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Attractor local dimensionality,
nonlinear energy transfers
and finite-time instabilities in
unstable dynamical systems
with applications to
two-dimensional fluid flows
Themistoklis P. Sapsis

Department of Mechanical Engineering, Massachusetts
Institute of Technology, 77Massachusetts Avenue,
Cambridge, MA 02139, USA

We examine the geometry of the finite-dimensional
attractor associated with fluid flows described by
Navier–Stokes equations and relate its nonlinear
dimensionality to energy exchanges between
dynamical components (modes) of the flow.
Specifically, we use a stochastic framework based
on the dynamically orthogonal equations to perform
efficient order-reduction and describe the stochastic
attractor in the reduced-order phase space in terms
of the associated probability measure. We introduce
the notion of local fractal dimensionality to describe
the geometry of the attractor and we establish a
connection with the number of positive finite-time
Lyapunov exponents. Subsequently, we illustrate in
specific fluid flows that the low dimensionality of
the stochastic attractor is caused by the synergistic
activity of linearly unstable and stable modes as well
as the action of the quadratic terms. In particular, we
illustrate the connection of the low-dimensionality of
the attractor with the circulation of energy: (i) from
the mean flow to the unstable modes (due to their
linearly unstable character), (ii) from the unstable
modes to the stable ones (due to a nonlinear energy
transfer mechanism) and (iii) from the stable modes
back to the mean (due to the linearly stable character
of these modes).

c⃝ 2013 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
As Hopf first conjectured [1] for Navier–Stokes equations, it is often the case that infinite-
dimensional dynamical systems posses global attractors with finite-dimensionality embedded
in the infinite-dimensional state space, i.e. compact sets that attract all the trajectories of the
original dynamical system. For this case, it is expected that the set of solutions that ‘live’ in
the attractor will cover every possible realization of the original system. Conditions for the
existence of such global attractors have been studied rigorously for many systems of practical
importance, including the Navier–Stokes equations (see [2–5], and subsequent works by Foias
and co-workers). Finite-dimensionality of these attractors implies that the asymptotic dynamics
of the corresponding infinite-dimensional systems can be described by a finite number of degrees
of freedom, a property that can potentially lead to efficient reduced-order modelling: a drastic
decrease in the number of degrees of freedom which are essential to understand or compute the
system dynamics.

Along these ideas, a number of methods have been developed for the description of the
global attractor. Among them, the method of determining nodes [6] where the global attractor
is represented in terms of specific points of the domain (determining nodes) that have been
proved to be finite in number for the Navier–Stokes equations [7]. A different family of order-
reduction methods is based on a Galerkin-type approximation [8–10], i.e. on the expansion of the
solution on a finite set of basis elements and the subsequent construction of the attractor. The
selection of this basis is a crucial issue for the performance of the order-reduction, and to this end,
various ideas have been used such as the proper orthogonal decomposition (POD) method [11,12],
which is based on energy criteria, the balanced POD method [13,14], based on linear-operator-
theoretic ideas and more recently the projection to modes determined from spectral analysis of
the associated Koopman operator [15].

However, in many cases of practical importance, the system response can be strongly transient.
This property in combination with the time-independent character of the used modes can increase
dramatically their number in order to achieve good performance, even for systems with low-
dimensional attractors. Most importantly, the mean field variations are ignored while it has been
shown (see recent studies [16–18]) that the mean field dynamics may be an intrinsic component
of the transient character of the response. A recent methodology that can deal with the earlier-
mentioned issues is based on the dynamically orthogonal (DO) field equations [19]. This is a
stochastic, order-reduction approach where the modes are time-dependent, orthogonal fields
computed by a set of equations that are derived rigorously from the original system equation.
The evolution of these time-dependent modes is performed in a fully coupled manner with the
reduced-order dynamics and the mean field dynamics. As it is discussed in detail in Sapsis &
Lermusiaux [19], the main advantage of the DO method compared with other reduction methods
is its ability to evolve the modes according to both the system equations and the current statistical
state of the system without the use of any empirical data that describe the transient character
of the response. This way the resulted set of required modes is smaller and can express more
effectively the instantaneous dynamics of the full system.

The next step involves the analysis within the reduced-order phase space resulted by the
projection of the dynamics on a finite number of degrees of freedom. In the reduced-order phase
space of Navier–Stokes equations, there are three main contributions for the evolution of the
dynamics and the formation of the global attractor, namely (i) the linearly unstable directions
(associated with positive finite-time Lyapounov exponents, FTLEs) that cause expansion of
volumes in phase space; (ii) the linearly stable directions (associated with negative FTLEs); and (iii)
the quadratic terms (due to the nonlinear advection) that cause nonlinear deformation of volumes
in phase space. As it will presented later in this work, each of those contributions can be interpreted
in terms of energy transfer properties between the mean flow and the modes and between the
modes themselves. The exact scope of this study: to establish and illustrate a connection between (i) the
unstable directions in the reduced-order phase space; (ii) the energy transfer properties between the evolving
mean flow and the modes; and (iii) the local geometrical properties of the global attractor.

 on March 13, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


3

rspa.royalsocietypublishing.org
ProcRSocA469:20120550

..................................................

Our theoretical findings will be illustrated numerically through fluid flows described by
deterministic two-dimensional Navier–Stokes, having randomness only in the initial conditions.
We will choose configurations where the system has a small number of unstable directions
so that the order-reduction is an efficient method for analysis. This choice is made in order
to illustrate clearly the connection between the shape of the attractor and the energy transfer
properties when these are caused exclusively by inherent system instabilities (i.e. in the absence of
external stochastic noise or stochastic parameters). Similar properties and conclusions, however,
hold for systems with large number of instabilities although in such systems/configurations a
straightforward application of order-reduction techniques may not be an efficient choice. The
reduction framework that we will use here is based on the DO equations. We emphasize that even
though we will use a probabilistic tool to perform our analysis, the systems under consideration
will be deterministic with their unstable directions creating the finite-dimensional attractors.
Essentially, we will use a stochastic approach to characterize how volumes evolve in the phase
space of a deterministic dynamical system. This probabilistic point of view, even though it will
be applied on a deterministic system, it will allow us to characterize the geometrical properties of
the attractor that are otherwise hard to capture through a ‘single-trajectory’ approach especially
when the system is in a transient stage.

The structure of the paper is organized as follows. We first give a brief overview of the
DO method as an order-reduction technique and we also present comparison results (see the
electronic supplementary material, appendix S1) between the DO method and a standard POD
approach for two two-dimensional fluid flows. Next, we introduce the notion of local fractal
dimensionality to describe the geometry of the global attractor. Based on this tool, we prove
the main result which is a link between (i) the energy transfer properties (expressed through
the modal productions (see [20] or [16]), i.e. the energy transfer rates to a specific mode from
the mean and/or other modes, (ii) the associated finite time Lyapunov exponents (FTLE) and
(iii) the local geometry of the attractor. We illustrate the derived theorem in the Lorenz attractor,
and subsequently, we proceed to the application on the responses of two-dimensional Navier–
Stokes equations for two specific configurations. Through these examples, we illustrate how
the synergistic activity of linearly stable and unstable modes together with the action of the
quadratic nonlinearities cause energy transfers from the mean to and between the modes, while
simultaneously it creates the complex geometry of the attractor.

2. Order-reduction, using dynamical orthogonality
Our analysis is based on the dynamically orthogonal field equations [19,21]. This is a closed set
of equations for the evolution of stochastic partial differential equations (SPDEs) based on the
dynamical orthogonality condition, a constraint that arises naturally to overcome the unnecessary
redundancy of the used representation. The DO framework allows for the evolution of the
probability measure through exact equations that follow directly from the SPDE associated with
the considered problem and without any assumption on its form (e.g. assumption of a particular
distribution for the uncertainty or a specific spatial structure). Specifically, the reduced-order
field equations allow for the simultaneous (i) evolution of the finite-dimensional functional space
where the stochastic part of the solution ‘lives’ (i.e. the spatio-temporal form of the modes) and
(ii) description of the system dynamics within this finite-dimensional functional space.

This ensemble framework allows for the statistical study of the attractor and its geometrical
properties in the reduced-order subspace even for transient flows. The system under
consideration is chosen to be deterministic, and only the initial conditions are chosen to be
random variables. However, this randomness in the initial conditions is sufficient to obtain a
statistical picture of the attractor. In particular, the attractor will be expressed as the subset of the
reduced-order space where the probability measure associated with the stochastic solution has non-zero
values, i.e. the finite-dimensional subset where solutions of the PDE converge with non-zero
probability. We will use the ordinary differential equation (ODE) governing the reduced-order
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Figure 1. (a) Partition of the infinite-dimensional space into a finite-dimensional subspace VS containing only the directions
ui along which the probability measure of the solution has important spread (greater than λ) and its orthogonal complement
V⊥
S . (b) The variation of each basis element should be normal to the subspace VS. (Online version in colour.)

dynamics to interpret the local geometry of the attractor in terms of energy transfers between the
mean and the stochastic parts of the flow.

Here, we give a brief description of the dynamical orthogonality condition that allows for
the derivation of closed field equations governing both the reduced-order dynamics and the
finite-dimensional subspace VS where these dynamics ‘live’. A comparison with POD method
on two specific flows has been included in the electronic supplementary material, appendix
S1. Let (Ω ,B,P) be a probability space with Ω being the sample space containing the set of
elementary events ω ∈ Ω , B is the σ−algebra associated with Ω and P is a probability measure.
Let x ∈ D ⊆ Rn denote the spatial variables and t ∈ T the time. Then, every measurable map of the
form u(x, t; ω) ∈ Rn, ω ∈ Ω will define a random field. In applications, the most important cases
are where n = 2, 3, therefore we will assume that x ∈ D ⊆ Rn, n = 2, 3. We define the mean value
operator as

ū(x, t) = Eω[u(x, t; ω)] =
∫

Ω
u(x, t; ω) dP(ω).

A Hilbert space denoted by H, is formed by the set of all continuous, square-integrable random
fields [22,23], i.e.

∫
DEω[u(x, t; ω)u(x, t; ω)T] dx < ∞ for all t ∈ T (where •T denotes the complex

conjugate operation). We also define the covariance operator

Cu1(·,t;ω)u2(·,s;ω)(x, y) = Eω[(u1(x, t; ω) − ū1(x, t))(u2(y, s; ω) − ū2(y, s))T] (2.1)

For every two elements u1, u2 ∈ H, we denote the spatial inner product as ⟨u1(•, t; ω), u2(•, t; ω)⟩.
In what follows, we will use Einstein’s convention for summation, i.e.

∑
iaibi = aibi except if the

limits of summation need to be shown.
Using a generalized form (each term is time-dependent and we do not assume Gaussian

statistics) of the Karhunen–Loeve expansion [19], we have that every random field u(x, t; ω) ∈ H
can be approximated arbitrarily well, by a finite series of the form

u(x, t; ω) = ū(x, t) +
s∑

i=1

Yi(t; ω)ui(x, t), ω ∈ Ω , (2.2)

where s is a sufficiently large, non-negative integer and the Yi(t; ω) are s scalar random
coefficients. We define the stochastic subspace VS = span{ui(x, t)}s

i=1 as the linear space spanned
by the s deterministic fields ui(x, t). This subspace includes the finite number of directions (of
the full infinite-dimensional space) where the probability measure has important spread, i.e.
larger than a predefined value λ (figure 1a). The orthogonal complement of VS contains the
infinite number of dimensions associated with low-variance dynamics, i.e. the directions of the
infinite-dimensional phase space where the probability measure have negligible variance.

Clearly, representation (2.2) with all quantities (ū(x, t), {uj(x, t)}s
j=1, {Yj(t; ω)}s

j=1) varying is
redundant, and, therefore, additional constraints are need to be imposed so that we have
a numerically well-posed problem. As shown in Sapsis & Lermusiaux [19], an appropriate
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constraint is the DO condition: the variation of the stochastic subspace (figure 1b) should always
remain orthogonal to itself, expressed as

dVS

dt
⊥ VS ⇔

〈
∂ui(•, t)

∂t
, uj(•, t)

〉
= 0, i = 1, . . . , s, j = 1, . . . , s. (2.3)

Note that the DO condition implies the preservation of orthonormality for the basis {uj(x, t)}s
j=1

itself because (∂/∂t)⟨ui(•, t), uj(•, t)⟩ = 0 for all i = 1, . . ., s, j = 1, . . . , s. The DO expansion results in
a set of independent, explicit equations for all the unknown quantities. In particular, using the DO
expansion, we reformulate the system SPDE to an s-dimensional stochastic differential equation
for the random coefficients Yi(t; ω) coupled with s + 1 deterministic PDEs for the fields ū(x, t) and
ui(x, t). In particular, we have the following.

Theorem 2.1 (Sapsis & Lermusiaux [19]). Let the SPDE be

∂u(x, t; ω)

∂t
=L[u(x, t; ω); ω], x ∈ D, t ∈ T, ω ∈ Ω , (2.4)

where L is a general (nonlinear), differential operator. Additionally, we assume that the initial state of
the system at t0 is described by the random field u(x, t0; ω) = u0(x; ω), x ∈ D, ω ∈ Ω , and the boundary
conditions are given by B[u(ξ , t; ω)] = h(ξ , t; ω), ξ ∈ ∂D, ω ∈ Ω . Under the assumptions of the DO
representation, the original SPDE (2.4) is reduced to the following system of equations

dYi(t; ω)

dt
= ⟨L[u(•, t; ω); ω] − Eω[L[u(•, t; ω); ω]], ui(•, t)⟩, (2.5)

∂ū(x, t)
∂t

= Eω[L[u(x, t; ω); ω]] (2.6)

and
∂ui(x, t)

∂t
= ΠV⊥

S
[Eω[L[u(x, t; ω); ω]Yj(t; ω)]]C−1

Yi(t)Yj(t), (2.7)

where the projection in the orthogonal complement of the stochastic subspace is defined as ΠV⊥
S

[F(x)] =
F(x) − ΠVS [F(x)] = F(x) − ⟨F(•), uk(•, t)⟩uk(x, t) and the covariance coefficients CYi(t)Yj(t) = Eω[Yi(t; ω)

Yj(t; ω)]. The associated boundary conditions have the form

B[ū(ξ , t; ω)]|ξ∈∂D = Eω[h(ξ , t; ω)]

and

B[ui(ξ , t)]|ξ∈∂D = Eω[Yj(t; ω)h(ξ , t; ω)]C−1
Yi(t)Yj(t),

and the initial conditions are given by

Yi(t0; ω) = ⟨u0(•; ω) − ū(x, t0), υi(•)⟩, ū(x, t0) = Eω[u0(x; ω)], ui(x, t0) = υi(x),

for all i = 1, . . . , s, where υi(x) are the eigenfields of the covariance operator Cu(·,t0)u(·,t0).

3. Local fractal dimensionality of the attractor
Here, we present the tools that we use later to study the geometry of the finite-dimensional
attractor. These stochastic tools do not assume anything on the form of the attractor neither on
the dimensionality of the support where the attractor ‘lives’. Specifically, our analysis is based
on the interplay between the attractor as the subset where the probability density function of the
system state is finite (or important), and the attractor as a continuous collection of points whose
Lagrangian properties define its evolution and its local geometrical properties. The connection
between the two interpretations will be introduced through a suitable definition of the fractal
dimensionality of the local support of the attractor, i.e. the neighbourhood at each point of the
attractor where the probability measure (associated with the attractor) has non-negligible spread.
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The set-up is defined by the reduced-order dynamics in the stochastic subspace VS (see §2 for
definition) that can be fully described by the finite-dimensional, dynamical system (equation (2.5))

dYi
dt

= Fi(Y, t), Y(t0; ω) = Y0(ω), Y ∈ Rs, (3.1)

where Fi(Y, t) is a smooth, deterministic, dynamical system that comes directly from the projection
of the dynamics to the DO modes. We denote as PY the probability measure associated with the
state of the dynamical system (3.1) and as fY(y, t) the corresponding probability density function.
Note that, in this work, we consider the case where uncertainty is introduced only through the
initial conditions and not through the system operator—from this assumption, it follows that Fi
is deterministic.

We will first present standard expressions for the stretching of infinitesimal lengths under the
influence of the dynamical system (3.1). Subsequently, we will use these expressions to explore the
mechanism for the instantaneous decrease in the dimensionality associated with the local support
of the probability measure at each point of the phase space. Specifically, we will prove that the
mechanism causing collapse of the probability measure to lower dimensional manifolds (or in
the general case attractors) is connected with the negative eigenvalues of the variational flow
associated with the dynamical system (3.1). In §3b, we will use the notion of the Cauchy–Green
tensor to generalize these conclusions over finite-time intervals. To this end, we will provide a
connection between the local dimensionality of the support of the probability measure and the
number of positive FTLEs (see Haller [24] for their definition).

Let us first recall some standard expressions for the stretching of infinitesimal lengths in
the time-varying stochastic subspace VS. We consider the variational equation associated with
(3.1) given by d(δYi)/dt = (∂Fi(Y, t)/∂Yj)δYj. Then, the length l of an infinitesimal vector having
direction described by the unitary vector n, i.e. a vector with components δYi = nil will be given
by l2 = δYiδYi. Therefore,

l
dl
dt

= d(δYi)

dt
δYi = δYi

∂Fi(Y, t)
∂Yj

δYj = l2
∂Fi(Y, t)

∂Yj
ninj = l2nTDYFn, (3.2)

where DYF = (VYF(Y, t) + [VYF(Y, t)]T)/2. The above scalar quantity expresses the stretching of
an infinitesimal length, with orientation defined by the normal vector n, owing to the dynamical
flow in the reduced-order phase space.

(a) Evolution of the support of the probability measure dimensionality over
infinitesimal times

The next step of our analysis involves the evolution of the local dimensionality of the support
of the probability measure PY associated with the dynamical system (3.1). In the absence of
stochastic forcing in equation (3.1), the probability density fY corresponding to the measure PY
is evolving according to the Liouville’s equation [25, p. 200]

∂fY
∂t

+ ∂[Fi(y, t)fY]
∂yi

= 0.

The linearity of the evolution operator also holds for the case where we have stochastic forcing
with white noise characteristics (or in general any independent increment process; [25]) but
also for the general case of stochastic forcing [26]. To this end, it is meaningful to study the
evolution of the dimensionality locally in the phase space, i.e. for just an ε-small segment of
the probability measure because each of those segments of probability evolve independently.
Therefore, we partition the probability measure PY into ε-small segments Pε,i with centres yi
(so that fY(y, t) =

∑
ifε,i(y, t)) and we study those independently from each other (figure 2). We

assume that ε is chosen to be sufficiently small so that each of the probability measures Pε,i can
be approximated as uniform over the sphere Sε(yi) = {x ∈ VS : ∥x − yi∥ < ε} and only along the
directions over which the original probability measure PY has spread of probability.
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ŷi ŷi

Figure 2. (a,b) Splitting of the probability density function in ‘smaller’ probabilitymeasures having a sufficiently small support
of diameter ε so that the probability density can be approximated as uniform. (Online version in colour.)
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Figure 3. (a) Uniform probability measure Pε,y with support on the intersection of the space T(y, t) = span{t̂1, . . . , t̂m} and
the sphere Sε(y). (b,c) Evolution of the probability measure Pε,y over an infinitesimal time. The volume that remains inside the
sphere Sε(y) is studied by examining the length of the principal axes (dashed lines). (Online version in colour.)

In order to define the local dimensionality of the support of the probability measure PY around
each trajectory y(t) ∈ VS, we consider the closest ε-small segment Pε,i that we denote from here on
as Pε,y and we define its dimensionality as ϑ(y, t) = limε→0 log VP[y(t), ε]/log ε, where VP[y(t), ε]
is the volume of the points x (i.e. integral of the Lebesque measure) that lie inside the sphere
Sε(y(t)) = {x ∈ VS : ∥x − y(t)∥ < ε} and over which the probability measure Pε,y is non-zero (see
Pesin [27] for a complete discussion of its properties). For technical reasons, we will use a variant
of the above expression which comes from the fact that both the numerator and the denominator
vanish as ε → 0. Then, from l’Hôpital’s rule, we have the equivalent definition

ϑ(y, t) = lim
ε→0

log VP[y(t), ε] − log VP[y(t), ε/α]
log ε − log(ε/α)

, (3.3)

where α is an arbitrary positive number which without loss of generality is chosen to be α > 1.
While the previous definition gives an absolute measure for the dimensionality of the support
of the probability measure Pε,y, this latter definition gives this dimensionality relatively, i.e. by
examining the volume between the two spheres Sε(y) and Sε/α(y). This definition gives an effective
measure of dimensionality that can change over finite times under the effect of smooth dynamics. This is
not the case for the absolute dimensionality of a smooth measure that will remain invariant over finite times
under the effect of smooth dynamics.

Before we study of the evolution of these volumes, i.e. Sε(y) and Sε/α(y), we first give
a characterization of a uniform probability measure that lives in the sphere Sε(y(t)) and has
dimensionality m ≤ s. Because we have a uniform measure, we need only the tangent bundle
T(y, t) = span{t1, . . . , tm} (where dim T(y, t) = m) of the manifold where it lives i.e. we need the
basis vectors describing the directions over which the probability measure Pε,y has non-zero
spread (figure 3a).
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Then, we restrict our analysis along the directions only in T(y, t), because over all the other
directions the ‘thickness’ of the probability measure is zero, and according to (3.2), it will remain
zero (because the distance of any points lying in the support of Pε,y along these directions is zero).

To determine the volume change in VP[y(t), ε] along the trajectory y(t), we will study the
length change in each of the principal axis (dashed lines in figure 3b,c). This will be given
according to formula (3.2) as

lk(t + δt) = lk(t)(1 + δt.tT
k DYF.tk), k = 1, . . . , m.

The change in VP[y(t), ε] over time will only be caused by the directions tk over which we have
reduction of lengths, i.e. the directions for which tT

k [(VYF(t, Y) + [VYF(t, Y)]T)/2]tk < 0 because
VP[y(t + δt), ε] measures only the volume of the support of Pε,y that remains inside the sphere
∥x − y(t + δt)∥ < ε. Therefore, we will have

VP[y(t + δt), ε]
VP[y(t), ε]

= 1 + δt
∑

k=1,...,m
tT
k DYF.tk<0

tT
k DYF.tk + O(δt2). (3.4)

Moreover, α can always be chosen sufficiently large so that VP[y(t + δt), ε/a] = VP[y(t), ε/a]. With
this choice and by combining (3.3) and (3.4), we obtain the instantaneous rate of change for the
local dimensionality of the probability measure

dϑ(y, t)
dt

= 1
log α

∑

k=1,...,m
tT
k DYF.tk<0

tT
k DYF.tk ≤ 0. (3.5)

A first observation for equation (3.5) is the absence of a specific time scale over which the variation
of the dimensionality of the ε-probability measure takes place. This is due to the fact that we
chose the quantity α arbitrarily. The characteristic time scale over which the probability measure
will change dimensionality depends on the volume size that we are examining and in this case
this is the volume between the spheres Sε(y) and Sε/α(y). The closer these two spheres are (i.e.
α → 1+), the faster the change in the dimensionality will occur (dϑ(y, t)/dt → −∞). Similarly, the
larger this volume is (i.e. α → ∞), the slower the change in the dimensionality will take place
(dϑ(y, t)/dt → 0−).

We emphasize that the result (3.5) is local in space and time, and it cannot be used to determine
the dimensionality variation of the support of the probability measure along a trajectory over a
finite time interval because we have made the assumption that at time t the probability measure
Pε,y covers uniformly all the directions of T(y, t) in the complete extend of the sphere Sε(y) = {x ∈
VS : ∥x − y∥ < ε}; therefore, the growth of the dimensionality cannot be expressed in this setting. From
a technical point of view, this simplification is allowed from the fact that at every time instant we
choose (or more precisely restart our analysis with) an arbitrarily small sphere Sε(y) to perform
the above argument. However, if we fix an initial radius ε and study the dimensionality of the
probability measure along a finite interval of a trajectory (in this case, we cannot ‘renew’ the
ε-probability measure at every time instant), then we may initially have temporal decrease in the
dimensionality owing to shrinking of the probability measure over a specific direction but then
subsequent increase because in this particular direction that so far we had reduction of lengths
we now have extension of lengths. This finite-time behaviour will be considered in §3b.

Therefore, formula (3.5) expresses the maximum possible decrease in the dimensionality of
the support of the probability measure on every time instant and phase space location. This
expression can be used to understand under what conditions the dimensionality of the support of
the probability measure will stop decreasing. This will occur if and only if the tangent bundle of
the support of the probability measure becomes normal to the negative subspace of DYF(y, t), i.e.
the subspace spanned by the eigenvectors of DYF(y, t) that correspond to negative eigenvalues.
Therefore, the low dimensionality of the support of the probability measure is caused by the negative
eigenvalues of the tensor DYF(y, t). More specifically, the local dimensionality of the support of
the probability measure at (y, t) will not stop vary unless it becomes smaller or equal to the
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Pe,y(t0)

Pe,y(t1)

Pe,y(t2)e

y(t0) y(t1)
y(t2)tt̂k

t̂k

t̂l

t̂l

(a) (b) (c)

T(y,t) = span{t̂1,...,t̂m}

t̂l

t̂k

Figure4. Evolution of the probabilitymeasure Pε,y over afinite time interval. Note that each τ̂i does not necessarily express the
evolution of t̂i but one of the principal directions of the evolved ellipsoid. From t0 to t1, we have contraction along the principal
axis τ̂k . However, over the second time interval (t1, t2), we havemuch stronger expansion over this direction (which also evolves
under the dynamical flow). (Online version in colour.)

number of positive eigenvalues of DYF(y, t). Moreover, it is required that the low dimensional
probability measure is aligned with the positive subspace DYF(y, t), i.e. the subspace spanned by
the eigenvectors of DYF(y, t) that corresponds to positive eigenvalues.

(b) Evolution of the probability measure dimensionality over finite times
In §3a, we illustrated how the presence of negative eigenvalues in the symmetric tensor DYF(y, t)
is the underlying cause for dimensionality reduction of the support of the probability measure
Pε,y. However, as we emphasized, the analysis was based on the setting that the probability
measure under consideration is at every time instant t uniformly distributed in the intersection
of the linear space T(y, t) and the interior of the sphere Sε(y). In this way, we did not allow for
expansion of the dimensionality of the support of the probability measure. This assumption was
made to understand the dynamical cause of low dimensionality. In this section, we will analyse
how the probability measure dimensionality varies along a trajectory owing to the combined
effect of instantaneous stretching (because of the negative eigenvalues in DYF(y, t) as explained
before) but also transport under the flow (3.1) that causes rotation of the low-dimensional support
of Pε,y and may lead to temporal contraction over a specific direction and subsequent expansion
over the same direction (figure 4).

To quantify the variation of the dimensionality over a finite time interval, we consider the flow
map ϕt

t0
that maps any point y0 in VS to its position at time t under the effect of the dynamical

system (3.1)

ϕt
t0

: VS → VS, y0 -→ y(t, t0, y0).

Then, the evolution along the above trajectory of any infinitesimally small vector ν will be given
by Vϕt

t0
ν. Moreover, its corresponding length lν(t) will be given by

l2ν(t) = νT[Vϕt
t0

]TVϕt
t0
ν = νTCt

t0
(y0)ν,

where Ct
t0
(y0) = [Vϕt

t0
(y0)]

TVϕt
t0
(y0) is the Cauchy–Green tensor [28] which is by definition

symmetric and positive-definite. We diagonalize Ct
t0
(y0) to obtain a set of real, positive,

eigenvalues

0 < λ2
1(y0, t0, t) ≤ λ2

2(y0, t0, t) ≤ · · · ≤ λ2
s (y0, t0, t)

with corresponding eigenvectors êj(y0, t0, t), j = 1, . . . , s. The directions given by these
eigenvectors describe the directions of principal deformation. By inverting the variational flow,
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we may obtain the initial directions ϵ̂j(y0, t0, t) associated with these eigenvectors. These will be
given by (in normalized form)

ϵ̂j(y0, t0, t) = λj(y0, t0, t)[Vϕt
t0

]−1êj(y0, t0, t) = λj(y0, t0, t)Vϕ
t0
t êj(y0, t0, t).

Note that even though the above set of vectors always span the s-dimensional space, they are not
necessarily orthogonal (because the matrix Vϕt

t0
is invertible but not necessarily orthogonal).

Then, we define the following subspaces that separate the initial directions over which we
have expansion of lengths at time t from those over which we have contraction

Te(y0, t0, t) = span{ϵ̂j(y0, t0, t) | λj(y0, t0, t) ≥ 1}

and
Tc(y0, t0, t) = span{ϵ̂j(y0, t0, t) | λj(y0, t0, t) < 1}.

These two subspaces span the full s-dimensional space and they are also orthogonal. The first
property follows from the fact that the flow ϕt

t0
has been assumed to be invertible and the

eigenvectors êj(y0, t0, t), j = 1, . . . , s span the full space. The second property can be proved by
assuming that there is a vector r0 that belongs both to Te and Tc. Then, because r0 ∈ Te, i.e.
r0 =

∑dim Te

j=1 ajϵ̂j(y0, t0, t) (with aj scalars) the evolution of the length under the variational flow
will be expressed as

l2r0
(t) = rT

0 Ct
t0
(y0)r0

=
∑

j,k

ajakλj(y0, t0, t)λk(y0, t0, t)êT
j (y0, t0, t)[Vϕ

t0
t ]TCt

t0
(y0)Vϕ

t0
t êk(y0, t0, t)

=
∑

j,k

ajakλj(y0, t0, t)λk(y0, t0, t)êT
j (y0, t0, t)êk(y0, t0, t)

= a2
j λ

2
j (y0, t0, t) ≥ ajaj = l2r0

(t0),

where in the above we used the fact that Vϕ
t0
t Vϕt

t0
= I as well as the orthonormality of

êj(y0, t0, t) (which follows from the properties of Ct
t0
(y0)). Because r0 ∈ Tc, we may use the

same argument to prove that l2r0
(t) < l2r0

(t0) which contradicts the previous result. Therefore,
Te(y0, t0, t) ⊕ Tc(y0, t0, t) = VS.

In order to study the variation of the dimensionality of the support of the probability
measure, we use the same setting as previously, i.e. we consider an ε-probability measure
uniformly distributed on the intersection of the sphere interior Sε(y0) and the linear subspace
T(y0, t0) = span{t1, . . . , tm} (with dim T(y0, t0) = m), which represents the directions over which
the probability measure has initial spread. To compute the principal directions of the evolved
ellipsoid, we need to diagonalize the Cauchy–Green tensor within the subspace T(y0, t0), i.e. solve
a restricted eigenvalue problem in the subspace T(y0, t0):

Ct
t0
(y0)τ = η2τ , τ ∈ T(y0, t0).

We express the arbitrary element τ ∈ T(y0, t0) as τ =
∑m

i=1aiti and we define the s × m matrix T =
[t1, t2, . . . , tm]. Then, the above eigenvalue problem can be expressed equivalently as the regular
eigenvalue problem

T TCt
t0
(y0)T a = η2a, a ∈ Rm.

The m × m matrix of this eigenvalue problem is symmetric and positive-definite. Therefore, we
can always determine the principal directions of the ellipsoid as well as their length that will be
given by the eigenvalues

0 < η2
1(y0, t0, t) ≤ η2

2(y0, t0, t) ≤ · · · ≤ η2
m(y0, t0, t).

Then, the volume of the support of the probability measure Pε,y0
at time t that will remain inside

the sphere Sε(ϕ
t
t0
(y0)) will be given by VP,ε|t = εm∏m

j=1 min(ηj(y0, t0, t), 1) and the corresponding
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dimensionality as

ϑ(y, t) = m + lim
ε→0

1
log ε

m∑

j=1

log min(ηj(y0, t0, t), 1) ≤ m. (3.6)

Now, let us separate the conditions under which we have constant dimensionality from those
where we have decrease in the dimensionality. We will have decrease in the dimensionality
if and only if there is at least one eigenvalue ηj(y0, t0, t) < 1. This is equivalent with the
minimum condition

min
a∈Rm

aTT TCt
t0
(y0)T a < 1 ⇔ min

τ∈T(y0,t0)
τTCt

t0
(y0)τ < 1.

The second condition will occur if and only if T(y0, t0) contains a direction that is included in
Tc(y0, t0, t). On the other hand, if T(y0, t0) is a subset of the expansion eigenspace Te(y0, t0, t) then

min
τ∈T(y0,t0)

τTCt
t0
(y0)τ > 1 ⇔ min

a∈Rm
aTT TCt

t0
(y0)T a > 1 ⇔ min

j=1,...,m
ηj(y0, t0, t) > 1.

and the dimensionality will not change. Therefore, the dimensionality of the support of the
probability measure Pε,y0

will remain invariant over the time interval (t0, t) if and only if

T(y0, t0) ⊆ Te(y0, t0, t), (3.7)

i.e. the probability measure is locally distributed only along directions that correspond to
expansion. On the other hand, if the probability measure has spread over a direction over which
we have contraction the dimensionality of its support will decrease according to formula (3.6).

From (3.7), we immediately obtain the necessary condition

dim T(y0, t0) ≤ dim Te(y0, t0, t).

Therefore, the local dimensionality of the probability measure cannot exceed at any point y the
number of positive eigenvalues of the Cauchy–Green tensor Ct

t0
(y0) (also called forward FTLEs;

see Haller [24]), otherwise, its dimensionality will decrease over the specified time interval.
Applying the above analysis on every point in the support of Py leads to theorem 3.1.

Theorem 3.1. The dimensionality of the support of the probability measure Py will remain invariant
over the time interval (t0, t) if and only if at every point y ∈ VS the support of the probability measure
T(y, t0) (i.e. the directions over which the probability measure has spread) is a subset of the corresponding
expansion subspace Te(y, t0, t).

Thus, for a probability measure having initial spread in every direction in VS the
dimensionality of its support will continue to decrease until it has been aligned at every point
in phase space with the expansion eigenspace Te of the Cauchy–Green tensor. We emphasize that
the above analysis does not exclude the possibility of a probability measure having a support
with variable local dimensionality over the space VS. In fact, such probability measures will
be presented in the section that follows and which is related to fluid flows. The above analysis
gives a geometrical description of the probability measure associated with the general dynamical
system (3.1).

Example (dimensionality of the Lorenz attractor). For dissipative dynamical systems with
chaotic behaviour, a connection between the properties of the attractor and the Lyapunov
exponents of the system is given by the theory of SRB measures (see Young [29] for a survey).
In this example, the goal is to illustrate the connection between the number of positive FTLE and
the global fractal dimensionality of the attractor. We are interested to establish this connection
with FTLE because this is the appropriate tool to handle instabilities in systems with strong
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Figure 5. Lorenz attractor: a low contour (fY = 10−6) of the probability density function shaded according to the
number of positive FTLE. Arrows in the graph show regions of a single, two and three positive FTLE. (Online version
in colour.)

time-dependence (as those that we will describe in the next sections). We consider the Lorenz
equations [30]

dY1

dt
= σ (Y2 − Y1),

dY2

dt
= Y1(ρ − Y3) − Y2,

dY3

dt
= Y1Y2 − βY3,

with parameter values σ = 10, β = 8
3 and ρ = 28. For this set of parameters, the system exhibits

chaotic behaviour, and the attractor has no absolute continuity a property that leads to a fractal
dimensionality between 2 and 3 [31]. This is a global measure of the attractor dimensionality, i.e. it
is an averaged indicator over the support of the attractor, and here we seek to interpret this result
in terms of the local number of positive FTLE using the conclusions of the previous sections.

We integrate a large set of initial conditions for δtINTEG = 4 and we plot the probability density
function of the system state (computed using a high-resolution histogram). This is shown through
a low contour {(Y1, Y2, Y3) | fY = 10−6} in figure 5—the colouring is according to the number of
positive FTLE which are computed over a finite-time interval δtFTLE = 1.6 as the eigenvalues of the
Cauchy–Green tensor (for details on the computation of the FTLE, we refer to [32,33]). Specifically,
dark (blue) regions indicate domains of a single positive FTLE, light regions (green), domains with
two positive FTLE and grey regions (red in online version) domains with three positive FTLE.
Then, in accordance with the previous discussion, the segments of the probability measure that
pass over each region will tend to acquire a support with dimensionality specified by the number
of the positive FTLE. From figure 5, we observe that the majority of the attractor is characterized
by two positive FTLE, whereas there are some regions in the main body of the attractor with three
positive FTLE. Finally, the blue regions (one positive FTLE) are mainly localized in the edges of the
attractor and have much lower effect on the global dimensionality because the residence time of
the system trajectories over this regions is much smaller compared with the other domains. Thus,
the main part of the probability measure resides in regions with two positive FTLE consistently
with the correlation dimension of the attractor that is found to be 2.05 ± 0.01 [31].

We note that the above analysis does not provide with a global measure of fractal
dimensionality but rather with a local, in time and phase space, measure of ‘effective’
dimensionality that follows from a statistical perspective (because it is based on many
realizations) and yet it reflects properties of individual realizations such as dynamical instabilities.
This kind of local analysis does not contradict with global, fractal measures of dimensionality
(such as the Kaplan–Yorke dimension, the correlation dimension and others), when those exist,
but it illustrates how these can form as a result of an attractor along which there are different
regions of dynamical behaviour.
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4. Geometry of the attractor and finite-time instabilities in fluid flows
In this section, we focus on specific properties of the reduced-order dynamics associated with
fluid flows described by Navier–Stokes. In particular, we study how geometrical properties of
the attractor in the reduced-order phase space vary in terms of energy transfer properties in the
original infinite-dimensional space (such as energy transfer between DO modes and the mean). As
mentioned in §1, we consider the case of a homogeneous system, i.e. no external stochastic forcing
or stochastic boundary conditions. Specifically, we consider an incompressible, three-dimensional
fluid in a domain D, described in a rotating frame at frequency f with dynamical equations

∂u
∂t

= −Vp + 1
Re

0u − u.Vu − f k̂ × u + τ (x, t) ≡Lu[u(x, t; ω)]

and

0 = div u,

where u = (u1(x, t; ω), u2(x, t; ω), u3(x, t; ω)) is the flow velocity field, and k̂ is the unit vector in the
z-direction. The pressure field is denoted by p(x, t; ω), f = f0 + β0y is the Coriolis coefficient under
the beta plane approximation, and τ (x, t) = (τ1(x, t), τ2(x, t), τ3(x, t)) is the external deterministic
stress acting on the fluid. In what follows, we will use the DO field equations with inner
product ⟨u1, u2⟩ =

∫
Du1iu2i dx. We assume that the boundary conditions for the flow field and the

pressure are described by the linear differential operators: Bu[u(ξ , t; ω)] = u∂D(ξ , t), Bp[p(ξ , t; ω)] =
p∂D(ξ , t), ξ ∈ ∂D, and we also have the initial conditions: u(x, t0; ω) = u0(x; ω), x ∈ D, ω ∈ Ω . In
this case, as it is illustrated in Sapsis & Lermusiaux [19], the dynamical system describing the
stochastic flow in the reduced-order space VS takes the form (equation (2.5))

dYi
dt

= Aim(t)Ym + Bimn(t)YmYn + Di, (4.1)

where

Aim =
〈

1
Re

0um − um.Vū − ū.Vum − f k̂ × um, ui

〉
,

Bimn = −⟨un.Vum, ui⟩

and Di = CYm(t)Yn(t)⟨un.Vum, ui⟩.

Therefore, for fluids governed by Navier–Stokes equations the reduced-order dynamics are
described, as expected, by a nonlinear dynamical system, with time-dependent coefficients that
has quadratic nonlinearities.

To understand the geometrical properties of the solutions of this dynamical system, we
study the deformation (across different directions) of infinitesimal volumes in VS as well as
the evolution of the dimensionality of these volumes using the tools developed in the previous
sections. We begin our analysis by proving an important symmetry property for the tensor Bimn
that follows from Greens identity and the orthonormality of the modes:

Lemma 4.1. Assume that the incompressible modes ui are orthonormal. Then, the tensor Bimn =
−⟨un.Vum, ui⟩ satisfies the following antisymmetry condition

Bimn = −Bmin. (4.2)

Proof. See electronic supplementary material, appendix S2. !

The next step of our analysis involves the study of the infinitesimal volumes in the reduced-
order space VS. We first compute the Jacobian

∂Fi
∂Yk

= Aik(t) + (Bikn(t) + Bink(t))Yn.
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Then, we compute the change in an infinitesimal volume V(t) along a trajectory Y(t; ω). By
Liouville’s theorem, the volume V(t) satisfies

V(t) = V(t0) exp
{∫ t

t0

Akk(t) + Bknk(t)Yn|Y=Y(s;ω) ds
}

,

where we have used the antisymmetry property (4.2) which results in Bkkn(t) = 0.
To understand the physical meaning of the terms involved in the last expression, we compute

Akk =
〈

1
Re

0uk − uk.Vū − ū.Vuk − f k̂ × uk, uk

〉
.

The Coriolis contribution is skew symmetric, thus, (f k̂ × uk)uk = 0 ⇒ ⟨f k̂ × uk, uk⟩ = 0. Moreover,
from the Gauss theorem

⟨ū.Vuk, uk⟩ = 1
2

∫

D
uk,iuk,i

∂ūj

∂xj
dx + 3

2

∫

∂D
uk,iuk,iūjnj ds.

The first term on the right-hand side vanishes because ∂ūj/∂xj = 0, and the boundary integral also
vanishes as we proved in the proof of the antisymmetry property for the tensor Binm. Additionally,

⟨uk.Vū, uk⟩ =
∫

D

∂ūi
∂xj

uk,juk,i dx =
∫

D

1
2

(
∂ūi
∂xj

+
∂ūj

∂xi

)

uk,juk,i dx = ⟨ukSū, uk⟩,

where Su is the strain tensor for the flow field u. Therefore,

Akk = − 1
Re

s∑

k=1

∥Vuk∥2 − ⟨ukSū, uk⟩.

Moreover,

BknkYn = −⟨uk.Vun, uk⟩Yn = −⟨uk.Vun, uk⟩Yn = −⟨uk.Su, uk⟩ + ⟨uk.Sū, uk⟩.

Thus, we have

V(t)
V(t0)

= exp

{∫ t

t0

(

− 1
Re

s∑

k=1

∥Vuk∥2 − ⟨ukSu, uk⟩
)

ds

}

= exp

{∫ t

t0

(

− 1
Re

s∑

k=1

∥Vuk∥2 − ⟨ukSū, uk⟩
)

ds −
∫ t

t0

⟨uk.Vun, uk⟩Yn(s) ds

}

. (4.3)

Equation (4.3) expresses the expansion of the probability measure along a trajectory of the
dynamical system (4.1) in the reduced-order stochastic subspace VS. This change in infinitesimal
volumes is due to:

— viscous dissipation term, −(1/Re)∥Vuk∥2, which is always causing contraction of
volumes in the phase space and it has a uniform effect over the whole space VS;

— energy exchanged between the DO modes and the mean flow, −⟨ukSū, uk⟩, which can
cause both contraction and expansion of volumes and it is uniform in phase space; and

— energy exchanged between the DO modes, −⟨uk.Vun, uk⟩Yn which cause transfer of
volumes within the stochastic subspace and it is non-uniform.

The first two terms, i.e. dissipation owing to viscosity and energy exchange with the mean
flow, do not change the probability of occurrence in the ‘neighbourhood’ of any specific trajectory
Y(t; ω) relative to another one, because the effect of these mechanisms is homogeneous (their
effect does not depend on the specific position of the trajectory Y(t; ω)) over the whole space VS
or over all trajectories Y(t; ω). The effect of these terms is the uniform increase or decrease in the
support of the probability measure, i.e. the increase or decrease in the range of possible stochastic
realizations because, due to these terms, the probability density spreads to a wider range into
the stochastic subspace VS. This spread occurs uniformly along each direction yi (defined by the

 on March 13, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


15

rspa.royalsocietypublishing.org
ProcRSocA469:20120550

..................................................

basis elements ui) of the stochastic subspace VS but it is not necessarily identical over different
directions of the stochastic subspace.

To give a more quantitative illustration, we consider a more formal notion for the spread of
the probability measure given by the energy EY =

∫
VS

∥y∥2fY(y, t) dy. We have directly from the
system equations

Yi
dYi
dt

= Aim(t)YiYm + Bimn(t)YiYmYn + DiYi.

The term Bimn(t)YiYmYn vanishes from the antisymmetric property of Bimn. Therefore, we will
have

1
2

dEY

dt
=

s∑

i=1

(
− 1

Re
∥Vui∥2 − ⟨uiSū, ui⟩

)
Eω[Y2

i ], (4.4)

which is another manifestation of the property that we described previously, i.e. that the size of
the support of the probability measure is changing solely due to the energy production due to the
mean flow (i.e. the energy transfers to or from the mean flow) and due to the energy dissipation
caused by the viscosity. Pressure does not play a role for this equation (describing energy of the
modes) because the stochastic boundary conditions are homogeneous—this is not the case for the
mean flow energy equation which will, in general, contain terms involving pressure.

On the other hand, the term Bimn(t), which expresses interaction among the DO modes and causes
transfers of energy among them, does not cause global change in the probability measure support size (as
it is shown from (4.4)) but it causes, however, local change in its shape and strong deformation in the
phase space owing to the non-homogeneous effect around each trajectory Y(t; ω) (see equation
(4.3)). In fact, this term plays a key role because it transfers energy from the linearly unstable
modes to the linearly stable ones, allowing the former to remain unstable while their energy does
not explode, and the latter to always have non-zero energy while they retain their stable character.

The combined effect of the linear instabilities and this quadratic term can be quantified through
the FTLEs of the reduced-order system. Specifically, directions in Te(y0, t0, t), i.e. directions that
correspond to positive FTLEs, tend to increase their energy (or variance) as time evolves (because
lengths are increasing along these directions). In the context of the reduced-order dynamics,
this occurs owing to the combined effect of energy transfer from the mean flow (as explained
previously), energy exchanges with other DO modes (caused by the quadratic term), and energy
loss owing to viscous dissipation.

On the other hand, directions that correspond to negative Lyapunov exponents (belonging in
Tc(y0, t0, t)) will tend to decrease lengths (therefore the variance) along these directions, because
they lose energy from the interaction with the mean flow, the other DO modes, and through
viscous dissipation as well. This flow of energy from the mean field, to the DO modes, and then
back to the mean field again and its consequences on the dimensionality of the support of the
probability measure associated with the attractor will become more evident in §5 where numerical
results will illustrate clearly this mechanism.

5. Attractors in fluid flows with random initial conditions
Here, we will validate the theoretical results presented previously in unstable fluid flows
described by deterministic equations and with random initial conditions. The reduced-order
dynamics will be resolved using the DO method. The specific details for resolving Navier–Stokes
equations in the framework of DO equations can be found in Sapsis et al. [34] while the description
of the numerical scheme used in this paper is given in Ueckermann et al. [35]. We will compute
the time-dependent modes and subsequently we will illustrate numerically in the reduced-order
phase space the relation between the geometrical properties of the probability measure of the
response, the local number of finite-time dynamical instabilities, as well as the energy transfers.

This connection will be shown through the computation at each point of the stochastic
subspace VS, of (i) the number of positive, forward, FTLEs and (ii) the energy production (or
energy transfer rates) of each DO mode owing to the mean flow but also owing to the other
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DO modes. These two dynamical indicators of the system instabilities will be directly compared
with the local dimensionality of the support of the probability measure. The latter will be shown
through three-dimensional marginals that will be visualized using very low contour surfaces that
contain the main probability mass.

The FTLE field will be computed using the reduced-order dynamical system (4.1) which is
deterministic (because the randomness comes only from the initial conditions and not from the
system operator) and known at every time instant from the DO stochastic solution. Specifically,
a set of initial conditions is placed on a uniform grid and is advected under the dynamical
flow (4.1) with a fourth-order Runge–Kutta solver (see Lekien et al. [33] for details on FTLE in
multi-dimensional systems). The grid of initial conditions covers only regions of the stochastic
subspace VS where the probability measure has non-zero values for computational efficiency.
This procedure allows to compute the Cauchy–Green tensor whose eigenvalues give the number
of positive FTLE at each location where the probability measure has non-zero values.

The modal energy productions owing to the mean flow and the various DO modes will be
computed using exact expressions that can be derived for the case of Navier–Stokes equations.
Specifically, for each mode i, we will have the rate of energy dissipation, the energy production
owing to the mean flow, and the energy production owing to all the other modes given by
(see [21], §5e or [34])

Di = −Eω[Y2
i ]

∥Vui∥2

Re
, Pmean→i = −Eω[Y2

i ]
∫

D
uT

i Sūui dx

and PDO→i = Eω[YiYpYq]
∫

D
uT

q Sui up dx.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(5.1)

To understand the energy flow among different spatial scales, we will define a spatio-temporal-
averaged wavenumber for each DO mode. The exact definition of this averaged spatial
wavenumber follows from the homogeneous spectral theory and is defined as the ratio between
enstrophy and energy of each mode. Because the DO modes are normalized, their energy will be
equal to one. Therefore,

k̄2
i = 1

T

∫T

0

∫
∥V × ui∥2 dx dt. (5.2)

The flows that we will study are those that we use for the comparison with the POD method
(electronic supplementary material, appendix S1): the flow behind the cylinder for Re = 100 and
the double gyre flow with deterministic excitation for Re = 35. Both flows will be initiated with
random initial conditions having very small stochastic energy and we will focus on the transient
dynamical regime.

(a) Flow behind a cylinder
We consider the flow behind a cylinder in the instability regime for Re = 100. The details for this
particular flow in the context of DO equations (initial conditions, number and form of modes,
global energy transfers, etc) can be found in Sapsis et al. [34]. As soon as the symmetric wake
starts to develop, the flow becomes unstable and the variance of the first antisymmetric mode
starts to grow. During this uncertainty growth, new modes are adaptively added, all of them
having coefficients with normal distribution and very small variance (10−6). During this initial
period, the statistics of the flow remain Gaussian.

After the energy of the modes becomes important enough, we have interaction with the mean
flow leading to a strongly non-Gaussian, symmetric, probability measure that is localized over a
two-dimensional manifold. This can be seen in figure 6 where we present the mean flow together
with the first four DO modes (out of the eight used when the flow has been fully developed),
in terms of the vorticity field, at three different time instants, as well as a visualization of the
probability density function through the contours {(Y1, Y2, Y3) | fY1Y2Y3 = 10−6} and {(Y3, Y4, Y5) |
fY3Y4Y5 = 10−6}. Because of the low value that these contours correspond to, most of the probability
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Figure 6. Stochastic flow behind a cylinder for Re= 100. In the upper plots, the vorticity fields for the mean flow and the first
four DO modes (out of the eight used when the flow has been fully developed) are presented at times t = 53, 70, 85. In the
lower plots, three-dimensional contours of the pdf are presented shaded according to the probability that is contained in the
contour at each location (dark regions indicate lower probability). (Online version in colour.)

mass is contained inside these closed surfaces. Moreover, the colouring of the surfaces is according
to the contained probability at each location of the contour (red regions corresponding to high
probability and blue to low values).

At the second time instant (t = 70), we see that the probability measure has collapsed onto
a one-dimensional curve with a shape that still expresses the symmetric features of the flow.
Additionally, all of the modes have either symmetric or antisymmetric features. At this regime,
essentially, every possible realization of the flow is a member of a one-dimensional family of
solutions that ‘live’ on this manifold. The evolution of the probability measure continues (t = 85)
with a breaking of the support into to two symmetric branches containing most of the probability.
Despite this breaking, the dimensionality of these branches remain the same (one-dimensional)
because there is no external noise applied to the reduced-order system that could cause an initial
diffusion of the probability measure into directions that (by that time) have become unstable and
which they need just an initial perturbation in order to lead to local dimensionality increase in the
probability measure.

A detailed analysis of the energy transfer properties over the complete time interval is beyond
the scope of this work and will be presented in Sapsis et al. [34]. Here, we want to illustrate
the transition of the attractor from two-dimensional to one-dimensional. To this end, we will
now focus on the dimensionality decrease right after the first presented time instant (t = 53). In
figure 7, we show the probability measure (through the contour {(Y1, Y2, Y3) | fY1Y2Y3 = 10−6}) and
the corresponding scatter plot associated with the reduced-order dynamics at two time instants
t = 54 and t = 56. The contour is shaded (coloured in online version) according to the local
number of positive FTLE (with integration time δt = 1.6) which expresses the number of finite-
time instabilities at each location (Y1, Y2, . . . , Ys) of the phase space. Specifically, the dark (blue in
online version) regions that cover most of the probability measure correspond to locations with
one positive FTLE, whereas the much smaller light (green in online version) regions correspond
to locations of two positive FTLE. This is in accordance with theorem 2.1, which states that the
local dimensionality of the support of the probability measure cannot exceed for sufficiently long
time intervals the number of positive FTLE.
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Figure 7. Three-dimensional contours of the probability density function fY1Y2Y3 for two different time instants between which
the dimensionality of the support of the pdf decreases. The shading is according to the number of positive FTLE: dark (blue in
online version) indicates one positive FTLE and grey (green show in online version) two positive FTLE. The scatter plots for each
density are also presented. (Online version in colour.)
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Figure 8. Flow behind a disc. (upper plots) Modal energy production (i) due to the mean flow (first column), (ii) due to the
other DOmodes (second column);modal energy dissipation (third column). Variance of the threefirstmodes (top right); average
spatial wavenumber for each DO mode (equation (5.2)) (bottom right).

For the same time interval, we examine the transfer of energy among different dynamical
components by plotting (figure 8) the corresponding energy productions (equation (5.1)). We
observe that consistently with the previous calculations of positive FTLE we have only the first
mode absorbing energy from the mean flow. Subsequently, one part of this energy is dissipated,
and the rest passes to the other two DO modes through the quadratic term in the reduced-order
dynamics. This ‘targeted energy transfer’ has been previously observed in strongly nonlinear
mechanical systems [36] and as it has been proved in this case it is due to the existence of
a perturbed homoclinic orbit that governs the dynamics [37]. These two DO modes dissipate
one part of this energy and the rest is returned back to the mean flow. We emphasize that the
amount of energy dissipated has the same order of magnitude with the amount of energy that is
transferred to or from the other DO modes. Note that this reverse flow of energy back to the mean
flow is observed because we are having a fluid flow which is unstable but nevertheless laminar,
i.e. the length scales of the high-order modes are large enough so that dissipation is small enough
to be compared with the energy transfer back to the mean flow. In a turbulent regime, the length
scales of the high-order modes would not permit an energy transfer back to the mean that is
comparable to the dissipation.

In figure 8, we also present the average spatial wavenumber k̄ for each DO mode, showing
that in general higher modes contain energy in higher wavenumbers. Combining this result with
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Figure 9. Wind-derived double gyre flow under deterministic forcing and with random initial conditions for Re= 35. In the
upper plots, the vorticity fields for the mean flow, and the first three DO modes are presented at times t = 6.4, 7.2, 8.2. In the
lower plots, three-dimensional contours of thepdf are presented shaded (coloured in online version) according to theprobability
that is contained in the contour at each location (dark regions indicate lower probability). (Online version in colour.)

the fact that only the first few modes absorb energy from the mean flow, then pass it to higher
modes, which then return it to the mean flow again, we may conclude that the circulation of
energy occurs from large length scales to smaller length scales and from there back to large length
scales again. We have also seen how this circulation of energy between scales results in strongly
non-Gaussian statistics that ‘live’ in very low dimensional objects. As we will see in §5b, these
low dimensional objects are not necessarily manifolds because their dimensionality may not be
uniform everywhere.

(b) Wind-driven double gyre flow
The next application that we consider is the wind-driven double gyre flow. The excitation is
deterministic with no stochastic component and the Reynolds number is chosen Re = 35 (see
Sapsis & Lermusiaux [38,39] for details on the system configuration). Contrary to the previous
case that we examined, in this case, the DO modes reach a steady-state regime much earlier
than the reduced-order stochastic dynamics that continue to evolve. Specifically, as we observe in
figure 9, the shape of the modes remain invariant after the uncertainty associated with the modes
has become important (see also the variance plot in figure 11).

During the same time interval, the probability measure undergoes through important
transitions that involve both its shape and the dimensionality of its support. Specifically, as
it can be seen in figure 9, the initially Gaussian probability measure rapidly collapses into a
two-dimensional strip having very small width (t = 5.4). In the next time instant (t = 7.2), the
probability measures ‘lives’ in a hybrid support that consists of both one- and two-dimensional
domains. These two regions indicate the existence of two different kinds of instabilities that have
different extend into the stochastic subspace. In some part of the subspace, they coexist giving rise
to two-dimensional support for the probability measure, whereas in some other locations, only
one of them persists resulting in a one-dimensional support for the probability measure. This
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Figure 10. Three-dimensional contours of the probability density function fY1Y2Y3 for two different time instants betweenwhich
the one-dimensional part of the support is breaking. The shading is according to the number of positive FTLE: very bright (yellow
in online versions) indicates zero positive FTLE, dark (blue in online version): onepositive FTLE, light (green in online version) two
positive FTLE, and grey (red in online version) regions: three positive FTLE. The scatter plots for each density are also presented.
(Online version in colour.)
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hybrid form of the probability measure is not stable for a long time, because in a subsequent time
instant (t = 8.2), the one-dimensional part of the support starts breaking into zero-dimensional
points resulting in this way a symmetric, disconnected pair of two-dimensional sets.

The evolution of the form and dimensionality of the probability measure is in full consistency
with the number of positive FTLE. These are shown as different colours over the contour of the
probability density function in figure 10. We observe that at time t = 7.2 we mainly have two kinds
of domains: those with one positive FTLE (dark or blue in online version) and the ones with two
positive FTLE (light or green in online version). The dimensionality of the attractor follows exactly
these dynamical characteristics. In the latter time instant t = 8.2, we observe that the breaking of
the one-dimensional part of the support is caused due to a dynamical transition that results in
zero positive FTLE in this area of the phase space. In particular, we observe that the domain that
was previously characterized by one positive FTLE and which was one-dimensional now has all
the FTLE negative causing the probability measure to concentrate around individual points.
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Finally, the dimensionality of the attractor can also be interpreted in terms of the energy
transfer properties that are shown in figure 11. The first mode, which is unstable, acts almost
independently from the rest as it absorbs energy from the mean flow and subsequently dissipates
it almost completely. Its interaction with the other modes is restricted on the absorption of a very
small amount of energy that mainly comes from the second mode. On the other hand, the other
three modes present strong interactions. The second mode, which also absorbs energy from the
mean, acts as source of energy for modes 3 and 4. These stable modes take part of this energy
(through the quadratic terms in the reduced-order equations), dissipate one part of it, and then
return the rest (which is comparable in magnitude to the part that is dissipated) to the mean
flow. The average wavelength for each mode confirms that the circulation of energy occurs from
large length scales to smaller ones and then back to larger length scales again. Similarly, with the
previous example, this reverse flow of energy takes place because the flow is essentially laminar
(even though unstable), and the length scales of the high-energy modes are still very large so that
dissipation is comparable with the energy transfer to the mean.

6. Conclusions and future directions
We have established a direct link between the local geometrical properties of the attractor and
the number of instabilities for deterministic systems having unstable directions. This connection
was proved and illustrated through a probabilistic framework that allowed for the description of
the attractor and the energy transfers more effectively. In particular, we have proved that the
low local fractal dimensionality of the attractor is caused by the synergistic activity of stable
and unstable modes (corresponding to negative and positive Lyapounov exponents) that cause
contraction and expansion of volumes in the reduced-order phase space. We have also illustrated
the important role of the quadratic terms in the reduced-order dynamics, which transfer energy
from the unstable to the stable modes, keeping in this way, the energy of the former to bounded
levels and the energy of the latter to non-zero levels.

Our theoretical findings have been numerically demonstrated and validated in specific
applications involving two-dimensional fluid flows having a small number of instabilities. The
stochastic order-reduction framework that we applied is the one based on the DO field equations.
In contrast to the POD-based methodologies, the DO method allowed for the computation of the
appropriate modes based on the current statistical state and the equations describing the system
without requiring the usage of any empirical data in order to obtain information for the transient
character of the dynamics.

Future research includes the use of the presented results and ideas towards the development
of predictive capacity and understanding of the statistics of turbulent systems in high Re regimes
where the large number of positive Lyapunov exponents (i.e. instabilities) leads to significant
complexity (see Majda [40,41] for an overview of challenges and research directions in such
problems). The large intrinsic dimensionality of these systems makes the direct application of
order-reduction techniques, as those described here, a computationally challenging (and until
now unresolved) problem and therefore, it is essential these order-reduction ideas to be combined
with appropriate second-order schemes that can capture a larger part of the energy spectrum
inexpensively. Results along this direction of blended methods will be reported in Sapsis &
Majda [42,43].

The author thanks the anonymous reviewers for comments and suggestions that led to significant
improvements of the manuscript. He is also grateful to Prof. Andrew Majda and Prof. Alexander Vakakis
for stimulating discussions.
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Eω
[

Y 2
i (tk;ω)

]
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(ū (x, tk)−A [ū] (x))T (ū (x, tl)−A [ū] (x)) dx∈R
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