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kinematic mechanical effects the piezoelastic cable generates a nonlinearizable cubic
stiffness nonlinearity, whereas electromechanical coupling simply sees a resistive load.
Under single and repeated impulsive inputs the transient damped dynamics of this
system exhibit transient resonance captures (TRCs) causing high-frequency ‘bursts’ or
instabilities in the response of the harvesting element. In turn, these high-frequency
dynamic instabilities result in strong and sustained energy transfers from the directly
excited primary system to the lightweight harvester, which, through the piezoelastic
element, are harvested by the electrical component of the system or, in the present
case, dissipated across a resistive element in the circuit. The primary goal of this work
is to demonstrate the efficacy of employing this type of high-frequency dynamic
instability to achieve enhanced nonlinear vibration energy harvesting under impulsive
excitations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Long-lasting self-sustaining energy sources are becoming more important for wireless devices such as portable
electronics and sensors. These devices typically rely on batteries, which must be frequently recharged or replaced.
Battery charging or replacement can become complicated and sometimes impractical for wireless sensors, which are
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integrated into large structures in difficult-to-reach locations. A device that converts ambient mechanical vibration
energy into usable electrical energy fulfills the self-sustaining requirement [1-3]. Piezoelectric materials are commonly
used to convert mechanical energy to electrical energy so that ambient vibration can be harvested in a circuit [4,5]. The
primary goal of this work is to study a methodology for enhancing the performance of these piezoelastic vibration-
based energy harvesting systems through the use of nonlinear passive mechanical systems.

Many vibration-based energy harvesting systems are realized through either linear or weakly nonlinear oscillating
systems. Linear systems require specific tuning to efficiently harvest energy when subjected to harmonic excitations,
and are designed to match their natural frequency to the external forcing frequency [6,7]. When subject to proper
tuning of the device parameters, linear energy harvesting systems efficiently transfer mechanical energy from
environmental vibrations to a secondary attachment for subsequent conversion to electrical energy. In addition the
electromechanical conversion process can be optimized by proper tuning of the electrical circuit parameters of the
harvesting system [8-10,34-38]. This transfer of energy from the primary system to the secondary attachment is more
profound for larger vibrational amplitudes and weaker system damping [11]. A sharp resonant peak is a fundamental
characteristic of these linear systems with low damping. This is indicative of the narrowband nature of operation of
these linear harvesting systems, and therefore their harvesting efficiency is expected to decrease significantly for
excitation frequencies that vary only slightly from the tuned resonance frequency of the mechanical system. Harvesting
of vibrations with time-varying frequency content using a linear single-degree-of-freedom harvester was theoretically
studied in [33], and optimized harvesting strategies for this class of excitations were formulated.

Nonlinear energy harvesting systems have been proposed as a solution to frequency mistuning [10,12,13]. In [27]
an analytical study of hybrid linear and nonlinear piezoelectric and electromagnetic energy harvesters was
performed, whereas Mann et al. [28] examined the sensitivity of linear and nonlinear single-degree-of-freedom
energy harvesters to parameter uncertainties. Erturk et al. [29] explored broadband nonlinear energy harvesting by
piezo-magneto-elastic effects through magnetic bucking of an inverted cantilever beam and proved superior
performance compared to systems without such buckling effects. Likewise, in recent works [30-32] the enhanced
energy harvesting performance of bi-stable nonlinear energy harvesters to broadband excitation was shown. In
another series of works it was proposed to use nonlinear mechanical attachments rather than linear attachments to a
primary system, in which cubic nonlinearity in the elastic force was utilized to broaden the frequency response range
of larger amplitude solutions [14,15]. This class of strong nonlinearity is referred to in the literature as essential
(nonlinearizable) nonlinearity. The phenomenon of targeted energy transfer (TET) has been observed in these
strongly nonlinear systems, in which TET describes the nearly irreversible passive transfer of substantial energy from
the primary system to the nonlinear attachment [16-18]. The capability of the essentially nonlinear attachment to
engage in resonance captures with modes of the linear structure over an extensive frequency and energy range results
in complex dynamics of these systems [23]. The dynamics of the underlying Hamiltonian system possess highly
degenerate eigenstructures with pairs of complex conjugate imaginary and multiple zero eigenvalues, resulting in
these complex dynamics. Chaotic motions and dynamic instabilities result from high co-dimensional bifurcations in
the nonlinear dynamics. These dynamic instabilities result in large relative displacements, which is ideal for
piezoelastic energy harvesting.

It has been shown that nonlinear instabilities occur in highly degenerate systems associated with geometric
stiffness [15] or damping [19] nonlinearities. This instability is characterized as a buildup of the response of a
nonlinear attachment as it engages in a resonance capture with one of the modes of the linear oscillator. Another
interesting dynamical phenomenon described in [19,20] is a peculiar damped transition into a state of sustained
nonlinear resonance scattering in a system of two coupled oscillators with essential cubic stiffness nonlinearity. This
transition was realized for weak viscous damping and only in the neighborhood of the low-frequency branch of the
impulsive orbit manifold — (IOM) of the underlying Hamiltonian system. For a Hamiltonian system of two coupled
oscillators with essential stiffness nonlinearity, an IOM consists of a countable infinity of periodic orbits and an
uncountable infinity of quasi-periodic orbits, extending over broad frequency and energy ranges [21]. Impulsive forces
applied to the linear oscillator with the system initially at rest enable these transitions, which take the form of
nonlinear beats.

The present work seeks to extend the aforementioned results and apply them to the optimization of a nonlinear vibrational
energy harvesting system subject to impulsive excitation. We show that sustained high-frequency dynamical instability can be
realized in strongly nonlinear systems of coupled oscillators, which is in contrast to previous results in [15,19] where only low-
frequency dynamic instabilities were reported. We also show that efficient energy harvesting can result for a single impulse and
for a series of periodic impulses by activation of high-frequency dynamic instabilities due to high-frequency transient resonance
captures of the dynamics. Finally, we present a strong argument for energy harvesting robustness of this system by investigation
of optimal circuit and electromechanical coupling parameters, and studying the sensitivity of energy harvesting effectiveness to
parameter variations.

The following analysis is restricted to excitations of the linear (primary) system to represent vibrations in physical bodies
in nature, e.g. bridges or buildings. While these physical bodies are truly nonlinear in nature, they are predominantly linear
systems, or can be linearized. Strongly nonlinear primary systems are not considered in this work because these physical
systems are not the targeted application for this type of energy harvester.



3216 K. Remick et al. / Journal of Sound and Vibration 333 (2014) 3214-3235

Fig. 1. Model of the nonlinear energy harvesting system (electric circuit shown only for half of the piezoelastic cable).
2. Modeling and measures of harvesting efficiency

We consider an energy harvesting system composed of a linear damped oscillator (denoted as the ‘primary system’)
attached to a secondary lightweight mass (denoted as the ‘harvester’) through a piezoelastic cable (cf. Fig. 1). The cable is
modeled as a piezoelectric element in series with a linear spring (modeling the linear elasticity of the cable), with the
resulting combination in parallel with a linear viscous damper (modeling the dissipative forces in the cable). As a result,
the transmitted forces across the linear spring and piezoelectric element of the cable are equal, and denoted by F;, and the
force exerted by the linear viscous damper is symbolized by F,. Denoting by z; and z, the axial displacements across the
linear spring and the piezoelectric element, respectively, the force F; is expressed as

F5=k121 =k222— (d(lk%kg))(l (1)
where k; and k;, denote the axial stiffness of the spring and piezoelastic elements of the cable, respectively; d and ks3 are
piezoelectric coupling and electromechanical coupling parameters of the piezoelastic element, respectively, and are related
to the constitutive law governing the elastic deformation and the generated charge; Q describes the electric charge in the
piezoelectric element. The total force across the piezoelastic cable can be expressed in terms of z=z; +z (the total stretch of
the half-span of the cable) as

Fs = (ka)z—(rko)Q (2)
where k, = [k 1+(1—k33)k2’ 11=1. Note that this represents a device-level constitutive law for the piezoelastic cable

element. In terms of the piezoelectric material constants, the coupling parameter r represents the device-level piezoelectric
voltage constant, expressed as

. d
T el(A)D

where €' is a scalar parameter defining the permittivity material property, A denotes the cross section and I the unstretched
length of the piezoelastic element (in this work it is assumed that [ = h, where h is the half-length of the piezoelastic cable).
Therefore the total axial force generated in the cable is

F=Fs+F;=(kq)z—(rks)Q + bz 3)

We note that even through the piezoelastic cable connecting the primary system with the harvester is assumed to obey a
linear constitutive law (see Eq. (3)), its transverse deflection is expected to generate strongly nonlinear dynamics due to
geometric/kinematic effects. Indeed, in terms of the relative displacement w of the harvester with respect to the primary
system in the direction of the motion, the stretch in the cable and its time derivative are expressed by the strongly nonlinear
relationships

. ww
z=\W2+h’ -l = z= ——
vw?+h
leading to the nonlinear equations of motion governing the oscillations of the primary system and the harvester

. . ww 5 2w
kpy — |bg —— +ka( VW2 +h"—1) —(rk ——_=F
Mpy +bpy + kpy { C2 2 + <a( W+ ) (“a)Q} Vil (®)

- ww 5 2w
m W)+ |bg——— +k w2+ h*—1) —(rk — =0 4
o+ )+{QW2+h2+ a<\/ + ) ( a)Q}\/m (4)
Here, y denotes the absolute displacement of the primary system, m, and m, the mass of the primary system and the
harvester, k, and b, the stiffness and damping coefficients of the primary system, and F(t) the external load applied to the
primary system in the direction of the motion with the system being initially at rest.
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To complete this set of equations we need to consider the electrical constitutive equation for the piezoelectric element,
which can be written as

V=(1/0Q—(rks)z

where C denotes capacitance, or in terms of w:

V=(1/C)Q—(Tka)<\/w2+h2—l>

Finally, assuming that the voltage across the piezoelectric element is harvested through a resistive load with resistance R,
we can relate the harvested voltage to the rate of change of the charge by V =RQ, and derive the final set of equations of
motion describing the dynamics of the nonlinear harvesting device as

. . ww 2 2w
kpy — ko VW24+h*—1) - = _—F
Mpy -+ bpy -+ kpy |:ba werre <a< w2 +h I) (Tka)Q:| il (

R ww 2 12 1) 2w _
ma(y+w)+ |:baiwz+h2 +ka<\/w +h l) (rka)Q} 7\/\}7@7 =

RQ+(1/C)Q—(rka)<\/w2+h2—1> =0 (5)

We emphasize again that although all constitutive relations for the various elements of the system were assumed to be linear,
the resulting equations of motion are strongly nonlinear due to geometric and kinematic effects. As shown in previous works
[15,19,24], these types of strong nonlinearities can lead to interesting dynamic instabilities, which, as shown below can be utilized
constructively for energy harvesting.

The principal aim of our study is to show that high-frequency dynamic instabilities in the response of system (5) generated by
the strong nonlinearities can provide an effective mechanism for vibration energy harvesting. A preliminary nonlinear dynamic
analysis performed in [24] has theoretically and experimentally demonstrated the efficacy of introducing sustained high-
frequency dynamic instability in the same system but with the electric circuit (the harvester) removed, under single or sustained
impulsive excitation. As shown in that work, under specific impulse excitations of the primary system the transient damped
dynamics of the system tracks a high-frequency IOM in the frequency-energy plane. Dynamic instabilities arise at bifurcation
points along damped transitions in the neighborhood of the IOM, causing bursts in the response of the lightweight attachment
(the harvester) which resemble self-excited resonances. Moreover, for appropriate parameter designs the system remains in a
state of sustained high-frequency dynamic instability under the action of repeated impulses. In turn, this sustained instability
results in strong energy transfers from the directly excited primary system to the harvester, a feature that we intend to exploit in
our energy harvesting application, with the addition of an electric circuit to the harvester.

As a first step in our study of the dynamics of the electromechanical harvesting system (5) we introduce non-
dimensionalized variables and parameters by scaling the time variable as t = ¢z, the displacements as w = ¢yx, y =cyu, and
the charge as Q = cpq, with the normalization coefficients defined by

e =(my/ k)2, ¢y =h(maky/mpka)'/?,  cq = (hmg/2)(C/kqa)'/?

Then the equations of motion are non-dimensionalized, and the nonlinear terms are expanded in Taylor series about
x =0, keeping terms only up to third order. This yields the set of simplified normalized equations given by

R4 2%+ X — p[Cuil+ (o +u?)— pqlu = f(z)
X+il+[Cull+(c+u?)—pqlu=0

P4+q—plo+u*)=0 (6)
where f(z) = F(t(z)), () =d/dz, and the non-dimensional parameters are defined as

A=bykymp) V2, p=mg/mp, ¢ =2(ba/ka)(ky/mp)?,

o = 2(mpka/maky)(1—1/h),  p=r(Cka)'?, p=RC(ky/my)'?

Within these strongly nonlinear nondimensional equations of motion, the parameter u represents the mass ratio
between the harvester and the primary system, and 1 the mechanical damping in the primary system. The mechanical
damping in the harvester is given by u¢, and the (nondimensional) linear component of the restoring force in the harvester
is uo. For example, if the elastic component of the coupling piezoelastic cable is unstretched in the equilibrium configuration
so that u=0, then ¢=0. Finally, g characterizes the piezoelectric coupling between the mechanical and electrical
components of the system, and p is the equivalent circuit of the electrical load. We aim to study the efficacy of using this
nonlinear harvesting device under single and repetitive impulsive excitations of the primary system. To this end, we define
certain energy measures.
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Two different excitation scenarios will be considered in this work. In the first, the harvesting system (6) is initially at rest
at r=0—, and a single impulse f(r) = p5(z) is applied to the primary system at = 0+. Hence, the equations of motion (6)
are complemented by the initial conditions:

x0+)=0, xO0+)=Ilp, u@+)=0, uO0+)=—Ip, qO+)=0 (7)

Recall that i(t) corresponds to the normalized relative velocity between the two oscillators; therefore, the relative
velocity initial condition must be defined as above so that the initial velocity of the harvester is zero.

In the second excitation scenario the primary system is excited by a periodic series of identical impulses; i.e., by a pulse
train. For the first impulse at z = 0—, we assume again that the system is at rest, so immediately after the application of the
first impulse the initial conditions of system (6) are given by (7). Following the first impulse we define the impulsive period
ur as the time between consecutive impulses, and the normalized impulsive period as the multiple n of the fundamental
period Ty = 27 of the linear oscillator between consecutive impulses, n =y /Ty. For example, a normalized impulsive period
of 5 would define a periodic pulse train, with the intensity of the impulse being equal to I, and applied to the primary
system every 5 fundamental periods. In mathematical form the pulse train is defined as f(z; ur) = X§ _ jlo6(z — kuy), where
N denotes the total number of applied impulses after the first in the given excitation event. In this scheme, the pth impulse
applied to the linear oscillator at z = pur+, p > 1, corresponds to the following initial conditions for system (6) immediately
after the application of the pth impulse:

X(0+)=0, x0+)=Ilp, u@+)=0, uO0+)=—Ip, qO+)=0
X(pur+) =X(Pur—),  X(Pur+) = X(Pur —)+lo,
u(pur+) =u(pur—), Wpur+)=upur—)—Io,

qpur+)=qppur—), p=1,..,N (8)

It follows that the initial state of the system will differ at each consecutive impulse, depending on the remaining
vibration energy in the two coupled oscillators at the time of application of the pth impulse.

We now develop energy harvesting measures to quantify the efficiency of system (6) in later sections. Starting from the
first excitation scenario corresponding to initial conditions (7), the total normalized energy in the system at an arbitrary
time 7 can be expressed as

Primary Harvester
o2 2 2 232
X +Xx .oou +u
E(zlo)= |“5 7 | +4 (x+%+% ~ %q(wuz)} +  [47) (9)
e

i Electrical ener:
Mechanical energy Coupling energy gy

where the implicit dependence of the normalized energy on the impulse intensity Iy was noted as a parameter in (9). The
nondimensional power harvested through the resistive load is then given by

Pu(z:lo) = 57 @) (10)

Using (10), the normalized energy harvested by the system in the normalized time interval [z,z+T] is computed by

1 +T
M Tilo) = s / Po(u: To)du (11)

which represents the energy harvested in the resistive load over an interval of time T, normalized by the total energy in the
system at time z. Again, the implicit dependence of the normalized harvesting measure (11) on the impulse intensity I, was
noted. This is the basic energy harvesting measure that will be used in Section 4 to study the efficiency of system (6) under a
single impulse excitation.

Considering now the second excitation scenario for initial conditions (8), we need to generalize measure (11), and
develop harvesting measures suitably adapted to the physics of the problem of repetitive applied impulses. To this end, we
first define a time-averaged energy harvested measure

1

My=-—
Ttotal

Trotal 1 Trotal
|7 pwiode= o [ @ w: (12)
0 Ttotal 0 2
where Ty, denotes the total time interval of the time series considered. Hence, M represents the average rate of energy
harvested per unit of normalized time. A second energy harvested measure is the impulse-averaged harvested energy, or the
average energy harvested per impulse, defined as

Nimpulses

Trotal Nimpulsest
My= s [ pwlode= o [ R @R e (13)
Jo Nimpulses JO 2



K. Remick et al. / Journal of Sound and Vibration 333 (2014) 3214-3235 3219

where Nimpuises denotes the number of impulses with the inter-arrival period u; taken into account. Finally, we define a third
measure, namely the impulse-averaged canonical energy harvested, by
1 Nimpulses

M = — > Ms(),
impulses i=0

2Eharv, i

Ms() = — o2 2 ; 2
@+2)|  u[ P+ /D2 | o)+ /2l +)?]
lur + + ur +

(14)

ur
where Ep,., ; is the energy harvested in the time period iur <7< (i+1)ur, i.e., in the cycle of the harvester response
following the application of the ith impulse. Hence, M3, represents the mean value of the total energy harvested over the
total impulsive energy applied to the system. Equivalently, if M5(i) indicates the ratio of energy harvested in the cycle
following the application of the ith impulse, the measure M3 defines the mean value of Ms(i) for 0 <i < Nimpuises- These
measures will be utilized in the study of energy harvesting of system (6) under repeated impulses, performed in Section 5.

As mentioned previously, our principal aim is to show that effective energy harvesting can be achieved by inducing sustained
high-frequency dynamic instability of the lightweight harvester under single or repetitive impulsive excitation. To demonstrate the
dynamic mechanism governing this instability, it is necessary to briefly consider the underlying Hamiltonian dynamics of system
(6), and discuss the realization of a countable infinity of high-frequency transient resonance captures (TRCs). It is through the
excitation of such high-frequency TRCs that conditions for effective nonlinear energy harvesting are realized.

3. Underlying Hamiltonian dynamics

We consider the underlying Hamiltonian system derived from the normalized equation (6) by setting 1 =¢=p=p=f(r)=0;
i.e., by removing the damping, electrical and forcing terms, and by depicting its dynamics in a frequency energy plot — FEP [22,24].
This plot depicts branches of periodic and quasi-periodic orbits of the underlying Hamiltonian system at varying energy levels.
When weak damping (or any other non-conservative term) is added to the equations of motion, transitions between different
branches of the FEP can be realized by computing the wavelet transform spectra of the corresponding transient responses and
superimposing the spectra on the Hamiltonian FEP. Such representations are based on the concept that the weakly non-
conservative dynamic transitions are mainly influenced by the underlying Hamiltonian dynamics, with the non-conservative effects
affecting transitions between branches in the FEP. This concept has been tested extensively in [22] and other works
(e.g., [24]).

An example of an FEP for the underlying Hamiltonian system is depicted in Fig. 2 for parameters x=0.10 and ¢ =0.
Backbone branches denoted by S11 + correspond to in-phase and out-of-phase periodic orbits in 1:1 resonance, respectively,
i.e., periodic orbits where the primary system and the harvester oscillated at the same fundamental frequency. Subharmonic
tongues, such as S13 and S15 in Fig. 2, correspond to subharmonic 1:3 and 1:5 resonances, respectively, between the primary

/10 Manifold
Backbone curves :

Frequency (rad/sec)
P
T

S11-

Subharmonic

05 tongues E

10
Energy

Fig. 2. Typical frequency-energy plot of the underlying Hamiltonian system (6).
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system and the harvester; subharmonic orbits with frequencies below the normalized fundamental frequency of unity (such
as the ones shown in Fig. 2) correspond to slower oscillations of the harvester with respect to the primary system, whereas
subharmonic orbits with frequencies above unity (not presented in the FEP of Fig. 2) correspond to faster oscillations of the
harvester with respect to the primary system. A countable infinity of subharmonic orbits can be realized in the Hamiltonian
system, occurring in in-phase/out-of-phase pairs [22].

The third class of orbits in the FEP is composed of orbits on the IOM (cf. Fig. 2). There are a countable infinity of periodic and an
uncountable infinity of quasi-periodic impulsive orbits of the Hamiltonian system corresponding to initial impulsive excitation of
the primary system with all other initial conditions being equal to zero; ie., X(0+)=1Ip, W(0+)= —Iy, x(0+)=u(0+)=0.
As shown in [19,22] orbits of the weakly non-conservative system in the neighborhood of the IOM result in strong energy transfers
from the primary system to the strongly nonlinear attachment, so it is expected that these will be beneficial towards the goal of
effective energy harvesting. As shown in [24], dynamic instabilities arise at bifurcation points along damped transitions in the
neighborhood of the high-frequency part of the IOM, causing ‘transient bursts’ (instabilities) in the response of the harvester
resembling self-excited resonances [25,26]. As shown in the next section, it is through the excitation of high-frequency subha-
rmonic tongues close to the high-frequency portion of the IOM that leads to effective, strong energy harvesting. This discussion
highlights the importance of the Hamiltonian FEP in our nonlinear energy harvesting approach.

In the next section we will study damped transitions in the neighborhood of the high-frequency section of the
Hamiltonian FEP of (6) under single and repetitive impulsive excitation of the primary system, and show that these high-
frequency transitions can lead to effective energy harvesting through sustained dynamic instabilities of the harvester
response. We will perform this task by performing numerical simulations of Eq. (6) under single and repetitive impulse
excitations, and then studying the resulting frequency transitions by wavelet analysis and superposition of wavelet spectra
on the Hamiltonian FEP. Because the single impulse input scenario will be the basis for optimizing the electromechanical
properties of (6) for effective energy harvesting, we will study it first, before considering repetitive impulsive inputs.

4. Energy harvesting under single impulse excitation

We initiate our computational study of the damped dynamics of the normalized system (6) by considering a single impulse
input to the LO and studying the resulting damped transitions by performing wavelet analysis and superimposing the derived
wavelet spectra on the Hamiltonian FEP; as discussed in earlier works [22,24], this type of wavelet superposition, although
purely phenomenological, can provide a valuable interpretation of the nonlinear transitions as the damped nonlinear response
‘tracks’ different branches of the underlying Hamiltonian system. The numerical simulations presented in this section are carried
out for fixed system parameters = 0.1, 1=0.01, {=0.001, o= 0. As discussed in the previous section, weak damping should
be considered in the mechanical system to ensure that the desired high-frequency damped transitions can be obtained when the
electromechanical and circuit parameters, 3, p, respectively, are incorporated into the system. As in [8-10], proper tuning of the
circuit parameters is desired to optimize energy harvesting efficiency.

The energy harvesting efficiency measure (11) was considered to obtain an optimal set of harvester parameters 3, p in this
case. This was performed numerically by defining appropriate parameter ranges, g =[0.01—1.0] with step Ag=0.01, and
p=1[0.01-2.0] with step Ap = 0.01. For each specific parameter pair (5, p) the model (6) was numerically integrated with initial
conditions (7) for a given time period u; and for varying impulse intensity Io. The energy harvesting efficiency measure (11) was
then computed by post-processing the resulting time series, depicted in a contour plot with every combination of s and p in the
aforementioned parameter ranges.

In Fig. 3 we depict contour plots of the normalized harvested energy measure M(z,ur;lp) as a function of the system
parameters p and g for a fixed simulation period equal to u; =477 normalized time units and varying impulse intensity Io.
As deduced from these plots, the parameter pairs (3, p) corresponding to optimal harvested energy are dependent upon the
excitation amplitude, or energy level, that the system experiences. This is to be expected since this nonlinear harvester design
should depend strongly on the energy level of the dynamics. Indeed, a general feature of these results is that for lower impulse
intensities (cf. Fig. 3a,b) the system shows weak to moderate energy harvesting capacity, as evidenced by the complete absence
(Fig. 3a), or narrow band (Fig. 3b), of parameter ranges corresponding to strong energy harvesting. On the contrary, for higher
impulse intensities (cf. Fig. 3c,d) we note the formation of ‘plateaus’ of strong energy harvesting, indicating robustness of
harvesting for small parameter variations within these plateaus. We conclude that the contour plots of Fig. 3 can be utilized to
examine the robustness of the nonlinear energy harvesting system.

Considering the results in more detail, the contour plot of Fig. 3a indicates that for this low impulse intensity there
exist several narrow bands of parameter pairs for which the energy harvesting efficiency reaches at most 50 percent.
By increasing the impulse intensity we obtain the contour plot of Fig. 3b for which we note that a narrow band of maximum
efficiency of nearly 70 percent can be achieved. By further increasing the impulsive intensity we note from the plots of
Fig. 3¢ and d that relatively broad plateaus of strong harvesting efficiency as high as 90 percent can be achieved at the
respective energy levels. Clearly, the formation of such plateaus of strong energy harvesting provides an important freedom
for designing the electrical parameters of the harvester, since small variations or uncertainties in these parameters do not
appear to significantly reduce the harvesting capacity. An important remark, however, is that these findings depend on
the normalized time parameter ur; i.e., on the normalized time interval of computation of the normalized harvesting
measure (11). Indeed, if this parameter is small it can negatively affect the energy harvesting measure, so a study of the
dependence of the normalized measure M(z, ur;Ip) on ur should also be undertaken.
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Fig. 3. Energy harvesting measure M(z,47.7;1p) as a function of harvesting parameters p and g for normalized impulse intensity: (a) Io=0.5, (b) Ip=0.6,
(c) Iy=1.0 and (d) Iy =2.0.

We now study the dynamics governing the regimes of strong energy harvesting by relating the results of Fig. 3 to specific
nonlinear dynamic transitions in the frequency-energy plot (FEP). As mentioned previously, superposition of wavelet
spectra on the FEP of the underlying Hamiltonian system can provide valuable insight into the nonlinear dissipative
dynamics. First, we consider the nonlinear dynamic response of the harvesting system (6) for a single impulse of normalized
intensity Ip = 0.5 and harvesting parameters g = 0.84 and p = 1.7. These parameters correspond to a peak in the contour plot
of Fig. 3a; this, however, is one of weak harvesting performance of the system as described above. In Fig. 4 we depict selected
transient responses of this system, together with their wavelet spectra. Considering the wavelet spectrum of the relative
displacement of the harvester with respect to the primary system depicted in Fig. 4c, and its superposition on the FEP of the
underlying Hamiltonian system, we note interesting resonance captures in the damped dynamics.

Initially, there is a brief 1:1 transient resonance capture (TRC) of the damped dynamics in the vicinity of the S11 — out-of-
phase backbone branch of the Hamiltonian FEP, followed by escape from this TRC (due to diminishing energy) and a brief
engagement in a low-frequency 1:2 TRC. Then, there is another sustained (i.e., prolonged) low-frequency 1:3 TRC, where the
harvester oscillates with a frequency that is one third of the frequency of the primary system. The dynamics then remains
captured in this lower frequency S13 subharmonic tongue until the remainder of the energy of the system is either
harvested out of the primary system or is dissipated by viscous damping. This type of low-frequency damped transition
resulting in low-frequency dynamical instability associated with 1:3 TRC is typical of transitions reported in purely
mechanical systems of previous works [19,22], and does not lead to effective energy harvesting. Clearly, in this case the
initial impulsive energy into the system is too low to allow excitations of high-frequency transient dynamic instabilities due
to TRCs at high-frequency subharmonic tongues (where the harvester oscillates faster than the primary system). As shown
below, it is precisely the excitation of such high-frequency TRCs that facilitates strong energy harvesting in system (6).
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underlying Hamiltonian system.

Similar dynamics occur at the peaks of energy harvesting of the contour plot of Fig. 3b corresponding to impulse
intensity Ip = 0.6. At this energy level the dynamics exhibits more prolonged 1:1 TRC on the S11— backbone before
transitioning once again to a S13 subharmonic TRC with decreasing energy; hence, there is a marginal enhancement of
energy harvesting efficiency since this is associated with low-frequency dynamics of the harvester.

A different picture of the transient dynamics is realized; however, at the strong energy harvesting peaks of the contour plots
of Fig. 3¢, corresponding to higher impulse intensities. This is deduced by considering the response of system (6) for a single
impulse of intensity Ip =1.0 and #=0.84, p=1.0, depicted in Fig. 5; these parameters correspond to the highest energy
harvesting efficiency region, indicated by the plateau in Fig. 3c. Indeed, the increase in input energy results in qualitatively
different transient dynamics, since now the transient response of the harvester takes place in the neighborhood of high-
frequency subharmonic tongues in the vicinity of the upper branch portion of the IOM. This is concluded by noting the dominant
high-frequency harmonics in the initial, highly energetic phase of the relative response of Fig. 5a and the corresponding wavelet
spectrum of Fig. 5c. As mentioned earlier, oscillations above the normalized natural frequency of unity correspond to motions
where the harvester oscillates faster than the primary system, a feature which is greatly beneficial to energy harvesting. After
these initial high-frequency transients the dynamics makes a transition to the lower-frequency S11+ in-phase backbone until
the remainder of the input energy is either harvested or passively dissipated. An important feature here concerns the rate at
which the energy is harvested out of the primary system, which, as seen in Fig. 5b, is high, as the impulsive energy is quickly
transferred to the harvester and quickly harvested by the piezoelectric element. Indeed, as seen in Fig. 5a, most of the impulsive
energy input into the system is harvested within the first ~50 normalized time units, resulting in nearly 90 percent energy
harvesting efficiency as defined by measure (11). We note that the high-frequency nonlinear instability occurring in this case is
due to the high-energy TRCs realized in the initial highly energetic phase of the transient response, which, in turn, are caused by
the (intentional) strong geometric nonlinearity of the harvesting system [22].

The response of the system for an impulse of intensity Iy = 2.0 and for g and p in the highest efficiency region (plateau) of
Fig. 3d exhibits similar high-frequency instabilities and transitions. This indicates that strong energy harvesting of the
system of Fig. 1 is associated with excitation of high-frequency and high-energy dynamic instabilities in the lightweight
harvesting element, caused by high-frequency TRCs in subharmonic tongues in the vicinity of the upper portion of the [IOM
of the underlying Hamiltonian system. As such, this result is similar to that reported in [24], for a purely mechanical system
of strongly nonlinear coupled oscillators. Based on the results reported in this section, we conclude that strong energy
harvesting under a single impulse excitation leads to rapid decay to the trivial equilibrium state of the directly excited
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between primary system and harvester; (b) displacement of the primary system; and (d) wavelet spectrum of (a) superimposed on the FEP of the
underlying Hamiltonian system.

primary system, a result that has interesting implications when one considers the extension of this study to the case of
repeated impulses. Indeed, based on the previous results one can surmise that an energy harvesting system can be
appropriately designed so that between impulses, the primary system returns to trivial equilibrium; in that case the strong
energy harvesting efficiency (the plateaus) observed in Fig. 3c, d should be maintained under repetitive, time-periodic
impulses as well. This issue is explored in detail in the next section.

5. Energy harvesting under time-periodic impulse excitation

We now consider energy harvesting in system (6) under a time-periodic pulse train (i.e., the second excitation scenario). Based
on the results of the previous section, the highest energy harvesting efficiency achieved in this system under single impulse
excitation was for system parameters y =0.1, 1=0.01, ¢{=0.001, ¢ =0, x= 1.0, and impulse intensity Iy = 1.0 (corresponding
to the contour plots of Fig. 3c); accordingly, we select these system parameters for our study. In addition, we select electrical para-
meters of the harvester as = 0.84 and p = 1.0 since these correspond to the point of optimal energy harvesting efficiency at the
plateau of Fig. 3c; the resulting response of the system under single impulse excitation is then depicted in Fig. 5. Finally, the im-
posed initial conditions after each impulse are given by (8) with the pulse inter-arrival time i and pulse intensity Iy assumed to be
fixed and considered as parameters of the problem. Our aim will be to examine the energy harvesting efficiency of the system (6)
(in terms of the harvesting measures developed previously) for different values of x; and Iy.

Before considering the strongly nonlinear harvesting system (6), however, it will be instructive to first examine a
simplified single-degree-of-freedom (sdof) linear damped oscillator excited by a periodic train of repeated impulses. The
simple form of this system will allow us to derive analytical expressions for the energy harvesting measures which will be
used later to interpret the direct numerical simulations of the nonlinear system (6). Following this preliminary digression
we will proceed to direct numerical simulations of the considered electromechanical system using the optimized system
parameters derived from the single impulse excitation (as described above). We will examine the dynamics in the temporal,
energy-frequency, and time-frequency domains, and attempt an interpretation of the resulting nonlinear dynamics in
terms of the analytical results derived for the linear system studied in our preliminary digression.
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To this end, we consider the linear sdof damped oscillator under a periodic impulse excitation, given by
X+20oxk+a’x =10 _ g5 8(t—iur), X(0—)=%0-)=0 (15)

where ¢ and e are the critical viscous damping ratio and natural frequency, respectively. We note that the ‘viscous damper’
in (15) denotes the effective dissipation introduced in the linear dynamics of the primary system due to energy harvested by
the harvesting element. Hence, the dissipative element in the simplified system (15) can be construed as an ‘effective
viscous damper’ modeling the energy harvesting process. In addition we assume that (15) is a weakly underdamped system
(¢<1), so that the time scale of the amplitude decay of (15) is larger than the natural period of the system, T = 2z/w, and a
slow-fast partition of the damped dynamics is realized. This is a reasonable assumption for the considered problem, based
on the results for the single impulse excitation analysis of the previous section (i.e., we do not anticipate the slow-fast
partition of the dynamics of the primary system to be violated in this second excitation scenario).

Our analysis will be based on simple energy balance arguments, and the fact that between applied impulses the system
performs free oscillations. Based on the underdamped assumption these free oscillations after the application of the ith
impulse can be expressed as

x=/Ef e %" sin (\/1—52mt+6¢i>, X~ (an/E,-+e’§“’[> cos (\/1—4’20)1“4-5(/),-) (16)

where we denote by E;" the total energy of the system immediately after the application of the ith impulse, and by s¢; the
resulting phase change. From the above it is straightforward to conclude that just before the application of the next impulse
the total energy of the system is

Ej,, =Ej"e=2omr (17)

Note that in this idealized linear framework the energy harvested after the ith impulse (defined as the energy dissipated
by the ‘effective viscous damper’ of the oscillator) is expressed as

Ey=E; (1 —e2rm) (18)
Moreover, immediately after the application of the (i+1)th impulse it holds that

Xl::—'l = ( Ei_+1/(”> sin |:\/ ]—CZ{J)(I+1)/JT+($(/J,:|
X1~ \/Ej;, cos {\/17§2w(i+1);41+§(pi] +1Ip (19)
Therefore, we can express the total energy of the system immediately after the application of the (i+1)th impulse as

2
Eitl:(Eill/z){sin2(1/1Czﬂ’(i+1)l4T+5(/’i>+ cos ((\/],CZw(i+l)yT+5¢i>+(10/ E,:J)} } (20)

Due to the complexity of the above equation we will proceed by restricting our study to specific values of the inter-arrival
times ur =nz/v/1—{?w, n=1,2,.., in which case (20) takes the form

E; .
Ely="4" {smz(&pin

2
Ip 5
cos (Nz+6¢;) + ——— , M =n7r/\/]—{ w, n=1,2,.. (21)
1 \/Ei+1] } !

where 6¢; denotes the phase difference between the applied impulse and the harvester response. Moreover, we will further
restrict our analysis to the case where either the impulse intensity satisfies the condition Ip>,/E; ;, in which case the
energy immediately after the impulse E;*_; is almost purely kinetic, so é¢; ~ x; or to the condition Ip<./E;_ ;, in which case

the phase difference 6¢; is negligible, 5¢; ~ 0. In both cases the following approximation holds:

2
E ., Iy - =
E;lm%{(—l)u\/ﬁ], /4—,-:”7[/\/1—{20), n=1,2,..., Io>\/E, orlo<\/Ei; (22)

Combining this equation with (17) we finally obtain

+
Ei+1

ﬂT=nn/\/1f¢2m, n=1,2,..., lo»/Er,orlp<\/Ei, (23)

2
%%[(_1)%-@/“-42)"” E/f +10} ,
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Relation (23) defines a one-dimensional nonlinear map, and assuming that it has a stable period-1 fixed point
(corresponding to stable steady-state energy harvesting), this can be computed as

2
Et ~ % [(—1)”(3*(4/‘/1*¢2)’1”\/EJr +Io} . U= nn/\/l—gzw, n=1,2,... (Steady state) (24)

where E* denotes the total energy of the system at steady state, immediately after the application of an impulse. Solving the
above algebraic equation for E* we obtain two solutions, of which only one is physically meaningful

—1)le-€/V/1-nx
VE' ~ */j;( ]222 — I, pr= nﬂ/\/l—ézw, n=1,2,... (Steady state) (25)
_e_ A/ - T

Based on this analytical approximation the energy harvested per impulse at steady state can be estimated through
Eq. (15) to be

2
_ 1\'gn
Ey~ I [M} (1—-a*™), ur= nn/\/ 1-w, n=1,2,.. (Steady state) (26)

2—q%n

where a=e~¢/V1-nr < 1,

In Fig. 6 we depict the previous analytical approximation of the total energy of the system after the application of an impulse of
intensity Ip = 1.0 (without any loss of generality) as a function of increasing inter-arrival time u; for n =1, 2, .... We observe that
for sufficiently large inter-arrival times ur, i.e., for sufficiently large n, the total energy of the system before the impulse reaches
approximately a zero level. This agrees with physical intuition, since if the inter-arrival time between impulses is sufficiently large,
there is adequate time to harvest nearly all of the available mechanical energy, so an instant before the next impulse is applied
the total energy of the system is nearly zero. This is a very robust regime of energy harvesting, and it clearly represents a state of
the dynamics where no differentiation of the state of the system between applied impulses exists.

For smaller inter-arrival times, however, we observe a highly oscillatory pattern between even and odd values of n. This is the
case where the system continues to carry residual (unharvested) energy at the time instant of application of the next impulse.
Moreover, the highly oscillatory behavior of the total energy for smaller values of n is a direct consequence of the fact that
the discrete values of inter-arrival time were chosen so that the impulse was either in-phase or out-of-phase with respect to
the response of the harvester. This highlights the extreme sensitivity of the energy harvesting to the relative phase of the
oscillation between the harvester and the applied impulse in the regime of short to moderate inter-arrival times y. Indeed, when
n is even (in-phase case) we have the phenomenon of discrete-resonance where the impulsive energy is applied at the precise
instant when the harvester can import all of it, or equivalently, this is the case where the work produced by the external impulse is
maximum. On the other hand when n is odd the velocity of the mass and the applied impulse are completely out-of-phase, so the
energy imported to the system is minimal. These two cases form the two extremes that bound the performance of the energy
harvester. For inter-arrival times in between the considered discrete values (i.e., when n is small and non-integer) the dynamics is
more complex and another approach based on stochastic analysis, is required, in order to relate the energy harvesting capacity of
the system to the relative phase between the applied impulse and the harvester response. These results, along with the analysis of
the energy harvesting optimization and robustness to small uncertainties in either the inter-arrival times or the impulse
intensities, will be considered in detail in a future work. This ends the digression with the linear harvester (15), which highlighted
some simple but important aspects related to the dynamics of energy harvesting under impulse excitation. This dynamics is
expected to apply to the case of the nonlinear harvester (12) which we now proceed to examine.
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Fig. 6. Analytical approximation of the total energy before the application of the impulse at steady state for system (12) for Ip =1.0: (a) a=0.7 and
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The parameters for the system were selected based on the optimal values derived for the single impulse excitation as
discussed in the beginning of this section. First, we examine the energy harvesting measures (12)-(14) defined in Section 2
for this specific system. In Figs. 7-9 we depict the measures M;, M, and M3 as functions of the inter-arrival time x; for two
different impulse intensities; these results were derived by direct numerical simulations of Eq. (6) with initial conditions (8).
We note that consistent with the linear analysis presented previously, there exists a ‘phase-dependent’ regime of the
dynamics realized for sufficiently small inter-arrival times, where depending on the relative phase between the primary
system and the applied impulse maximal or minimal absorption (‘pumping’) of energy in the harvesting system can be
realized. Clearly, this feature is independent of the nonlinear nature of the harvester and can be predicted using simple
power absorption arguments similar to the ones used in the digression above.

However, as the inter-arrival time decreases fluctuations in the energy harvesting performance gradually decrease to where
they are completely eliminated. Hence, there exists a critical value of the inter-arrival time x; above which the entire mechanical
energy in the primary system following the application of an impulse is nearly dissipated or harvested before the next impulse is
applied, similar to the linear harvester discussed in the digression. In that case the impulse-averaged harvested energy measure
M, reaches a constant asymptotic value which corresponds to the total energy in the system immediately after the application of
each impulse after subtracting the energy dissipated per cycle due to viscous damping. In addition, for longer inter-arrival times
the efficiency of the energy harvesting gradually decreases (e.g., consider measure M), since the impulses arrive infrequently and
the primary system nearly reaches the trivial equilibrium between applied impulses.

Consider the third measure M3, which provides the average ratio of harvested energy normalized by the energy induced
in the system (and hence, available for harvesting) immediately after the application of each impulse. It turns out that this
‘utility’ average measure reaches its maximum value when the inter-arrival time is sufficiently large so that most of the
system energy has been dissipated before the next impulse is applied. This result combined with the conclusions made from
measure M; defines as a combined optimum (for all three energy harvesting measures) an inter-arrival time that is
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Fig. 10. Case of efficient nonlinear energy harvesting for Iy = 1.0 and 7 = 30: (a) relative response between primary system and harvester; (b) response of
the primary system; and (c) wavelet spectrum of (a). The dashed line indicates the normalized natural frequency of the primary system.
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comparable with the time required for the system to almost completely harvest or dissipate the energy it acquires after an
applied impulse.

To analyze the dynamics of the harvester in more detail we select a response from the robust regime of energy harvesting for
the case Ip = 1.0 corresponding to inter-arrival time ur = 30. The relative response between the primary system and the
harvester is depicted in Fig. 10, the response of the impulsively excited primary system in Fig. 10b, and the wavelet spectrum of
the relative response time series in Fig. 10c. Clearly, we deduce that during each cycle of impulsive excitation the induced energy
is rapidly and effectively harvested, so by the time of application of the next impulse the system reaches the near-trivial
equilibrium state. As a result, the dynamics of system (6) is nearly periodic, starting from the first cycle; i.e., no transition to the
steady state of efficient energy harvesting exists and the system reaches a state of efficient harvesting immediately following the
application of the first impulse at = 0+. As noted from the wavelet spectrum of Fig. 10c the governing dynamic mechanism
leading to efficient energy harvesting is a high-frequency dynamic instability in the harvester response due to the excitation of a
high-frequency subharmonic TRC, as discussed in Section 4. Contrary to the single-impulse excitation, however, this series of
dynamic instabilities is sustained due to the appropriate design of the electromechanical parameters of the harvesting system
and the appropriate selection of the inter-arrival time yr.

The dynamic instability of the harvester response is further highlighted in the frequency-energy plot of Fig. 11, where the
wavelet spectrum of the third cycle of the impulsive relative response of Fig. 10a is superimposed on the FEP of the underlying
Hamiltonian system. We notice the high-frequency TRCs occurring in the initial highly energetic phase of the impulsive
response, in the neighborhood of the high-frequency branch of the IOM, which leads to rapid targeted energy transfers from
the primary system to the harvester. That this is indeed the case is confirmed by the rapid decay of the transient response of the
primary system (cf. Fig. 10b) and the simultaneous high-amplitude and high-frequency oscillation (manifested as transient
dynamic instability) of the nonlinear harvester. We note that similar dynamics occurs during each cycle of the relative response
of Fig. 10a, justifying the high efficiency of energy harvesting in this system.

Next, we analyze the dynamic response of the harvester in the phase-dependent regime corresponding to relatively small
inter-arrival times, realized for impulse intensity Iy = 1.0 and inter-arrival time x = 1.19. In this case there is significant residual
energy remaining in the system when a subsequent impulse is applied, so the non-trivial state of the system during the
application of each impulse is expected to significantly influence its energy harvesting capacity. In Fig. 12 we depict the transient
dynamics of the harvester in this phase-dependent case. The first distinctive difference relative to the robust case is the
aperiodic character of the transient response. Moreover, we observe that in contrast to the robust regime in this case the energy
of the vibration is confined mainly in the neighborhood of the natural frequency of the primary system. Although some high-
frequency oscillations are realized, these are weak and the high-frequency dynamic instability that led to strong energy
harvesting in the previous case is now completely missing. These conclusions are confirmed by the FEP of Fig. 13 which depicts
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Fig. 11. Wavelet spectrum of the relative response depicted in Fig. 10a superimposed on the FEP of the underlying Hamiltonian system for the third cycle of
impulsive excitation.
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the wavelet spectrum of the relative response superimposed on the Hamiltonian FEP. As a result in this dynamic regime there is
much lower utilization of the total energy after each impulse, and the energy harvesting efficiency is low as confirmed by
measure M5, which is sub-optimal in this sense (cf. Fig. 9).

We emphasize, however, that even in this phase-dependent regime of energy harvesting the time-averaged energy
harvested measure M; can attain higher values than the previous robust harvesting regime, and to this end further analysis,
based on a stochastic approach is required to analyze the efficiency of energy harvesting. The previous studies revealed the
sensitivity of the efficiency of energy harvesting in system (6) for fixed impulse intensity and varying inter-arrival time. We
now proceed to the study of the harvesting system under periodic pulse train excitation for fixed inter-arrival times and
varying impulse intensity.

The results in terms of the three harvesting measures are shown in Figs. 14-16. The first two measures show an almost
monotonic increase of the energy harvested with respect to impulse intensity for small and large inter-arrival times. More
information is provided by the third measure, which depicts the capacity of the system to harvest the available energy after
the application of an impulse; i.e., the utilization of the available energy after each impulse. In particular, this measure
shows an increasing trend for the smaller impulse intensities, which slowly decreases after reaching a maximum close to
Io =1.0. This tendency is observed for both cases of inter-arrival times considered. As discussed in Section 4, low-intensity
impulses lead to damped dynamic transitions on low-frequency subharmonic tongues, which result in lower energy
harvesting efficiency. However, higher-magnitude impulses (near an optimal value of unity) result in damped transitions in
the neighborhood of the high-frequency IOM, which result in high energy harvesting efficiency. This explains the trends
observed in Figs. 14-16.

In Fig. 17 we present a computational study of the dependences of the three energy harvesting measures on both the
impulse intensity and the inter-arrival time in order to get the complete picture of the effectiveness of the electromechanical
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Fig. 14. Time-averaged harvested energy M, for the nonlinear harvesting system (6) as a function of impulse intensity I, for inter-arrival time (a) g = 10
and (b) uy = 30.

system (6) as the parameters of the applied pulse trains vary. The previous results depicted in Figs. 14-16 thus represent
‘slices’ of the corresponding three-dimensional plots of Fig. 17. Considering the information provided by the harvesting
measure M3 (Fig. 17¢) we deduce that an efficient energy harvesting regime is realized for pulse train parameters Iy ~ 1 and
ur > 4. 0n the other hand, the average energy harvesting measure M; depicted in Fig. 17a indicates that an inter-arrival time
greater than py =5 might be excessive, since in that case the periods between impulses are so large that the energy
harvesting device returns to its trivial equilibrium state before the next impulse is applied. Hence a redundancy occurs with
the device becoming under-utilized. Also, as mentioned previously, the impact-averaged measure M, (cf. Fig. 17b) provides
us with another indication of the effectiveness of energy harvesting in this parameter regime. It follows that parametric
studies such as the ones reported in Fig. 17 enable one to design system (6) for optimal energy harvesting for time-periodic
pulse train excitation of given impulse intensity and inter-arrival time.
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Fig. 16. Impulse-averaged canonical harvested energy measure M3 for the nonlinear harvesting system (6) as a function of impulse intensity I, for inter-
arrival time: (a) yr =10 and (b) 7 = 30.

Despite the usefulness of these results, however, they do not provide any measure of robustness of energy harvesting to
parameter variations in the harvester itself. To this end, it would be desirable to perform such a robustness study by
extending for the case of repetitive impulses the similar study performed in Section 4 where ‘plateaus’ of strong energy
harvesting were noted over variations of the electromechanical parameters 4 and p of the harvester (cf. Fig. 3).

Based on the previous study, for the normalized system parameters considered, we select an optimal impulse intensity of
the pulse train equal to Ip=1 and consider variable inter-arrival times ;. The previous results were derived for
electromechanical parameters of the harvester 4 =0.1, 1=0.01, {=0.001, ¢=0, x=1.0, $=0.84 and p = 1.0, and now
we wish to investigate the robustness of energy harvesting in the optimal regime by varying the parameters  and p (as in
Section 4). In particular, we examine if ‘plateaus’ of highly efficient energy harvesting, indicating robustness, appear in
suitably constructed contour plots, similar to Fig. 3 for the case of single impulse excitation.

To achieve this goal we will consider the dependence of the energy measure M5 (as the main indicator of energy
harvesting efficiency) on the parameters s and p for varying u;, while keeping all other system parameters and the impulse
intensity fixed. We will restrict our attention to the neighborhood of (5,p)=(0.84,1.0), which was considered in the
previous optimization study, and examine the energy harvesting efficiency of system (6) in that neighborhood for two
different inter-arrival times yr =1 and 5.

In Fig. 18 we depict contour plots of M3 as a function of g and p for the first four impulse cycles when p; = 1. Each of these
plots was constructed by evaluating the measure M3 from direct numerical simulations of Eq. (6) subject to the specific
initial conditions (8) at the start of the considered impulsive cycle; alternatively, these plots reveal how the capacity of
energy harvesting depends on the system parameters and the inter-arrival time, as well as the state of the harvester at the
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Fig. 17. Energy harvesting performance as a function of impulse intensity and inter-arrival time: (a) measure My, (b) measure M5, and (c) measure Ms.

beginning of each impulsive cycle. The optimal design point (3, p) = (0.84,1.0) is indicated by a cross in each of these plots.
As seen from Fig. 18, the contour plots change both qualitatively and quantitatively with each applied impulse; however, for
this small inter-arrival time the harvesting efficiency is in general small. This is indicated by the absence of a ‘plateau’ of high
values of the harvesting measure, a result which correlates with our previous results. In conclusion, the results indicate a
consistently low level of energy harvesting irrespective of the choice of parameters # and p, and the process is mainly
dominated by the short inter-arrival time x; as well as the state of the harvester at the beginning of each impulsive cycle.

In Fig. 19 we depict the corresponding contour plots for M3 for the higher inter-arrival time x; = 5, and a completely different
picture of energy harvesting efficiency emerges. In this case, the larger inter-arrival time enables the dynamics to form ‘plateaus’ of
high values of measure M3 right from the first impulsive cycle. Indeed, for each of the leading four cycles depicted, we note the
formation of a plateau of strong energy harvesting in the neighborhood of the optimal point (3,p)=(0.84,1.0), indicating
robustness of the energy harvesting dynamics. As discussed in Section 4, on these plateaus there occur high-frequency TRCs at the
beginning of each cycle, leading to high-frequency dynamic instability of the harvesting element, and, hence, to efficient energy
harvesting. On the contrary, for small inter-arrival times (cf. Fig. 18), low-frequency TRCs are realized in the transient dynamics
between cycles, which are not favorable to the energy harvesting objective. A final note regarding the plots of Figs. 18 and 19 is that
they can be considered as extensions for the repetitive impulse case (second impulse excitation scenario) of the plot of Fig. 3,
constructed for the single impulse case (first impulse excitation scenario). As such, these plots provide an integrated picture of the
effects of parameter changes on energy harvesting capacity as the inter-arrival time changes. Using this methodology the
robustness of the energy harvesting operation can be systematically and thoroughly studied.

6. Concluding remarks

We considered a strongly nonlinear electromechanical energy harvester excited by single or repetitive impulses. The system
consists of a directly excited linear harmonic oscillator (the primary system) coupled to a lightweight attachment (the harvesting
component). Although the system considered is composed of linear mechanical elements, there appear strongly nonlinear (in fact,
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Fig. 18. Contour plots of measure M3 as a function of p and g for impulse intensity Ip = 1.0 and inter-arrival time y; =1 for leading impulsive cycles:
(a) cycle 1, (b) cycle 2, (c) cycle 3, and (d) cycle 4.

nonlinearizable) stiffness effects which, in turn give rise to strongly nonlinear transient resonance captures in the transient
dynamics. Low-frequency TRCs are not favorable to the energy harvesting objective, since they lead to low-frequency oscillations
of the lightweight harvesting element. On the contrary, high-frequency TRCs occurring in the neighborhood of the IOM of the
underlying Hamiltonian system give rise to high-frequency dynamic instability of the harvesting element, which undergoes high-
amplitude, high-frequency damped oscillations in the initial, highly energetic regime of the impulsive response of the system.
These high-frequency instabilities result in strong energy harvesting through the realization of rapid nonlinear targeted energy
transfers from the primary structure to the harvesting element.

We showed that for an appropriate harvester design this type of high-frequency dynamic instability can be sustained under
repetitive impulsive excitations, resulting in sustained high-efficiency nonlinear energy harvesting. The methodologies
developed in this work enable the design of the harvesting system for robust efficiency, which is confirmed by extensive
computational studies presented herein. This task was achieved by developing suitable energy harvesting measures for both
single and repetitive impulse excitations. In addition, low or high values of these harvesting measures were interpreted by
carefully examining the wavelet spectra of the nonlinear transient dynamics of the harvester, superimposed on the frequency-
energy plot of the underlying Hamiltonian system. The aforementioned low- and high-energy TRCs become evident in these
depictions.

Of considerable interest would be to extend the results of this work for the case of pulse train excitations in which both
the impulse intensities and the inter-arrival times between successive impulses vary stochastically. Moreover, it would be of
interest to assess the efficacy of the proposed nonlinear harvesting design applied to excitations of narrower frequency
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Fig. 19. Contour plots of measure M3 as a function of p and g for impulse intensity Ip = 1.0 and inter-arrival time p; =5 for leading impulsive cycles:
(a) cycle 1, (b) cycle 2, (c) cycle 3, and (d) cycle 4.

bands. Current efforts by the authors focus on the experimental verification of the developed theoretical design, with the
results to be presented in future work.
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