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a b s t r a c t

We develop a novel second-order closure methodology for uncertainty quantification in damped forced
nonlinear systems with high dimensional phase-space that possess a high-dimensional chaotic attractor.
We focus on turbulent systemswith quadratic nonlinearitieswhere the finite size of the attractor is caused
exclusively by the synergistic activity of persistent, linearly unstable directions and a nonlinear energy
transfer mechanism. We first illustrate how existing UQ schemes that rely on the Gaussian assumption
will fail to perform reliable UQ in the presence of unstable dynamics. To overcome these difficulties, a
modified quasilinear Gaussian (MQG) closure is developed in two stages. First we exploit exact statistical
relations between second order correlations and third order moments in statistical equilibrium in order
to decompose the energy flux at equilibrium into precise additional damping and enhanced noise on
suitablemodes, while preserving statistical symmetries; in the second stage, we develop a nonlinearMQG
dynamical closure which has this statistical equilibrium behavior as a stable fixed point of the dynamics.
Our analysis, UQ schemes, and conclusions are illustrated through a specific toy-model, the forty-modes
Lorenz 96 system, which despite its simple formulation, presents strongly turbulent behavior with a large
number of unstable dynamical components in a variety of chaotic regimes. A suitable version of MQG
successfully captures the mean and variance, in transient dynamics with initial data far from equilibrium
andwith large random fluctuations in forcing, very cheaply at the cost of roughly two ensemblemembers
in a Monte-Carlo simulation.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Turbulent dynamical systems have been a center of research
activity for many decades and this is due to both the mathematical
challenges associated with them and their importance in many
fields of nature and technology such as prediction in geosciences,
flow optimization and design in engineering, and electrical flow
prediction in neural science, just to mention a few. By the term
‘Turbulent Dynamical Systems’ we refer to complex systems
that evolve in time and ‘live’ in high dimensional phase spaces,
having a large number of internal instabilities acting, in general,
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over different temporal and spatial scales and ultimately lead to
strong nonlinear energy transfers between modes. These internal
instabilities cause rapid growth of small uncertainties which
inevitably exist in the initial conditions, the system parameters,
and the modeling equations such as uncertainty in the forcing.

The above challenges lead naturally to the adoption of a
statistical framework where the goal now is to model and
quantify uncertainty rather than trying to ‘avoid’ it. Uncertainty
quantification (UQ) deals with the probabilistic characterization
of all the possible evolutions of a dynamical system given
an initial set of possible states (together with a probability
measure that describes their occurrence) as well as the statistical
characteristics of the random forcing or parameters. A complete
probabilistic description is not feasible for systems of high or
infinite dimensionality and here the goal is the development of a
UQ scheme that can quantify effectively the second-order statistics
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of the response (which include the mean and the covariance
matrix) for systems with internal instabilities. We will mainly
focus on uncertainty quantification schemes for turbulent systems
with quadratic nonlinearities and spatially homogeneous statistics
motivated by the corresponding problems in fluid flows. In this
case a turbulent regime is characterized by distribution of non-
negligible amounts of energy over a large (if not infinite) number
of modes including the stable ones. This wide distribution of
energy over phase space is due to the large number of linearly
unstable modes that continuously amplify volumes in phase
space. Obviously for a linear system, the presence of persistent
instabilities would ultimately lead to energy blow-ups. However,
for a nonlinear turbulent system this is not the case since the
synergistic activity of nonlinear dynamical effects and persistent
linear instabilities creates a continuous transfer of energy from the
unstable to the stablemodes – amechanism that has as a result the
wide distribution of energy over stable and unstable modes.

The scope of this work is to develop inexpensive computational
schemes for uncertainty quantification (UQ) of turbulent systems
through a deeper understanding of the strengths and limitations
of second-order schemes. More specifically, we first emphasize
some important features of turbulent systems (with quadratic non-
linearities) associated with their dynamical and energy-transfer
mechanisms. Based on these propertieswe thendemonstrate some
fundamental limitations that widely-used UQ schemes possess in
turbulent regimes. Particular emphasis will be given on UQ closure
schemes based on partial linearization of the dynamics or Gaussian
closure of the infinite system of moment equations. Motivated by
this discussion we will then develop a novel, second-order, clo-
sure scheme based on the direct modeling of the nonlinear en-
ergy fluxes which are connectedwith higher-order statistics. More
specifically by using just second-order information for the statis-
tical steady state we will give explicit expressions for the non-
linear fluxes which (i) are consistent with the dynamical proper-
ties of the exact nonlinear fluxes, (ii) reproduce the correct steady
state information (both in terms of energy and stability), (iii) are
parametrized with respect to instantaneous spatial system prop-
erties (such as total energy) in order to achieve correct tempo-
ral scales in the response. Therefore the goal is to calibrate a UQ
scheme at a statistical steady state to guarantee statistical consis-
tency at equilibrium and then to accurately compute the stochas-
tic response to uncertain initial data or forcing. Note that there are
many potential UQ schemes which calibrate the statistical steady
state exactly but have the incorrect response ([1,2], and Section 5
below).We also emphasize that second-order statistics can always
be obtained through long-time averaging of any realization of the
turbulent systemmaking the presented approach computationally
tractable in the calibration phase.

Essentially, we will model the effect of the nonlinear energy
transfers on each mode by (i) adding to the linearly unstable
modes systematically additional damping which will account for
the departure of energy due to nonlinear terms (balancing the
linearly unstable character of these modes), and (ii) adding to the
linearly stable modes additional stochastic excitation which will
model the energy received by the unstable modes. The additional
damping and stochastic excitation will be scaled such that they
always satisfy the properties and symmetries of the nonlinear
system, e.g. energy conservation of the quadratic terms. The
relative magnitude of the additional damping and noise for each
mode will be dictated by the second-order, steady state, statistical
information and will be parametrized by a suitable spatial
functional of the statistics that follows from scaling arguments.

Through this approach we will create a nonlinear model
with the minimal additional damping and additional stochastic
forcing required to reproduce as stable solution the correct energy
distribution of the system in steady state. Moreover, because
of the parametrization employed in the nonlinear fluxes, their
dynamically consistent form, and the fact that the linear part in
the approximation scheme is exact, we will see that the developed
UQschemeperforms impressively even in energetic regimeswhich
are completely different from the steady state. This is also the
case when the forcing parameters are different from those used
to compute the steady state statistics, time-dependent, and do not
allow the system to reach a statistical equilibrium.

For illustration, validation, and comparison purposes we
will use the Lorenz 96 system (L-96) which is the simplest
paradigm of a complex turbulent dynamical systems possessing
properties found in realistic turbulent systems, such as energy-
preserving advection, damping and forcing. From the point of
view of statistical properties the turbulent responses of L-96 are
characterized by important energy spanning the whole spectrum,
a large number of persistent instabilities, and strong nonlinear
energy transfers between modes. Therefore, L-96 is a perfect
candidate both to illustrate the limitations of existing UQ schemes
which are based on Gaussian closure and to validate the derived
UQ model.

2. Turbulent systems with quadratic nonlinearities

We start by providing the general setup which will be a
high dimensional system with linear dynamics and an energy
preserving quadratic part. More specifically, the general system
that we will consider for our analysis is given by

du
dt

= L [u] ≡ [L + D]u + B (u,u) + F (t) + Ẇk (t; ω) ξk (t) (1)

acting on u ∈ RN . In the above equation we have
• L being a skew-symmetric linear operator representing the β-

effect of Earth’s curvature, topography etc. and satisfying,

L∗
= −L.

• D being a negative definite symmetric operator,

D∗
= D,

representing dissipative processes such as surface drag, radia-
tive damping, viscosity, etc.

The quadratic operator B (u,u) conserves the energy by itself
so that it satisfies
B (u,u) .u = 0.
Finally, F (t) + Ẇk (t; ω) ξk (t) represents the effect of external
forcing, i.e. solar forcing, which we will assume can be split into
a mean component F (t) and a stochastic component with white
noise characteristics.

We use a finite-dimensional representation of the stochastic
field consisting of fixed-in-time, M-dimensional, orthonormal
basis (where M can be relatively large; here it will be set equal to
N)
u (t) = ū (t) + Zi (t; ω) vi
where ū (t) represents the ensemble average of the response,
i.e. the mean field, and Zi (t; ω) are stochastic processes (stochas-
ticity may be due to the initial conditions or the stochastic excita-
tion).

The mean field equation is given by

dū
dt

= [L + D] ū + B (ū, ū) + RijB

vi, vj


+ F, (2)

where R =

ZZ∗


is the covariance matrix. Moreover the random

component of the solution, u′
= Zi (t; ω) vi satisfies

du′

dt
= [L + D]u′

+ B

ū,u′


+ B


u′, ū


+ B


u′,u′


− RjkB


vj, vk


+ Ẇk (t; ω) ξk (t) . (3)
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Fig. 1. Numerical solutions of L-96 model in space–time for weakly chaotic (F = 6), strongly chaotic (F = 8), and fully turbulent (F = 16) regime. To illustrate better
the patterns formed we have interpolated the discrete space and we have plotted contours of the solution in space–time (red contours correspond to minima and blue to
maxima of the solution).
Byprojecting the above equation to eachbasis element vi weobtain

dZi
dt

= Zj

[L + D] vj + B


ū, vj


+ B


vj, ū


.vi

+

B

u′,u′


− RjkB


vj, vk


.vi + Ẇkξk.vi.

From the last equation we directly obtain the evolution of the
covariance matrix

dR
dt

= LvR + RL∗

v + QF + Qξ , (4)

where we have
(i) the linear dynamics operator expressing energy transfers

between the mean field and the stochastic modes (effect due to
B), as well as energy dissipation (effect due to D) and non-normal
dynamics (effect due to L)

{Lv}ij =

[L + D] vj + B


ū, vj


+ B


vj, ū


.vi (5)

(ii) the positive definite operator expressing energy transfer due
to external stochastic forcing
Qξ


ij = (vi.ξk)


ξk.vj


(6)

(iii) as well as the energy flux between different modes due
to non-Gaussian statistics (or nonlinear terms) modeled through
third-order moments

QF = ZmZnZjB (vm, vn) .vi + ZmZnZiB (vm, vn) .vj. (7)

The last term involves higher-order statistics and therefore
suitable closure assumptions need to be made in order to set up
a UQ scheme. Moreover, the energy conservation property of the
quadratic operator B is inherited by the matrix QF since

Tr [QF ] = 2ZmZnZiB (vm, vn) .vi (8)

= 2B (Zmvm, Znvn) .Zivi = 2B (u′,u′) .u′ = 0. (9)

The above exact statistical equations will be the starting point
for the approximation schemes that we will present and develop
below.

2.1. The Lorenz 96 system

The simplest prototype example of a turbulent dynamical
system is due to Lorenz and is called the Lorenz 96 (L-96) model.
It is widely used as a test model for algorithms for prediction,
filtering, and low frequency climate response [3–7]. The L-96
model is a discrete periodic model given by the following system:

dui

dt
= ui−1 (ui+1 − ui−2) − ui + F , i = 0, . . . , J − 1 (10)
with J = 40 and with F the deterministic forcing parameter. We
can easily observe that the energy conservation property for the
quadratic part is satisfied (i.e. B (u,u) · u = 0) and the negative
definite part has the diagonal form D = −I.

The model is designed to mimic baroclinic turbulence in the
midlatitude atmosphere with the effects of energy conserving
nonlinear advection and dissipation represented by the first two
terms in (10). For sufficiently strong forcing values such as F = 6, 8
or 16 the L-96 is a prototype turbulent dynamical system which
exhibits features of weakly chaotic turbulence (F = 6), strong
chaotic turbulence (F = 8), and strong turbulence (F = 16) (cf.
Fig. 1).

Since the L-96 system is invariant under translations we will
use the Fourier modes as a fixed basis to describe its dynamics.
Because of the translation invariance property the statistics in the
steady state will be spatially homogeneous, i.e. the mean field
will be spatially constant and the covariance operator will have
a diagonal form. In addition if the initial conditions are spatially
homogeneous the above properties will hold over the whole
duration of the response. Although spatial homogeneity simplifies
the technicalities of our analysis, the majority of our conclusions
extend to the non-homogeneous case as shown in Fig. 10 below.

In the L-96 system the external noise is zero, and therefore we
have no contribution from external noise in Eq. (4), i.e. Qξ = 0.
Thus uncertainty can only build-up from the unstable modes of
the linearized dynamics – described by Lv (ū) –whichwill magnify
the initial uncertainty. In Fig. 2 we present the number of unstable
wavenumbers, i.e. the number of eigenvalue pairs with positive
real part for the linearized matrix Lv (ū), with respect to the value
of the steady state mean field (note that spatial homogeneity
implies a spatially constant mean field). In the same plot we show
with dashed lines the steady state value of the mean field for
specific values of the forcing parameter F .

Based on the presence of persistent positive eigenvalues in the
steady-state we have (for sufficiently large F ) the following energy
cycle (Fig. 3):

1. Energy from the external excitation F leads to the growth of the
mean field energy 1

2 ū.ū (Eq. (2)).
2. The importantmagnitude of ū leads to the activation of positive

eigenvalues of Lv (ū) (see Fig. 2) that essentially absorb energy
from the mean field and transform it to variance for the
stochastic modes that are associated with this process.

3. The nonlinear conservative term B

u′,u′


absorbs part of this

energy, transferring it to the stable stochastic modes. It acts as a
dissipative mechanism for the unstable modes (balancing their
positive eigenvalues) and external noise for the stable modes
bringing all of them into a statistical equilibrium.
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Fig. 2. Number of positive eigenvalues of Lv (ū) for L-96 with respect to the
magnitude of the mean field ū. The red dashed lines indicate exact equilibrium
points for different values of the forcing parameter F . The green solid lines indicate
equilibrium points for the DO UQ scheme for N = 10.

4. The stable modes receive energy from the unstable ones
through the nonlinear conservative terms. A portion of this
energy is dissipated and the rest is subsequently returned to the
mean through the modes with negative eigenvalues. All modes
including the mean flow dissipate energy through the negative
definite part of the linearized dynamics.

This cycle of energy in the L-96 model is representative
of any general model that contains (i) unstable linearized
modes whose stability depends on the mean field energy level
(i.e. that they absorb energy from the mean field), (ii) stable
modes, and (iii) nonlinear conservative terms that transfer
energy between the modes and through this transfer the system
is reaching an equilibrium. This structure is ubiquitous in
turbulent systems in the atmosphere and ocean with forcing and
dissipation [8–11] as well as in fluid flows with lower dimensional
attractors [12]. However, there are also examples of idealized
truncated geophysical flows without dissipation and forcing with
a Gaussian statistical equilibrium where the linear operator at the
climate mean state is stable while the system has many positive
Lyapunov exponents [13].

3. Limitations of quasilinear Gaussian closure for UQ in
unstable, deterministic systems

The simplest closure scheme [14] for themoment problem for a
deterministic systemstated in theprevious section is to completely
neglect in the evolution equation for the covariance the third-
order moments, i.e. set QF = 0. This is equivalent with neglecting
quadratic terms only in the equation for the covariance (partial
linearization of the moment system) or by assuming Gaussian
statistics. In this case the evolution of the covariance matrix is
performedwith the closed set of equations (written for L-96where
Qξ = 0)

dū
dt

= [L + D] ū + B (ū, ū) + RijB

vi, vj


+ F (11a)

dR
dt

= LvR + RL∗

v. (11b)

In the second equation we observe that there are no terms that
can express energy transfers between different modes of the
system. The last statement does not include the energy transfers
occurring betweenmodes corresponding to the samewavenumber
Fig. 3. Energy flow in the L-96 system. Energy flows from the mean field to the
linearly unstable modes and then redistributed through nonlinear, conservative
terms to the stable modes. Red arrows denotes dissipation, while the dashed box
indicates terms that conserve energy.

(i.e. linear energy transfers) which however are not sufficient to
absorb the energy produced by the unstablemodes and equilibrate
the system. Thus, for a turbulent system that means that if
the energy level of the mean field is accurate we will have
persistent instabilities that would cause uncontrollable growth of
the unstable modes. This is also reflected from the non-existence
of a steady state solution for the covariance Eq. (11b) if ū is such
that Lv (ū) has positive eigenvalues. For the L-96 system this will
not be the case since the QG closure scheme avoids blow-up of
the unstable modes by reducing the mean field energy to a level
that the linearized operator has zero number of eigenvalue pairs
with positive real part (see Fig. 2) so that the energy flowing from
the mean to the unstable modes is balanced by the dissipation of
energy occurring in the unstable modes (no energy is transferred
to the stable modes). Note that this behavior is independent of the
forcing parameter value F as long as the latter is sufficiently large
in order for the exact solution to have non-zero number of positive
eigenvalues. In fact, this behavior can be demonstrated rigorously
for the L-96 model as sketched below.

We consider homogeneous statistical solutions defined by the
deterministic Gaussian closure in (11a)–(11b) for the L-96 model.
With these homogeneous assumptions, the mean, ū (t), is a time
varying constant, the covariance multiplier is diagonal in Fourier
space, R = rjδij, and the linear operator, Lv , is the diagonal Fourier
multiplier [5,13]

Lvrj = ljrj

with

lj (ū) =


e

j
J 2π i

− e−
j
J 4π i


ū − 1, for j ≤

J
2
with J = 40. (12)

The exact solution of the quasilinear Gaussian closure equations
in (11a)–(11b) for the L-96 model with these homogeneity
assumptions becomes the diagonal equations

drj
dt

= 2 Re lj (ū) rj

dū
dt

= −ū + F +

20
j=0

rj
B

vj, vj


.v0 + B∗


vj, vj


.v0

2
(13)
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with vj the j-th Fourier eigenmode and ∗ denotes the complex
conjugate; it is easy to check that B


vj, vj


.v0 ≠ 0 for any j ≠ 0.

With Eqs. (12) and (13) we find trivially that the statistical steady
state of the deterministic Gaussian closure for a given ū∞ requires

rj,∞ = 0 unless Re lj (ū) = 0 (14)

i.e. the covariance is restricted to the neutrally stable modes
of Lv at ū∞. Furthermore, clearly the first equations in (13)
have a dynamically stable statistically steady state according to
linear theory only if Re lj (ū) ≤ 0, i.e. Lv (ū∞) has no unstable
eigenmodes. Thus, the only allowed stable statistical steady states
of the Gaussian closure are defined by the unique value ūcr ,
satisfying marginal linear stability as depicted at the bottom of
Fig. 2where for any F , the variance rj,∞ at the neutrally stablemode
is adjusted so that

ūcr = F +

20
j=0

rj,∞
B

vj, vj


.v0 + B∗


vj, vj


.v0

2
(15)

i.e. the right hand side of the second equation in (13) also vanishes.
This indicates the fundamental limitations of the straight-

forward Gaussian closure for unstable deterministic dynamical
systems. On the other hand, for some nonlinear systems with in-
termittent transient instabilities, such simple quasilinear Gaussian
closures augmented by suitable stochastic forcing can have re-
markable skill for UQ in turbulent systems [2,15–18]. An alterna-
tive procedure often used in the geophysical turbulence literature
is to ignore the feedback to themean flowand stabilize the instabil-
ities in the fluctuations from (11b) by adding adhoc dissipation and
white noise forcing [19]; the limitations of these methods for UQ
in the present context are discussed below and earlier elsewhere
[2,7,15].

4. Modified quasilinear Gaussian (MQG) models

From the previous analysis it is clear that the inclusion of an
energy transfer mechanism that will continuously transfer energy
from the unstable modes to the stable ones is essential in order
to achieve the correct energy levels in the system. Our goal is
to build a time-dependent dynamical system that retains these
energy transfers at steady state while it is minimally modified so
that it has goodUQ properties for the transient part of the response
and for modified external parameters.

Including a constant QF ,∞ that has been computed using steady
state information of the system statistics will not resolve the issue
since the eigenvalues of Lv will make the steady state solution of
the covariance equation

dR∞

dt
= 0 = LvR∞ + R∞L∗

v + Qξ + QF ,∞ (16)

unstable for a mean field that has the correct energy level, i.e. the
pair R∞, ū∞ will be an unstable steady state solution if the
nonlinear fluxes are represented as a constant matrix QF ,∞. This
is because the stability of the Lyapunov Eq. (16) depends on the
eigenvalues of Lv . In particular, a Lyapunov equation like (16) has
a stable equilibrium if and only if all the eigenvalues of Lv have
negative real parts [20]. However, as we have illustrated in Fig. 2,
an important number of those eigenvalues have positive real parts
for the correct mean ū∞.

Based on the observation that the eigenvalues are effectively
changed by the existence of the nonlinear energy transfer
mechanism we propose a special form of the flux QF that will
make the correct steady state statistics a stable equilibrium. More
specifically we split the nonlinear fluxes into a positive semi-
definite part Q+

F and a negative semi-definite part Q−

F :

QF = Q−

F + Q+

F .
Note that the nonlinear fluxes should always satisfy the conserva-
tive property of B which in the above context is expressed by the
constraint (8):

Tr [QF ] = 0 ⇒ Tr

Q+

F


= −Tr


Q−

F


. (17)

The positive fluxes Q+

F indicate the energy being ‘fed’ to the stable
modes in the form of external stochastic noise. On the other hand
the negative fluxes Q−

F should act directly on the linearly unstable
modes of the spectrum, effectively stabilizing the unstable modes.
In particular we will represent the negative definite part of the
fluxes as additional damping in order to modify the eigenvalues
associatedwith the Lyapunov equation (16) so that these havenon-
positive real part for the correct steady state statistics. To achieve
this we choose to represent the negative fluxes as

Q−

F (R) = N∞R + RN∗

∞
(18)

with N∞ determined by solving the equation

Q−

F∞
= Q−

F (R∞) = N∞R∞ + R∞N∗

∞
(19)

where Q−

F (R∞) is the negative semi-definite part of the steady-
state fluxes obtained by the equilibrium equation (16). Eq. (19)
essentially connects the negative-definite part of the nonlinear
energy fluxes (which is a functional of the third-order statistical
moments)with the second-order statistical properties that express
energy properties of the system.

We can easily verify that N∞ in Eq. (19) will be given explicitly
by

N∞ =
1
2
Q−

F (R∞) R−1
∞

. (20)

On the other hand the positive fluxes Q+

F will be computed also
according to the steady state information, i.e. based on the positive
semi-definite fluxes Q+

F∞
= Q+

F (R∞) . The form of this matrix
defines the amount of energy that the linearly stablemodes should
receive in the form of additive noise.

The conservative property of the nonlinear energy transfer
operator B requires that for all times the conservation property
(17) is satisfied. This is achieved by retaining the shape of the
fluxes (i.e. distribution among different modes) but rescaling their
magnitudes so that (17) is achieved. This can be obtained by
choosing the positive fluxes as

Q+

F = −
Tr


Q−

F


Tr


Q+

F∞

Q+

F∞
. (21)

These nonlinear fluxes are time-dependent (since Tr

Q−

F


depends

on time through R) and the last formulation guarantees the
conservation property (17) at every instant of time. In this
way we substitute the nonlinear conservative mechanism by a
conservative pair of positive and negative energy fluxes having the
form of additional damping for the unstable modes and additive
noise for the stable modes (Fig. 4). Note that this additional
damping is chosen so that the unstable eigenvalues of the original
linearized dynamics are guaranteed to have zero real part in the
statistical steady state. In that sense this is the minimal amount
of additional damping and noise required to achieve marginal
stability (non-positive eigenvalues) of the correct steady state
statistics. Thus, we have a minimally changed model compared to
the original equation that admits the correct steady state statistics
as a stable equilibrium stage. In the next subsections we will see
that for numerical reasons it is required to add a small amount
of additional damping (and noise) so that the correct statistical
steady state is not just marginally stable but it is associated with
eigenvalues having purely negative real part. Moreover, in the
transient phase of the dynamics the intensity of the nonlinear
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Fig. 4. Energy flow in the MQG UQ scheme. Energy flows from the mean field to
the linearly unstablemodes and then redistributed through empirical, conservative
fluxes to the stable modes. Red arrows denotes dissipation, while the dashed box
indicates terms that conserve energy.

energy fluxes should depend on the energy level of the system and
to this end wewill apply a scaling factor to the additional damping
and noise (that represent the nonlinear energy fluxes) which will
take into account this dependence.

Note that all of the required fluxes Q−

F∞
,Q+

F∞
are evaluated

explicitly from available information involving the linear operator,
Lv (ū∞), and the covariance matrix, R∞ in a statistical steady
state. In addition, since the nonlinear flux model is kept separate
from the unmodified linear dynamics, it expresses an inherent
property of the system, a direct link between second and third-
order statisticalmoments in the same spirit that Karman–Howarth
equation [21] does for isotropic turbulence.

4.1. Improving marginal stability of the stochastic attractor

We saw that the negative fluxes Q−

F essentially equilibrate the
unstable directions of the linearized dynamics resulting in zero
eigenvalues (for the unstable directions of the original operator).
The equilibration is performed in the steady state by suitably
choosing the additional damping N so that the total energy fluxes
(linear and nonlinear) involving these modes is vanishing in
the statistical steady state. Even though the correct steady state
is achieved the necessary time for this equilibration is infinite
since this approach of modeling the nonlinear fluxes results in
marginally stable equilibrium.

To avoid this difficulty we add uniformly a small amount of
dissipation and noise over all modes so that the attractor in the
steady state remains invariant. This can always be done if we
choose

N∞ =
1
2


Q−

F∞
− qI


R−1

∞
(22)

Q+

F = −
Tr


Q−

F


Tr


Q+

F∞

 
Q+

F∞
+ qI


(23)

where q is a positive constant. For the problem thatwe considerwe
choose to scale this with the maximum eigenvalue of the steady
state fluxes, i.e. we set

q = dsλmax [QF∞] .

Following this approachwe avoid the problem ofmarginally stable
equilibrium and we increase significantly the skill of the UQ
scheme even for very small values (but non-zero) of the constant
Fig. 5. Information distance between Monte-Carlo solution and MQG UQ scheme
for different values of the parameter ds and over different dynamical regimes of the
L96 system.

ds. In Fig. 5 we present results for the L-96 system in terms of the
time-averaged information distance [2]

P =
1
T


T


RN

fMQG (u, t) log
fMQG (u, t)
fMC (u, t)

dudt

between the Monte-Carlo solution probability density fMC (u, t)
and theMQGprobability density fMQG (u, t) over different values of
the parameter ds and forcing F . Information distance is an effective
tool for measuring directly the lost bits of information by the
approximation scheme since it considers the information content
of the distributions and it is invariant under transformation of
variables. To compute the information distancewe use only second
order information since MQG does not provide higher order
statistics. In this case the formula above takes the more explicit
form

P =
1
T


T
dt


1
2


ū∗

MQG − ū∗

MC


R−1
MC


ūMQG − ūMC


+


−

1
2
log det RMQGR−1

MC +
1
2
tr


RMQGR−1

MC


− M


. (24)

We observe that for the chaotic regimes (F = 5, 6) the skill of the
MQG scheme is not influenced very strongly from the choice of the
parameter ds as long as this is not zero. In this regime ds behaves
essentially as a singular parameter. For much larger values of ds
the performance slowly deteriorates since the linear and nonlinear
energy fluxes are ‘buried’ by the uniform diagonal part qI . For
larger values of F the transition (to very goodperformance) ismuch
smoother. In all dynamical regimes we see that the dependence of
the performance of the UQ scheme on the exact value of ds is very
weak as long as this value is non zero.

4.2. Scaling of the nonlinear energy fluxes and transient dynamics for
MQG

To achieve the best possible accuracy in the timescales of the
system, we parametrize the matrix N∞ by various forms of the
energy or rates of energy flux. In particular from (7) we have
the dimensional relation that N ∼ σiḂased on this we use the
following form:

N =
f (R, Lv)

f (R∞, Lv∞)
N∞ where N∞ =

1
2


Q−

F∞
− qI


R−1

∞
(25)

with the function f (R, Lv) given by

f (R) = [Tr (R)]
1
2 , energy functional
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Fig. 6. Comparison of total variance (trace of covariance matrix) over different
scalings of the energy fluxes. The case considered here is the Lorenz 96 systemwith
F = 8 + sin (π t).

f (R, Lv) =

 
λi[Lv ]>0

σ 2
i

 1
2

, energy of unstable modes

f (R) =

N
i=1

σi, sum of typical deviations

f (R, Lv) =


λi[Lv ]>0

λi [Lv] σi, sum of positive nonlinear fluxes

where σ 2
i are the eigenvalues of the covariancematrix R. As shown

in a non-trivial test example for L-96 in Fig. 6 below, the form of
f strongly influences the transient behavior. Compared with the
other choices, the best one is always the sum of typical deviations
and for this reason it will be the standard choice for what follows.

4.3. Summary of MQG and a related stochastic ODE

With all of the above discussion, the Modified Quasilinear
Gaussian closure (MQG) developed above and implemented in the
Section 5 below is given by the nonlinear dynamical system for the
mean and covariance,

dū
dt

= [L + D] ū + B (ū, ū) + RijB

vi, vj


+ F (26)

dR
dt

= LvR + RL∗

v + NR + RN∗
+ Q+

F + Qξ (27)

where

N =
f (R)
f (R∞)

N∞ with N∞ =
1
2


Q−

F∞
− qI


R−1

∞
and

f (R) =

N
i=1

σi,

(28)

Q+

F = −
Tr


Q−

F


Tr


Q+

F∞

 
Q+

F∞
+ qI


with Q−

F = NR + RN∗, (29)

q = dsλmax [QF∞] with ds ≪ 1. (30)

It is interesting to ask if there is a formal nonlinear stochastic
equation which has the mean and covariance matrix in (26)–(27),
i.e. formally, the closed system of SDEs has the mean and
covariance agreeing with (26)–(27). Next we proceed to the
formulation of a stochastic differential equation that is equivalent
to the closed system of equations describing the mean and
covariance of the MQG closure scheme:

dū
dt

= [L + D] ū + B (ū, ū) + B (u′,u′) + F (31)

du′

dt
=


[L + D]u′

+ B

ū,u′


+ B


u′, ū
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+N


u′u′∗, ū


u′

+

Q+

F


u′u′∗, ū

 1
2 Ẇ1 + ξẆ2 (32)

where N,Q+

F are defined by Eqs. (25) and (23). By direct
comparison with the exact Eqs. (2), (3) we see that the mean
equation is identical while the equation for the stochastic
perturbation differs in the nonlinear term. In particular the
quadratic term of the exact equation has been replaced by a pair
of damping and noise terms which depend linear on the state
of the perturbation and non-linearly, non-locally to the second
order statistics of the systems. Nonlocality is meant in the sense
that the damping coefficient depend on spatial functionals of the
covariance function.

Note that this set of Eqs. (31)–(32) illustrates the realizability
of the new closure scheme. The above set cannot be merged into a
single equation since the modification of the quadratic terms has
occurred only in the perturbation equation while the equation for
the mean remains invariant. We emphasize that the constructed
set of closed equations is a representative of a new class of
stochastic differential equations where the evolution of each
stochastic realization depends on the global statistics, i.e. on the
collective or statistical behavior of all the realizations. In particular,
the associated formal Fokker–Planck equation is nonlinear. Such
novel stochastic equations merit further mathematical study.

We note that there is already a Gaussian closure scheme
[22] which imposes the important conservation condition for the
trace of the nonlinear fluxes (17). However, the philosophy in
developing this scheme is different from the approach here. In
[22] those authors introduce an ad-hoc white-noise forcing to
represent the positive fluxes due to nonlinear terms and then
they balance this positive flux by additional damping (also having
an ad-hoc representation) which is tuned to best approximate
the climatology. This tuning procedure introduces important
errors while in the approach here the shape of the additional
damping and noise is induced directly from the steady state
statistics and the dynamical operator of the system in order
to guarantee climate fidelity [1,2]. Also, the MQG scheme is
vastly simpler than contemporary stochastic backscatter schemes
[23,24] and only requires the induced effects of third order
moments in the statistical equilibrium calibration of the variance.
In addition the only adjustable parameter in theMQGscheme is the
small parameter ds (from (30)) introduced for dynamic stability;
furthermore, as shown in Fig. 6 the natural choices of f (R) given
by the square root of the energy or the sum of the deviations both
perform very well.

5. Illustration and validation in the L-96 model

In this section we will illustrate numerically the UQ properties
of the MQG closure. We first study the performance of the UQ
scheme for the case of constant in time forcing parameter F .
The nonlinear fluxes N∞,Q+

F are specified using, for each case
of forcing parameter F , the steady state covariance and mean:
R∞, ū∞. The scaling of the nonlinear fluxes is done using the sum
of the typical deviations as described above.

The results are shown in Fig. 7 for four different forcing
parameters (four columns) covering all three dynamical regimes
of L-96. In particular for F = 16 we observe that energy is
distributed along every wavenumber while for the weakly chaotic
regime corresponding to F = 5 the spectrum has a much sharper
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Fig. 7. Comparison of MQG uncertainty quantification scheme with exact statistics produced by the Monte-Carlo method. Results are shown for different values of the
forcing parameter F (constant in time) corresponding to weakly chaotic, chaotic, and turbulent regimes. The colorplots present the evolution of the exact and approximated
spectrum. We also present the energy of the mean and the trace of the covariance over time. At the last row we show the steady state spectrum (exact and approximate) as
well as the initial spectrum.
form with a well distinguished peak. The skill of the MQG closure
scheme is illustrated both from its ability to reproduce in a stable
way the linearly unstable, steady-state attractor and from its skill
during the transient phase.

More specifically, we can observe the multiscale character of
the response involving initially a rapid growth of almost every
mode and subsequently a multiscale relaxation to the equilibrium
spectrum. The initial conditions of the system are shown in the
bottom row – in all cases we initialize uncertainty in the high
frequencymodes – themean is also initiated as constant. TheMQG
algorithm is capturing both the initial rapid growth of the energy
and mean and the subsequent slow dynamics. The case F = 5
is particularly difficult because the high energy modes require a
substantial amount of time to equilibrate. Despite this multiscale
character of the stochastic response the MQG scheme is able to
recover both fast and slow dynamics of the system, as can be seen
directly from the comparison of the spectra. We emphasize that
in all the considered cases the system is initiated very far from
equilibrium and performs strongly nonlinear energy oscillations
over all wavenumbers until it reaches an equilibrium. These
oscillations create energy levels for themean and the perturbations
which are much higher than the corresponding equilibrium
values.
The second numerical experiment that we perform is one with
time periodic forcing parameter F . The comparison of MQG with
Monte-Carlo can be seen in Fig. 8 where we observe that because
of the time dependent character of the excitation, the system
converges to a time-periodic stochastic attractor. For each case
the nonlinear fluxes are computed based on the exact steady state
statistics of the system that correspond to the time-averaged value
of the excitation parameter (these time averaged values are the
same with those shown in Fig. 7, i.e. F̄ = 16, 8, 6, 5). In all
cases the performance of the MQG scheme on capturing the time-
periodic stochastic attractor is remarkable. We also perform the
same numerical experiment using aperiodic forcing parameters
generated by the Ornstein–Uhlenbeck process

dF = −
1
τF

Fdt + σFdW . (33)

Similarly with the time periodic case the random realizations of
the forcing parameters have averaged values: F̄ = 16, 8, 6, 5.
These time-constant cases are used as sources of steady-state
statistics for the nonlinear fluxes employed in the aperiodic forcing
parameter cases. The results are shown in Fig. 9 where it is
illustrated that the exact and approximate statistics compare
favorably. Note that for F̄ = 16 a different kind of initial spectrum
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Fig. 8. Comparison ofMQG uncertainty quantification schemewith exact statistics produced by theMonte-Carlomethod. Results are shown for different dynamical regimes
of the time-periodic forcing parameter F . The nonlinear fluxes have been computed using the time averaged value of F (t) – these averaged values coincide with the constant
values of the previous figure. The colorplots present the evolution of the exact and approximated spectrum. We also present the energy of the mean and the trace of the
covariance over time. At the last row we show the steady state spectrum (exact and approximate) as well as the initial spectrum.
is considered in order to illustrate the robustness of performance
over different initial spectra.

Finally, in order to push the developed UQ scheme to its limits
we consider an aperiodic forcing parameter that has very strong
fluctuations ranging from F = 0 to F = 30. In addition, the
forcing is no more spatially constant but instead it is non-zero
in the spatial nodes j = 1, . . . , 20 and zero in the nodes j =

21, . . . , 40. The nonlinear fluxes are computed based on steady
state statistics for F = 10. We recall that for F close to zero L-
96 has no unstable directions while for F = 30 it has more than
ten unstable wavenumbers. We observe in Fig. 10 that while there
are some discrepancies, especially when the forcing parameter
takes its maximum value, MQG is successful on capturing the very
strong variations of energy even in a mode-by-mode comparison.
We emphasize that this is not a spatially homogeneous case as
the previous examples. A thorough study of the performance
and limitations of the MQG approach with strong time–space
inhomogeneities is reported in [25].
Comparison with Mean Stochastic Models (MSM)

A very common UQ strategy in the turbulence modeling
in climate science [6,7,19] is based on the substitution of the
nonlinear terms in the quadratic system by linear terms which are
tuned so that the correlation time scale for eachmode, aswell as its
steady state variance, coincides with the exact steady-state values
which are assumed to be known.More specifically, the fluctuations
in the original dynamical system are approximated by a linear
system of the form
du
dt

= (L + D + G)u + B (ū∞,u)

+ B (u, ū∞) + F (t) + ξẆ1 + ρẆ2, (34)

where the augmented damping G and white noise forcing ρ
are chosen to roughly produce the correct steady state variance
and correlation time scales. In general there are no explicit
choices of G and ρ which can exactly match the logged
correlation and covariances exactly [7,19]. Nevertheless such
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Fig. 9. Comparison ofMQG uncertainty quantification schemewith exact statistics produced by theMonte-Carlomethod. Results are shown for different dynamical regimes
of the aperiodic forcing parameter F generated as an Ornstein–Uhlenbeck process. The nonlinear fluxes have been computed using the time averaged value of F (t) – these
averaged values coincide with the constant values of Fig. 7. The colorplots present the evolution of the exact and approximated spectrum. We also present the energy of the
mean and the trace of the covariance over time. At the last row we show the steady state spectrum (exact and approximate) as well as the initial spectrum. Note that for
F̄ = 16 a different kind of initial conditions is considered.
methods qualitatively reproduce the features of synoptic scale
eddies in the atmosphere [19]; such methods can also be very
skillful as filters with judicious model error [6]. However, they
are severely deficient as UQ schemes [2,7,15] since, for example,
they cannot capture the change in variance due to external
forcing. Mean stochastic models, MSM-1, based on the climate
variances and integral of the autocorrelation (andwhich are always
realizable), and models, MSM-2, based on the standard procedure
[19] sketched above have been developed for the L-96 model [6,7].

In Fig. 11 we present a direct comparison in terms of the total
energy of the mean and random part of the stochastic solution
for the L-96 system with a time dependent forcing parameter (the
same forcing parameter with Fig. 9 – first column). As expected
from the theoretical results, both MSM models do not capture
any fluctuations on the covariance of the solution caused by the
time-dependent nature of the forcing parameter. Clearly, this has
very important consequences on the estimation of the mean as
well. The failure of both models is due to the fluctuations of the
forcing parameter that push the system to different dynamical
regimes, while MSM schemes are tuned for a specific forcing value
and their performance drops drastically when the quality of the
dynamics (number of unstable directions, shape of the spectrum,
timescales) changes significantly. Aswe justified both theoretically
and numerically this is not the case for the MQG scheme where
the nonlinear fluxes aremodeled as theminimum amount of noise
and damping required to represent these nonlinear fluxes, while
the linear (and possibly unstable) dynamics of the system remain
unchanged.

6. Concluding discussion and future directions

We have analyzed energy transfer properties in high-
dimensional quadratic systems and based on this analysis we have
developed a novel, second-order, closure scheme for uncertainty
quantification. More specifically, in the first part of this work we
have illustrated the synergistic activity of persistent linear insta-
bilities with a nonlinear energy transfer mechanism that results in
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Fig. 10. Comparison of MQG with direct Monte Carlo for time dependent forcing parameter F (t) exhibiting very strong variations covering all dynamical regimes:
deterministic (F < 1), chaotic, and turbulent. The nonlinear fluxes have been computed using the steady state spectrum and mean for F = 10. We present a comparison for
the total variance and the energy of the mean as well as for the variance associated with each wavenumber.
Fig. 11. Comparison of MSM 1 and 2 with the Monte-Carlo method for the same time-dependent forcing of Fig. 9 (first column). We present the energy of the mean and the
trace of the covariance matrix over time.
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finite amount of energy in both the unstable (which would blow-
up otherwise) and stable modes (which would have zero energy
otherwise). This combined effect has as a result the distribution of
important amount of energy over all the modes of the system, cre-
ating turbulent responses.

Using these dynamical properties we have illustrated the
fundamental limitations of closure schemes that ignore or
partially model the nonlinear interactions between modes. More
specifically, we have rigorously proven that UQ methods that
ignore third-ordermoments (such as quasilinear Gaussian closure)
will equilibrate only if themean has sufficiently low energy so that
all the modes are either stable or neutrally stable. This is because
in the absence of nonlinear energy transfers an unstable mode will
lead to variance blow-up. Therefore, QGmodelswill systematically
fail to perform uncertainty quantification in turbulent systems
characterized by persistent instabilities.

The second part of the paper involves the explicit modeling of
these nonlinear interactions. This is done by using exact, second-
order, steady state information that leads to explicit modeling
of the nonlinear energy transfers in the form of additional
damping for the linearly unstable modes and external stochastic
noise for the stable modes. Essentially we are using second-
order information for the steady state statistics to quantify the
collective effect of all third order moments on the energy fluxes
in a wide variety of different chaotic regimes both for statistical
initial data far from equilibrium and for randomly fluctuating
extreme forcing. This judicious modeling of the energy transfer
mechanism allows for the MQG scheme to capture robustly the
linearly unstable steady state of the original system. Moreover,
by parametrizing the magnitude of the nonlinear fluxes with
spatial functionals of the modes instantaneous energy we are
able to obtain remarkable skill even for the transient phase of
the response. The performance of the UQ scheme is illustrated
through the L-96 system which, despite its simple formulation, is
a paradigm model that exhibits strongly unstable and turbulent
dynamics. The derived UQ scheme maintains its skill even for the
case of time-dependent excitation when the system is pushed in
dynamical regimeswhich are completely different from the regime
used to quantify the nonlinear interactions. These encouraging
results suggest future applications of MQG to more realistic
turbulent geophysical systems [8,9].

Despite the remarkable skill of the MQG method for systems
with persistent instabilities it is important to keep in mind that
it provides only second-order statistics for the response, even
though it indirectly uses higher-order stochastic information in
its calibration. In addition, its applicability is limited to stochastic
excitations which have a similar spatial structure with the
stochastic excitation for which the nonlinear fluxes have been
estimated. Both of these limitationsmay be resolved by combining
global UQ methods that can ‘see’ and resolve the full turbulent
spectrum (such as MQG) with order-reduction approaches such
as dynamically orthogonal field equations that allow for higher
statistical order, spatiotemporal modeling only along specific
directions [12,26]. Current research work by the authors involves
the blending of these two methodologies, in order to capture
accurately both the energy spectrum as well as the higher-order
statistical structure in important subspaces, and results will be
presented in the near future.
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