equation for the mean field

›u

›t
52$p01

1

Re
=2u2 u � $u2 fk3 u1 td(x, t)

2CY
i
(t)Y

j
(t)

�
2$pij 1

1

2
ui � $uj 1

1

2
uj � $ui

�

05$ � u ,

where C indicates the covariance matrix and pij is

defined below.

d Equation for the stochastic coefficients

dYi

dt
5Aim(t)Ym 1Bimn(t)YmYn 1Di(t;v) , (A1)

where

Aim(t)5

�
1

Re
=2um 2 um �$u2 u �$um 2 fk3 um, ui

�

Bimn(t)52
1

2
hum � $un 1 un � $um,uii,

Di(t;v)52Bimn(t)CY
m
(t)Y

n
(t) 1 hsr(x, t), uiiZr(t;v) .

d Equation for the DO modes

›ui
›t

5Qu,i 2 hQu,i, umium, $ � ui 5 0,

where

Qu,i[2$pi 1
1

Re
=2ui 2 ui � $u2 u � $ui 2 fk3ui2C21

Y
i
(t)Y

j
(t)MY

j
(t)Y

m
(t)Y

n
(t)

3

�
2$pmn 1

1

2
um � $un1

1

2
un � $um

�
1C21

Y
i
(t)Y

j
(t)CY

j
(t)Z

r
(t)[2$br 1sr(x, t)] ,
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d Accompanied with the pressure equations

=2p05$ � [2u � $u2 fk3 u1 td(x, t)]

=2pi5$ � (2ui � $u2 u � $ui2 f k̂3 ui), i5 1, . . . , s

=2pij5
1

2
$ � (ui �$uj 1 uj �$ui), i5 1, . . . , s, j51, . . . , s

=2br 5$ � sr(x, t), k5 1, . . . , s .

All these equations are accompanied with appro-

priate boundary conditions, which are described in

full detail in Sapsis (2010). The numerical solution is

performed using a finite-volume framework described

in Ueckermann et al. (2013) that has been suitably

modified to take into account the stochastic excitations

described in this work.
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