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a b s t r a c t

Order-reduction schemes have been used successfully for the analysis and simplification of high-
dimensional systems exhibiting low-dimensional dynamics. In this work, we first focus on presenting
generic limitations of order-reduction techniques in systems with stable mean state that exhibit
irreducible high-dimensional features such as non-normal dynamics, wide energy spectra, or strong
energy cascades between modes. The reduced-order framework that we consider to illustrate these
limitations is the dynamically orthogonal (DO) field equations. This framework is applied to a series of
examples with stable mean state, including a linear non-normal system, and a nonlinear triad system
in various dynamical configurations. After illustrating the weaknesses and generic limitations of order
reduction, we develop a novel, two-way coupled, blended approach based on the quasilinear Gaussian
(QG) closure and the DO field equations. The new method (QG–DO) overcomes the limitations of its two
ingredients and achieves exceptional performance in the examples describedpreviously aswell as in other
configurations with strongly transient character without using any tuned or adjustable parameters.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Order-reduction schemes or reduced-order models (ROMs)
have been a popular technique for the simplification and analy-
sis of high-dimensional complex systems across many scientific
and engineering disciplines. Schemes based on this approach are
essentially relying on the projection of the original system into a
‘suitable’ set of modes representing important and essential com-
ponents of the dynamics. Various approaches and rules have been
developed for the choice, computation, or improvement of these
modes, including empirical criteria such as energy-based proper
orthogonal decomposition (POD) (see, for example, [1,2]), linear-
operator-theoreticmodel reductionmethods, such as the balanced
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POD [3,4], and, more recently, dynamically orthogonal (DO) field
equations that follow from the original system equation [5,6].

Inmany cases these ROMs give satisfactory performance allow-
ing for dramatic decrease of the associated computational cost.
In addition, a reduced-order representation of the original sys-
tem often allows for the understanding of the underlying physical
mechanisms—an understanding that could not be achieved using
full system realizations either due to the vast computational cost
or due to the complexity induced by the high-dimensional phase
space. Therefore, it is clear why, for a big variety of systems, order
reduction is the indicated and most efficient method of analysis.

Despite these appealing properties, ROMs can suffer from
severe limitations either (i) due to the wrong choice of the
modes where projection is performed or (ii) by inherent system
properties that make it essential to project over a very high-
dimensional subspace (of the original phase space) in order to
obtain representative dynamics in the ROM. The first cause may
be overcome by carefully choosing and optimizing the modes
where reduction is performed (see, e.g., [7–9]). The second cause,
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however, may present significant difficulties even when the mean
state is stable, and, as we will see, it may not allow for any
kind of efficient order reduction. The present work focuses on
systems with such inherent order-reduction limitations; we also
assume that the finite size of the attractor is caused by external
excitation (to some or all of themodes) and not by inherent system
instabilities, i.e. we consider the case of systems with stable mean
state.

To illustrate these limitations, we consider the recently devel-
oped reduced-order uncertainty quantification (UQ) framework
based on the dynamical orthogonality condition [5]—this is a
closed set of equations that allows for the coupled evolution of the
mean state, the shape of the modes, and the stochastic informa-
tion in the reduced-order subspace. In addition, it contains both
the PODmethod and the polynomial-chaos (PC) method as special
cases. In order to quantify the performance of any ROM, we need
a suitable stochastic framework that will ‘measure’ the different
kinds of deviation that an ROM approximation may exhibit from
the original system—this is formulated in Section 3, and it is a suit-
able modification of the empirical information framework devel-
oped in [10–12] for the quantification and improvement of model
errors in climate science.

In Section 4 of this work, we investigate and document
representative examples illustrating systems that do not allow for
a typical Galerkin projection to a reduced-order subspace. Those
examples are low-dimensional linear and nonlinear dynamical
systems, motivated by physical situations associated with fluid
flow phenomena such as tracer advection in a turbulent jet stream
(modeled by a linear system with non-normal dynamics) [13,
10], as well as wide-range energy spectra and energy cascades
between modes in turbulent flows (modeled by a triad system in
various configurations). The last case that mimics energy cascades
in turbulent flows is particularly instructive, since it illustrates in a
clearway that omittingmodeswith respect to their energy content
can lead to errors that are an order of magnitude larger than the
omitted energy. For all these exampleswederive theDOequations,
and we use the formulated reduced-order empirical information
framework to understand the limitations and reasons for failure of
the reduction process.

In Section 5, we develop a blended approach based on the
quasilinear Gaussian (QG) closure [11] and the DO method. This
combined approach overcomes the limitations of each of its two
ingredient methods. As we show, it allows for the inexpensive
second-order modeling of a very large number of modes while
at the same time it provides, in a fully coupled fashion, a
high-order statistical modeling of a few important modes. The
two-way coupling between the QG and the DO models occurs
(i) through the nonlinear energy fluxes acting on the QG equations,
computed through the third-order statistical structure inside the
DO subspace, and (ii) through the QG mean state, over which the
DO equations are computed. In Section 6, we illustrate the very
good performance of the new blended approach in a variety of
time-dependent and time-independent examples exhibiting the
inherent limitations for order reduction described previously.

2. UQ based on dynamical orthogonality—a critical overview

2.1. System setup and exact statistical dynamics

We start by providing the general setup which will be a
finite-dimensional system with linear dynamics and an energy-
preserving quadratic part. More specifically, the general system
that we consider is given by

du
dt

= [L + D]u + B (u,u) + F (t) + Ẇp (t; ω) σp (t) (1)
acting on u ∈ RN . In the above equation, the repeated index p in-
dicates summation from 1 to P . This index will be used exclusively
for this range of summation. Also, for every p, Wp (t; ω) is a stan-
dard Wiener process and σp (t) is a scalar function. Although our
analysis and results will be presented for system (1), the proposed
methodology can be applied to more generic cases such as higher-
order nonlinearities and multiplicative noise.

In the above equation, we have the following.

• L is a skew-symmetric linear operator representing the β-effect
of Earth’s curvature, topology, etc., and satisfying

L∗
= −L.

• D is a negative definite symmetric operator,

D∗
= D,

representing dissipative processes such as surface drag, radia-
tive damping, and viscosity.

The quadratic operator B (u,u) conserves the energy by itself,
so it satisfies

B (u,u) · u = 0.

Finally, F (t) + Ẇp (t; ω) σp (t) represents the effect of external
forcing i.e. solar forcing, which we will assume can be split into
a mean component F (t) and a stochastic component with white
noise characteristics.

We use a finite-dimensional representation of the stochastic
field consisting of fixed-in-time,N-dimensional, orthonormal basis

u (t) = ū (t) +

N
i=1

Zi (t; ω) vi,

where ū (t) represent the ensemble average of the response,
i.e. the mean field, and Zi (t; ω) are stochastic processes. Note
that the indices i, j, k will be used as repeated indices to indicate
summation from 1 to N .

The exact mean field equation is given by

dū
dt

= [L + D] ū + B (ū, ū) + RijB

vi, vj


+ F, (2)

where we have the covariance matrix given by Rij =

ZiZj

, and ⟨·⟩

denotes averaging over the ensemble members ω.
Moreover, the random component of the solution, u′

=

Zi (t; ω) vi, satisfies
du′

dt
= [L + D]u′

+ B

ū,u′


+ B


u′, ū


+ B


u′,u′


− RjkB


vj, vk


+ Ẇp (t; ω) σp (t) . (3)

By projecting the above equation to each basis element vi, we
obtain
dZi
dt

= Zj

[L + D] vj + B


ū, vj


+ B


vj, ū


· vi

+

B

u′,u′


− RjkB


vj, vk


· vi + Ẇpσp · vi. (4)

From the last equation, we directly obtain the exact evolution of
the covariance matrix R =


ZZ∗


:

dR
dt

= LvR + RL∗

v + QF + Qσ , (5)

where we have the following:
(i) the linear dynamics operator expressing energy transfers

between the mean field and the stochastic modes (effect due to
B), as well as energy dissipation (effect due to D) and non-normal
dynamics (effect due to L,D, ū)

{Lv}ij =

[L + D] vj + B


ū, vj


+ B


vj, ū


· vi, (6)
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(ii) the positive definite operator expressing energy transfer due
to external stochastic forcing

{Qσ }ij =

vi · σp

 
σp · vj


, (7)

(iii) the energy flux between different modes due to non-
Gaussian statistics (or nonlinear terms) given exactly through
third-order moments

QF =

N
k1,k2=1


Zk1Zk2Zj


B

vk1 , vk2


· vi

+

N
k1,k2=1


Zk1Zk2Zi


B

vk1 , vk2


· vj. (8)

The last term involves higher-order statistics, and therefore
suitable closure assumptions need to be made in order to set up
a UQ scheme. The above exact statistical equations will be the
starting point for the approximation schemes that we will develop
and present below.

2.2. Overview of the DO order-reduction method for quadratic
systems

Order-reduction techniques forUQare based on the assumption
that the modes that carry small amounts of energy do not have
important influence on the global dynamics of the stochastic
system. Although in some systems this may indeed be true, there
are situations such as a typical turbulent dynamical system where
many low-energy modes act as channels of energy, i.e. they either
transfer or dissipate important amounts of energy, and therefore
their effect has to be considered in the UQ scheme despite their
small energy content.

From an energy transfer point of view, a reduced-order
representation of the solutionwould ultimately lead to incomplete
modeling of the nonlinear fluxes QF (Eq. (8)). Moreover, from
the definition of the nonlinear fluxes it is clear that, even if a
mode has low energy, its joint third-order moment with a high-
energy mode may still be significant, a condition that describes
the case where we have large energy flux from a high-energy
mode to a low-energy mode. Finally, in addition to the incomplete
modeling of the nonlinear energy transfer mechanism, a reduced-
order representation may lead to incomplete description of the
linear dynamics, since some unstable or oscillatory modes may be
missing from the analysis.

Here, we illustrate these limitations using the recently devel-
oped UQ approach based on the dynamically orthogonal (DO)
equations [5] that has been applied successfully to low Reynolds
number flows having a very small number of instabilities [14–16].
The choice of the DO method as the illustrative order-reduction
technique in this paper follows both from its adaptive charac-
ter (time-dependent, dynamically evolving modes) and its gen-
erality (under appropriate conditions it reproduces both the POD
method and the PC method). This stochastic framework is based
on a reduced-order representation of the stochastic solutions with
modes that have time dependence defined by an exact set of equa-
tions that follow from the full-system equation. The stochastic
coefficients are obtained by Galerkin projection to these time-
dependent modes, and together with the mean field equation they
form a non-Gaussian reduced-order UQ scheme.

We proceed by formulating the DO system of equations for
system (1). In particular, we use the DO representation

u (t) = ū (t) +

s
m=1

Ym (t; ω) em (t) , (9)

where em (t) ,m = 1, . . . , s are time-dependent DOmodes, defin-
ing the time-dependent subspace Vs, and s ≪ N is the reduction
order. In what follows, the repeated indices l,m, n will be used to
indicate summation from 1 to s.
The system operator will take the reduced-order form

du
dt

= [L + D] ū + B (ū, ū) + F + Ẇpσp

+ [L + D] Ymem + Ym (B (ū, em) + B (em, ū))

+ YmYnB (em, en) .

From the above equation, we can already observe the incomplete
modeling of both the linear and quadratic terms (described only
along the directions em). Using the DO equations, we obtain [5] the
closed set of equations

• Equation for the mean

dū
dt

= [L + D] ū + B (ū, ū) + CmnB (em, en) + F. (10)

• Equation for the stochastic coefficients
dYl

dt
= Ym ([L + D] em + B (ū, em) + B (em, ū)) · el

+ (YmYn − Cmn) B (em, en) · el + Ẇpσp · el. (11)

The last equation can also be described in terms of the cor-
responding Fokker–Planck equation governing the probability
density function pY (y, t):
∂pY
∂t

= −divy ((ym ([L + D] em + B (ū, em) + B (em, ū))

+ (ymyn − Cmn) B (em, en)) · elpY ) +
1
2
divy∇y (QσpY ) ,

where, in (10) and (11), Cmn = ⟨YmYn⟩ is the covariance matrix
in the subspace.

• Equation for the basis of the stochastic subspace
Finally, for the equation describing the stochastic basis, we

first compute the quantity ⟨L [u] Yn⟩ C−1
mn , where L [u] denotes

the right-hand side of Eq. (1). A direct calculation gives

⟨L [u] Yn⟩ C−1
mn = [L + D] em + B (ū, em) + B (em, ū)

+

s
n1,n2,n3=1

B

en2 , en3

 
Yn1Yn2Yn3


C−1
mn1 .

Therefore, the modes will evolve according to the equation
∂el
∂t

= [L + D] el + B (ū, el) + B (el, ū)

+

s
n1,n2,n3=1

B

en2 , en3

 
Yn1Yn2Yn3


C−1
ln1

− em


[L + D] el + B (ū, el) + B (el, ū)

+

s
n1,n2,n3=1

B

en2 , en3

 
Yn1Yn2Yn3


C−1
ln1


· em. (12)

To understand better the limitations introduced by the
reduction process, we formulate the equation for the covariance
R. This follows from the reduced-order equation (11). Recalling
that em =

N
k=1 (em · vk) vk, we will have the reduced-order

covariance equation

dR
dt

= PLv,RP∗R + RPL∗

vP
∗
+ Qσ + QF ,s,

where

(i) P is the projection matrix from RN to Rs,

Pim = vi · em, i = 1, . . . ,N and m = 1, . . . , s,
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(ii) Lv,s is the reduced-order linear dynamics,
Lv,s

mn = ([L + D] en + B (ū, en) + B (en, ū)) · em,

m, n = 1, . . . , s,

(iii) QF ,s is the matrix of the reduced-order nonlinear fluxes,
QF ,s


ij = ⟨YmYnYl⟩


(B (em, en) · vi)


vj · el


+

B (em, en) · vj


(vi · el)


, i, j = 1, . . . ,N.

By examining the reduced-order form, we see that, even if the
modes em span all the unstable directions of the linear operator,
there might be non-normal dynamics which are not modeled, as
well as dissipation of energy that is not taken into account (since
many of the stable modes are not included in the linear dynamics).
This is also the case with stable modes that return important
amounts of energy to the mean field. On the other hand, the
reduced-order nonlinear energy fluxes QF ,s only partially model
the nonlinear energy transfers, since they only involve energy
transfers between the subspaceVs and not energy interactions over
the complete phase space.

Although for a system that possess a low-dimensional attractor
the above scheme may have good UQ properties, for a system
in which a large number of modes participates in strong energy
transfers and dissipation we will need a vast number of modes in
order to get satisfactory UQ properties. However, modeling a vast
number of modes in a fully nonlinear fashion is not efficient, not
feasible (for realistic systems), and, as we will see in Section 5, not
necessary.

3. An empirical information framework for UQ using order-
reduction methods

To quantify the performance of the order reduction, we will
use the empirical information-theoretic framework [10–12]. Let
υ denote the full solution of the original stochastic differential
equation (SDE). Through the DO framework (or any other
ROM), we obtain a reduced-order solution u (see representation
(9)) that ‘lives’ in the reduced-order stochastic subspace Vs of
dimensionality s. The projection of any field quantity υ into the
stochastic subspace Vs is given by P∗υ , where P is the modematrix
defined in the previous section.

There are several sources of error between the full solution
υ and its reduced-order approximation u. Since the full solution
lives in an N-dimensional space while the reduced-order solution
is restricted to the much smaller s-dimensional space, a natural
question to ask is what we ‘lose’ by performing this reduction. In
other words, what is the amount of inaccessible information that
lies in the orthogonal complement of the reduced-order subspace?

The next question to ask is how well we are doing in the
reduced-order subspace. In particular, how close is the projection
of the reduced-order solution u to the full solution P∗υ? This is
a question that can be answered in a straightforward manner by
using the empirical information framework. Note that the above
two sources of error do not include the distance of the mean fields
in the orthogonal complement since, as we will see, this is not
expressed through the amount of inaccessible information, and of
course it cannot be quantified by the distance of the two solutions
in the reduced-order subspace.

(A) Error within the subspace.
This error involves the distance between the exact full solution

and the reduced-order approximation, as this is measured in
the reduced-order stochastic subspace. We compute directly the
relative entropybetween theprojection of the full solution P∗υ and
the reduced-order solution projected to the stochastic subspace
P∗u (note that the projection in the second case involves only the
mean value which lives into the full space). In this way, we obtain

P

P∗υ, P∗u


=


Rs

pυ,Vs log
pυ,Vs

pu
, (13)

where pυ,Vs is the probability density function (pdf) for the
projection P∗υ and pu is the pdf for P∗u. The last quantity is always
positive, and it expresses the quality of the approximation within
the stochastic subspace.

Assuming Gaussian statistics, the above expression takes the
more explicit form

P

P∗υ, P∗u


=


1
2


ῡ∗

− ū∗

PC−1

YY P
∗ (ῡ − ū)


+


−

1
2
log det


P∗CυυPC−1

YY


+

1
2


tr

P∗CυυPC−1

YY


− s


. (14)

The first term in (14) is the signal which measures normalized
errors in the mean, while the second term is the dispersion which
measures information-theoretic errors in the variance [13,10,12].

(B) L2 distance between the mean fields in V⊥
s .

The next step involves the quantification of error in the
orthogonal complement of Vs. The reduced-order model provides,
in the orthogonal complement, information only for the mean
field. Therefore, the first step to quantify the performance of the
reduction is to measure the distance between the mean field
produced by the approximation and the exact one, both projected
to the orthogonal complement. To achieve this, we consider the ad
hoc metric that expresses the distance of the two solutions in V⊥

s :

dV⊥
s

(u, υ) =
1
2

I − P∗

(ῡ − ū)

2 .

(C) Lack of information due to the reduction. We measure the
uncertainty that we ‘lose’ due to the reduction using second-order
statistical properties of the pdfs involved, and more specifically by
using the Frobenius norm of the square root of Cυυ . In particular,
we define QC ∈ RN×N as
Q 2
C = Cυυ .

Then, the quantity δSFV , whichwillmeasure the uncertainty outside
VS , is defined through the Frobenius norm ∥·∥F :
δSFV ≡ {total variance} − {total variance in VS}

= ∥QC∥
2
F −

P∗QC
2
F =

N
i=1

σ 2
i −

s
m=1

σ̃ 2
m ≥ 0, (15)

where σ 2
i and σ̃ 2

i are the eigenvalues of Cυυ and P∗CυυP ,
respectively. To prove the positivity of this quantity, we first
denote as P⊥

∈ RN×N−s thematrix that contains the basis elements
that span V⊥

s . We also use the orthogonal matrix P̃ =

P|P⊥


, for

which we have

∥QC∥
2
F = trace


QCQ ∗

C


= trace


QC P̃ P̃∗Q ∗

C


=

P̃∗QC

2
F
.

Furthermore, we haveP̃∗QC

2
F

=

N
i=1

N
j=1


N

k=1

P̃ikQC,kj

2

≥

=

s
m=1

N
j=1


N

k=1

PmkQC,kj

2

=
P∗QC

2
F .

This proves the positivity of δSFV . Note that equality is achieved
if and only if the directions that correspond to the orthogonal
complement are associated with zero variance.
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4. Inherent limitations of order-reductionmethods for systems
with stable mean state

Wewill now focus on systems with irreducible features such as
non-normal dynamics or strong nonlinear energy transfer proper-
ties. These features are typical in many physical applications, and,
as we will see, they often cause failure of the order-reduction pro-
cedure.

The first example will be an exactly solvable, linear, non-
normal system. Non-normal systems are characterized by the
non-commutability of L and L∗. A typical example of such a
system is advection of a passive tracer in a turbulent jet, where
even though the tracer advection depends strongly on the flow
field the opposite is not true. This one-way dependence of the
dynamical variables is expressed as a strong asymmetry in the
linear dynamics [13,10].

The second example will be a low-dimensional quadratic
system with energy-conserving quadratic terms. In particular, we
will consider the triad system [17–20] in various configurations
that mimic strongly nonlinear dynamical mechanisms such as
irreversible energy transfer between modes. The last example will
be of particular importance, since it will illustrate very clearly that
the energy content of a mode may be an incorrect indicator for its
importance in the global system dynamics.

4.1. Limitation in skill due to non-normal linear dynamics

To illustrate the irreducible character of a non-normal dynam-
ical feature, we consider a linear two-dimensional (2D) SDE prob-
lem [13]. The goal is to reveal and understand the limitations of the
reduction method,and we will start from this simple system since
most of the derivations can be done analytically.

dx = (−ax + ϵ1y) dt
dy = (ϵ2x − by) dt + σdW (t) .

We will perform reduction in a 1D subspace. In this case, the
equation for the mode e1 (t) = (x1 (t) , y1 (t))T will take the form

de1
dt

= Ae1 −

eT1Ae1


e1,

where A =


−a ϵ1
ϵ2 −b


. Since the above equation preserves the

magnitude, ∥e1∥ = 1, we may represent the DO vector in polar
coordinates as e1 (t) = (sin θ (t) , cos θ (t))T . In this way, we can
solve the mode equation exactly, to obtain θ(t)

θ0

dθ
(b − a) sin θ cos θ + ϵ1 cos2 θ − ϵ2 sin2 θ

= t − t0.

The steady-state values θ∞ may also be obtained:

tan θ∞ =
(b − a) ±


(a − b)2 + 4ϵ1ϵ2
2ϵ2

.

One of these solutions is dynamically stable and the other is not.
Therefore, the mode is characterized by a unique equilibrium that
depends only on the system parameters and not the excitation
intensity. The next step is to understand how the variance evolves
in this reduced-order 1D subspace. The equation for the variance
CYY (t) has the simple form (obtained through Eq. (11) after
algebraic manipulations)

dCYY (t)
dt

= −2

a sin2 θ + b cos2 θ − (ϵ1 + ϵ2) sin θ cos θ


× CYY (t) + σ 2 cos2 θ.

From the last equation we may also obtain the steady-state value
of the variance (inside the stochastic subspace):
CYY∞ =
σ 2

2

a tan2 θ∞ + b − (ϵ1 + ϵ2) tan θ∞

 .
The extreme non-normal case will be characterized by ϵ1 ≠ 0, and
ϵ2 = 0. Here, wewill focus on a ‘smoother’ case where ϵ2 = ϵ−1

1 =

ϵ−1, where ϵ could have both large and small values. This way, we
will be able to observe the transition in the UQ performance as we
move to more non-normal regimes.

To measure the performance of the reduction process, we will
compare with the exact solution. For the linear system under
consideration, the exact stationary covariance matrix is given
by [13]

Cυυ∞ =
σ 2

2 (a + b) (ab − 1)


ϵ2 ϵa
ϵa a2 + ab − 1


.

By combining the above expressions for the exact covariance
and the DO solution with the empirical information framework
formulated in the previous section (Eqs. (13)–(15)), we obtain all
the necessarymeasures to assess the performance of the reduction
process. In Fig. 1, we present the performance of the reduction
algorithm for different system parameters. We also show the
amount of variance of the exact covariance matrix projected to the
stochastic subspace and to its orthogonal complement.We observe
that for large ϵ the reduction algorithm converges to the wrong
subspace, since most of the uncertainty of the exact response is
contained in the orthogonal complement. On the other hand, for
small ϵ there are some locations in the parametric space where,
even though the algorithm captures the correct subspace, the
amount of covariance captured is not accurate (Fig. 1(a)).

In Fig. 2, we present the time evolution of the performance
measures as well as of the exact covariance (projected to the
stochastic subspace and its orthogonal complement). In the
first case (left plot), the reduction algorithm predicts the right
stochastic subspace and captures the variance very accurately. In
the second case, however, the reduced-order subspace converges
to thewrong direction, which is associatedwith thewrong amount
of covariance, and thus the reduction scheme is inaccurate. In
both cases, we pick an initial covariance matrix for the full system
that has all of its variance concentrated in one direction, which
coincides with the initial direction of the stochastic subspace.

4.2. Limitation in skill due to omitted energy or energy transfers

We continue our analysis by considering a simple but
nevertheless instructive model, namely the triad system. This is
a three-dimensional system with a quadratic part that is both
divergence free and energy preserving. The linear part consists
of a dissipative operator that is negative definite and a skew-
symmetric operator. The nonlinear coupling in triad systems is
generic of nonlinear coupling between any three modes in larger
systemswith quadratic nonlinearities [18–20].We can think of this
‘toy’ problem as a poor man’s approach to a full fluid system in
which the nonlinear terms, dissipation, and skew-symmetric part
represent respectively the advection terms, the viscous dissipation,
and the Coriolis effect, while the stochastic noise represents the
nonlinear interactions with other modes in a crude fashion. The
goal here is to understand how the reduction performs over
qualitatively different dynamical regimes of this system.

In particular, the system we consider is a three-dimensional
special case of the generic quadratic system (1) given by

du1 = (−γ1u1 + λ12u2 + λ13u3 + β1u3u2) dt + σ1dW1 (16a)

du2 = (−γ2u2 − λ12u1 + λ23u3 + β2u1u3) dt + σ2dW2 (16b)

du3 = (−γ3u3 − λ13u1 − λ23u2 + β3u2u1) dt + σ3dW3, (16c)
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Fig. 1. Performance of reduction for b = 5 over different values of ϵ and a in the steady-state regime. (a) Information-theoretic distance limt→∞ log (P (t)) within the
stochastic subspace; (b) projection of true covariance in the stochastic subspace limt→∞ log(eT1 (t) Cυυ (t) e1 (t)); (c) projection of the exact covariance in the orthogonal
complement V⊥

s : limt→∞ log(eT2 (t) Cυυ (t) e2 (t)).
Fig. 2. Solid black line: information-theoretic distance log (P (t)) within the stochastic subspace; solid red line: projection of true covariance in the stochastic subspace
log(eT1 (t) Cυυ (t) e1 (t)); red circles: covariance log(CYY (t)) in the subspace computed by the reduction method; green line: projection of the exact covariance in the
orthogonal complement V⊥

s : log(eT2 (t) Cυυ (t) e2 (t)), where e2 ⊥ e1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
with β1 + β2 + β3 = 0. The case where σ 2
1

2γ1
=

σ 2
2

2γ2
=

σ 2
3

2γ3
≡ E is a

special one, since in this symmetric situation the statistical system
dynamics always converge at long times to an invariant measure
that is Gaussian and with energy that is distributed equally among
the three degrees of freedom. This invariant measure in this case is
Gaussian, and is given by

pY = C exp


−
1
2

∥u∥
2

E


.

From the form of the invariant measure, and in particular from its
propertywith equipartition of energy in phase space,we anticipate
that, even in the best case, the reduction algorithm will be able
to capture only a fraction of the steady-state covariance ( 13 or 2

3
depending on the number of modes used for the reduction) as
times evolves.

4.2.1. Reduced-order modeling of the triad system using DO
We shall now compare the performance of the DO order

reduction with the full Monte Carlo solution of the triad
system for different parametric regimes. In particular, we choose
parameters that correspond to three different dynamical regimes:
the strong dissipation regime, the strongly nonlinear regime
with equipartition of energy, and a strongly nonlinear regime
with an energy cascade. These three cases are representative of
a fluid system over different dynamical regimes characterized
respectively by either laminar (but possibly unstable) features or
strongly nonlinear (turbulent) dynamicswith orwithout an energy
cascade. For the numerical solution of the DO equations, we follow
the approach presented in [5].

For a single-mode reduction, it can be easily seen that the
statistics inside the subspace will evolve under the effect of linear
dynamics alone, because in this case the DO equation (11) for the
stochastic coefficient will take the linear form
dY1

dt
= Y1 ([L + D] e1 + B (ū, e1)

+ B (e1, ū)) · e1 + Ẇkσk · e1, (17)

since B (e1, e1) · e1 = 0, and therefore all the quadratic terms in
the equation vanish and the dynamics is linear. Therefore, this is
an extreme form of order reduction in which we have complete
suppression of the nonlinear energy transfer properties, since for
Gaussian statistics the reduced-order fluxesQF ,s will vanish. In this
section, we will present results for the DO approximation scheme
with a single-dimensional stochastic subspace. Note however that
two-mode DO reduction does not improve the performance, and
the corresponding results for the same triad test problem are
shown in Section 6 (Figs. 5, 6—top rows).
Case I: strong dissipation regime. The first case that we study is the
one inwhich all terms have the same order ofmagnitude.We focus
on two different temporal regimes: the transient state and the
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Fig. 3. Performance of the DO reduction for the triad system in three different dynamical regimes: strong dissipation regime (top row), nonlinear isoenergetic regime
(second row), and nonlinear energy cascade regime (third row). The time evolution of the DO mode for each case is shown in the bottom plots.
steady state. In Fig. 3 (top-row), we present the system response—
the solid lines in the left time-series plot represent themean values
of the three components of the solution u1, u2, u3 computed with
a direct Monte Carlo approach. The estimated mean values using
the reduction technique are plotted as circles.

In the right plot, we show the comparison of the exact and
reduced-order solutions in terms of the second-order character-
istics. In particular, we present the projection of the full (Monte
Carlo) covariance on the reduced-order subspace (solid blue line)
superimposed with the variance


Y 2
1


, as this is computed through
the reduced-order methodology. We also present the Frobenius
distance δSFV defined in (15). Finally, in the bottom rowwe present
the trajectory describing the evolution of theDOmodewhich ‘lives’
on the unit sphere—the white dot indicates the initial condition.

In this parametric regime, the reduction algorithm, even though
it uses only one mode, does sufficiently well in approximating
the state of the system both over the transient regime, where
variance is important, and in the steady state. The magnitude of
uncertainty in the reduced-order stochastic subspace is captured
sufficientlywell, even though the Frobenius distance indicates that



68 T.P. Sapsis, A.J. Majda / Physica D 258 (2013) 61–76
Fig. 4. Strongly nonlinear regime with an energy cascade: full-system statistics predicted with the direct Monte Carlo method in the original system. In the right plots, the
steady-state conditional probability density functions of pu1u2u3 are shown as well as 2D scatter plots.
during the steady-state regime the resolved uncertainty is only 1
3

of the full uncertainty, because the total variance in the statistical
steady state is small in this weakly nonlinear regime. Here, 1

3 is
themaximumamount of variance that the reduction algorithm can
capture, since one mode is used and the system parameters are
such that equipartition of energy is reached in the steady state.
Case II: strongly nonlinear regime with Gaussian steady state

This case mimics dynamics with high Reynolds number which
are still characterized by close-to-Gaussian statistics (see [12]). To
model this regime, we set the damping in the system to be an order
of magnitude smaller than all the other terms, making the steady-
state variance an order of magnitude larger compared with the
previous case. The results are shown in the second row of Fig. 3.

Even though the reduction captures the system dynamics
satisfactorily during the initial phase, it begins to diverge when
the system approaches the statistical steady-state regime. A more
careful observation of the time series reveals that the divergence
begins when the ignored covariance (expressed through the
Frobenius distance) becomes important. When this happens, we
first have a relatively small divergence of the subspace variance,
and subsequently (whenwe have entered the steady-state regime)
the estimated mean value performs high-amplitude oscillations
around the true mean state. We also notice that, contrary to the
previous case in which the single-mode approximation converged
to a steady-state point, in this case the mode performs oscillations
and it never reaches an equilibrium point. The observed deviation
of themean value is a direct consequence of the ignored covariance
(due to the reduction), since in the full mean equation (2) this
omitted covariance plays an important role, and its effect is
proportional to the magnitude of the quadratic terms.
Case III: strongly nonlinear regime with an energy cascade.

This is the most representative regime for turbulent flows. We
have strongly nonlinear dynamics, combined with strong energy
transfers—a property that leads to strongly non-Gaussian statistics
with a probability measure on the attractor that has a full measure
but effective lower-dimensional support (Fig. 4). In particular, we
consider a set of parameters similar to those used in [21] (shown
in the third row of Fig. 3). Here, the background linear skew-
symmetric operator vanishes and the first component is weakly
damped and strongly forced by noise, while the second and third
components are strongly damped, and the nonlinear interaction
component of the first mode has opposite sign from the other two
modes, so there is large energy in the first mode which is rapidly
transferred to the other modes [19,20].
In Fig. 4, we present the statistics of the system as computed
by the direct Monte Carlo method. Thus, in the statistical steady-
state regimewehave onemode carryingmost of the systemenergy
and two low-energy modes absorbing energy from the first one.
This energy transfer property is manifested by the third-order
moment ⟨u1u2u3⟩ (shown in Fig. 4), whose negative value indicates
the energy transfer from the first mode to the other two. This
flow of energy is also illustrated by the nearly two-dimensional
character of the joint probability density function (see [6] for
a rigorous connection of the energy transfer properties and the
dimensionality of the probabilitymeasure). This strongly nonlinear
regime with an energy cascade has a Fokker–Planck equation with
an elliptic generatorwith a smooth three-dimensional steady-state
probability density which is nearly two dimensional.

Note that, since this is a system in which only one mode has
important variance while the other two are much weaker in terms
of energy, one may expect that it is an ideal candidate for single-
mode order reduction. However, this is not the case. In Fig. 3, we
present the results of the single-mode reduction and we compare
with direct Monte Carlo simulation. We observe that we have
very large discrepancies in both the first-order and second-order
statistics. These discrepancies are much larger in magnitude than
the order of the ignored variance.

The answer comes from the essentially irreducible character
of the steady-state probability measure, which does not allow for
any approximation by a single-mode system (or even two-mode
reduction—see the results in Section 6). This is because the two
low-energy modes play an important role in the global dynamics
by extracting energy from the high-energy mode and strongly
dissipating it. In particular, this non-Gaussian cross-correlation
structure is responsible for the persistent energy transfer from
mode 1 to modes 2 and 3, which, contrary to the magnitude of the
modes 2 and 3, is very important. Ignoring one or both of these
modes completely destabilizes the energy fluxes, and causes large
errors in the eigenvalues of the covariance and subsequently the
estimated mean.

The above instructive example illustrates very clearly that the
small magnitude of the uncertainty in specific directions may not
always be an efficient criterion to neglect dynamics. This is especially
the case for turbulent flows where we have very strong energy
transfers among scales (modes) that have to be modeled, even if
the modes are associated with weak energy content.
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Fig. 5. Comparison of the considered UQ algorithms for the triad system in the strongly nonlinear regime with Gaussian steady state. The results are presented in terms of
the first and second moments, and they are compared with direct Monte Carlo simulations.
5. A blended approach based on the quasilinear Gaussian
method with DO energy fluxes: the QG–DOmethod

From the previous section, it is clear that in many applications
of practical interest order-reduction approacheswill fail to capture
essentially irreducible dynamics such as non-normality features
or energy cascade properties. This is due to the incorrect energy
balance or fluxes caused by the ignored modes and the associated
energy transfers. This limitation naturally leads us to consider
simplified statistical dynamics in the larger phase space in
our analysis. A relevant approach towards this direction is the
quasilinear Gaussian (QG) closure, which we will briefly describe.

5.1. Overview of quasi-linear Gaussian (QG) closure schemes

The simplest closure scheme [11] for the moment problem
stated in Section 2 is to completely neglect the third-order mo-
ments in the evolution equation for the covariance, i.e. set QF = 0.
As illustrated in [13] and the references therein, this type of simple
closurewith augmented noise can handle UQ in systemswith tran-
sient intermittent instabilities. This QG closure is equivalent with
neglecting quadratic terms only in the equation for the covariance
(partial linearization of themoment system) or by assuming Gaus-
sian statistics. In this case, the evolution of the covariance matrix
is performed with the closed set of equations

dū
dt

= [L + D] ū + B (ū, ū) + RijB

vi, vj


+ F (18a)

dR
dt

= LvR + RL∗

v + Qσ . (18b)

Despite its simplicity, QG closure is characterized by some very
important limitations, which are connected with the misleading
modeling of the nonlinear energy fluxes (see [22] for a detailed il-
lustration of these limitations). In particular, by completely ignor-
ing the third-order moments, we neglect energy transfers due to
nonlinear terms. In systemswith inherent instabilities, these fluxes
are responsible for the finite amount of energy in the unstable
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Fig. 6. Comparison of the considered UQ algorithms for the triad system in the strongly nonlinear regime with an energy cascade. The time-series results are presented in
terms of the first and second moments, and they are compared with direct Monte Carlo simulations. The pdf in the steady-state DO subspace is shown and compared with
the pdf computed through Monte Carlo simulations.
modes andnon-zero energy in the stablemodes [22]. In the context
of systemswith linearly stable mean state, nonlinear energy fluxes
still play an important role, since this is the only means of energy
transport from one mode to another (e.g. Case III in the previous
section). Alternatively, a complete modeling of the nonlinear en-
ergy fluxes would require a vast amount of statistical information,
which for systems with large phase space would be computation-
ally intractable.

Therefore, on one hand we have the QG closure, which can
handle a large part of the spectrum but ignores the non-Gaussian
character of the statistics and the nonlinear nature of the dynamics
which for some modes may play a crucial role. In other words,
QG respects the dimensionality of the problem but fails to capture
nonlinear energy exchanges between different modes. On the
other hand, we have the reduced-order DO framework, which can
fully handle the nonlinear non-Gaussian character of the dynamics,
but only within a small part of the spectrum. This is because DO
omits low-energy modes that can be important when they act as
energy channels (e.g. non-normal systems, energy cascades, etc.).

The goal of the following section is to combine these two
complementary approaches towards a new blended UQ strategy
that will be able to handle both the irreducible features (such as
non-normal dynamics) and the strongly nonlinear features such
as non-Gaussian statistics. In particular, the basis of this blended
method will be the evolution of the full system covariance (from
now on called QG covariance) through Eq. (5), where the energy
fluxes due to the nonlinear terms will be computed only in the
reduced-order subspace. This idea combines the advantages of
both methods, while it overcomes their disadvantages.
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5.2. Description of QG–DO blended method

We will now present in detail the blended approach which
combines the two models. The basic setup is to consider a small
number ofmodes resolvedwith theDOequations (describing high-
energy dynamics) coupled with a much larger number of modes
which will not evolve in time and for which we will resolve only
the second-order statistics. Essentially, we will have two coupled
models propagating uncertainty. The fixed basis model (QG) will
be used to evolve (i) the mean and (ii) the second-order statistics
(using high-dimensional equations), and the time-dependent basis
model will be used to compute (i) the non-Gaussian information
for the high-energy modes, and (ii) the shape of the high-
energy modes, as well as the third-order moments used for the
computation of the energy flux between different modes.

The coupling between the two models will be naturally
performed at two levels: (i) the evolution of the reduced-
order dynamics (DO subspace and coefficients) using the mean
field information obtained by the full mean field equation, and
(ii) the evolution of the full (or QG) second-order statistics using
energy fluxes computed by the reduced-order non-Gaussian (DO)
statistical information.

We will use a double representation for the solution. Specifi-
cally, wewill represent the solution to performUQ through the QG
representation that employes a fixed basis,

u (t) = ū (t) +

N
i=1

Zi (t; ω) vi,

while the representation of the uncertainty used to compute the
energy fluxes due to nonlinearities and non-Gaussian statistics in
the high-energy modes will be given by

u (t) = ū (t) +

s
m=1

Ym (t; ω) em (t) ,

which is the reduced-order DO representation.

• Mean field equation

The mean field equation that we will employ is the one that
takes into account the full covariance information—expressed
through the QG covariance R. This is essentially the mean field
equation for the fixed basis,

dū
dt

= [L + D] ū + B (ū, ū) + RijB

vi, vj


+ F. (19)

This is exactly the mean field equation produced by the QG
methodology.

• Evolution of the QG covariance matrix

To approximate the QG covariance matrix, we will use the
(exact) equation for the fixed basis (4). This can also be written as

dR
dt

= LvR + RL∗

v + QF + Qσ , (20)

where Lv is the linearized dynamics operator given by (6), Qσ is
the positive energy transfer due to external noise given by (7), and
QF is the flux of energy connected (see Eq. (8)) to the unknown
third-order statistics defined over the space RN spanned by vi, i =

1, . . . ,N .
Note that the equation for the covariance can also be seen as a

generalized Kármán–Howarth relation [23], which is used for the
connection of the third-order statistics and the energy content of a
system in the steady state. The straightforward computation of the
third-order statistics involves a closure problemwhich wewill not
handle directly. In contrast to the QG method, where this quantity
is set to zero, in this blended QG–DO approach this quantity will be
approximated through a reduced-order DO approach that will run
in parallel to the above two equations for themean and covariance.

Specifically, we will approximate the energy flux QF using the
reduced-order DO basis. Then, the DO reduced-order energy flux
will be given by

QF ≃ QF ,s =

B

u′,u′


· viZj


= ⟨YmYnYl⟩ (B (em, en) · vi)


vj · el


+ ⟨YmYnYl⟩


B (em, en) · vj


(vi · el) . (21)

The above quantity expresses the energy fluxes to any element
of the high-dimensional fixed subspace from the DO reduced-
order subspace only. This equation can be used to study energy
transfer properties from the stochastic subspace to the orthogonal
complement and vice versa. Using this approach, we have not
performed reduction on the dynamics of the system but only on
the way the energy fluxes are computed.

We emphasize that, for systems with persistent instabilities in
the linearized dynamics, andwith sufficiently low-dimensional DO
subspace, the nonlinear fluxes QF may not be adequately modeled
by QF ,s, since some unstable modes may not be contained in the
stochastic subspace. In this case, wemay have large approximation
error, and another approach should be followed in which the
QG closure scheme is substituted by a modified QG closure (see
[22,24]). However, in the present work, we assume that the
linearized dynamics are stable, and that the system energy is
mainly due to external noise and not due to internal instabilities.

• Evolution of the DO stochastic subspace and stochasticity

The evolution of the DO basis should not be influenced by the
fact that we consider a higher (than s) dimensional space. This
is because, if we include on the right-hand side of the DO basis
equations the extra dimensions resolved using the QGmodel, then
the stochastic subspace will not move towards these directions (in
general, the subspace tends to capture directions associated with
higher energy). Thus we keep the DO basis equation as it is:

∂el
∂t

= [L + D] el + B (ū, el) + B (el, ū)

+

s
n1,n2,n3=1

B

en2 , en3

 
Yn1Yn2Yn3


C−1
ln1

− em


[L + D] el + B (ū, el) + B (el, ū)

+

s
n1,n2,n3=1

B

en2 , en3

 
Yn1Yn2Yn3


C−1
ln1


· em. (22)

In addition, the evolution of uncertainty within the stochastic
subspace is performed using equations that come directly from
the Galerkin projection to the time-evolving subspace. Note that,
although we do not have terms representing the effect of the
orthogonal complement dynamics on the stochastic subspace, we
have an implicit influence through the mean field,

dYl

dt
= Ym ([L + D] em + B (ū, em) + B (em, ū)) · el

+ (YmYn − Cmn) B (em, en) · el + Ẇpσp · el. (23)

To summarize, we propose the closed set of Eqs. (19)–(23) as
a new blended QG–DO UQ method for systems with stable mean
state. Although the method is described for systems having the
form (1), the QG–DO approach can be applied to more generic
cases such as higher-order nonlinearities, multiplicative noise, etc.
This blended approach overcomes the disadvantages of each of
the methods that it is based on. In particular, we have a UQ
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methodology that evolves the second-order characteristics in a
fixed basis, while it computes the non-Gaussian characteristics
only for high-energy time-dependent modes, described by the DO
field equations. This non-Gaussian reduced-order information is
used for the computation of the energy fluxes and the evolution
of the second-order structure in the high-dimensional fixed basis
subspace. Finally, it is worth remarking here that, for blended
QG–DO algorithms with s = 1 and a single mode in DO, with
(17), essentially the QG closure is recovered, with a Monte Carlo
algorithm in the one-dimensional subspace.

6. Application of the blended QG–DO method to the triad
system

We consider the triad system in various configurations
as previously, including non-normal linearized dynamics and
strong energy cascade regimes. To assess the performance of
the developed UQ algorithm, we also consider time-dependent
excitations that drive the system between regimes of equipartition
of energy (with zero nonlinear energy transfers and Gaussian
statistics) and regimes of strong energy cascade (with strongly
non-Gaussian characteristics).

More specifically, we will be using time-dependent noise
intensity and forcing. In particular, we will consider the following
more generic (than (16a)–(16c)) time-dependent triad system:

du1 = (−γ1u1 + λ12u2 + λ13u3 + β1u3u2 + g) dt
+

σ1 + f 2 (σT1 − σ1)


dW1

du2 = (−γ2u2 − λ12u1 + λ23u3 + β2u1u3 + g) dt
+

σ2 + f 2 (σT2 − σ2)


dW2

du3 = (−γ3u3 − λ13u1 − λ23u2 + β3u2u1 + g) dt
+

σ3 + f 2 (σT3 − σ3)


dW3,

where f 2 and g are time-dependent functions and σTi > σi. Below,
we give a summary of all the cases that we present.

• Strongly nonlinear regime with Gaussian steady state: This case
has fixed-in-time parameters (f = 0) and zero mean forcing
(g = 0). The parameters are chosen so that

σ 2
1

2γ1
=

σ 2
2

2γ2
=

σ 2
3

2γ3
= E. (24)

This particular constraint results in a Gaussian steady statewith
equipartition of energy.

• Strongly nonlinear regime with an energy cascade: This case also
has fixed-in-time parameters (f = 0) and zero mean forcing
(g = 0). The parameters are chosen so that

γ1 ≪ γ2, γ3 and σ1 ≫ σ2, σ3. (25)

This particular constraint results in strong energy transfer from
the first degree of freedom to the second and third degrees of
freedom (Fig. 4). This strong energy transfer is also manifested
by the strongly non-Gaussian properties of the steady-state
probability measure.

• Time dependent parameters I: Periodic and step-function depen-
dence: For this case, we use time-dependent parameters. We
consider two cases: f (t) = g (t) = sin


π
4 t

, and f (t) =

H (t − T ), where H is the Heaviside function. The parameters
σ1, σ2, σ3 are chosen to satisfy condition (25), and the param-
eters σT1, σT2, σT3 satisfy condition (24), so that the system os-
cillates between two regimes of completely different behavior.

• Time-dependent parameters II: Stochastic time dependence: In this
case, we also use time-dependent parameters, but this time
f (t) and g (t) are Ornstein–Uhlenbeck processes described by
the equation
df = −
1
T
f + a


2
T
dW .

The correlation time is chosen as T = 2, and we also choose
a = 0.5; this choice produces random series having maxima
of O(1). The noisy intensity is set as in the previous case, so
that we have random transitions between the energy cascade
regime and the equipartition regime.

Strongly nonlinear regime with Gaussian steady state

In this case of parameters, the system reaches a statistical
equilibrium in which all directions of phase space have equal
amount of energy. As we saw in Section 4, where the limitations of
order reduction were illustrated, single-mode reduction performs
badly for this set of parameters. In Fig. 5 (upper-left panel), we
also present the results for the two-mode DO reduction, and the
same conclusions can be made for the UQ performance during
convergence to the statistical steady state. We observe (upper-
right panel) that in both cases (s = 1, 2) the DO algorithm captures
the variance inside the subspace correctly. However, the amount of
variance that is omitted is sufficient to create discrepancies in the
mean values.

This is not the case for the QG and blended QG–DO algorithms
(second row),where the estimated and exactmean values compare
favorably, as can be seen from the second row of Fig. 5. To get
a more accurate picture of the performance of the algorithms,
we use the information distance between the approximation u
and the Monte Carlo solution υ by applying (14) on the whole
space [13,10]. As can be seen in the lower-left plot, both algorithms
are performing equally well. The very good performance of the
QG closure was expected for this case if we take into account
the Gaussian character of the invariant probability measure which
results in the absence of any nonlinear energy transfer properties
between modes (recall that the nonlinear fluxes QF depend on the
third-order moments—Eq. (8)). In the next numerical experiment,
we will see that the presence of the latter feature may create
important errors in the QG algorithm.

Strongly nonlinear regime with an energy cascade

In this configuration, the parameters are chosen so that strong
energy transfer occurs from one high-energy mode to the other
two low-energy modes. The performance of the various UQ
approaches considered in this paper are shown in Fig. 6. In
the first row, we can clearly see the limitations of the order-
reduction approach. The absence of even one mode does not allow
for the approximation scheme to reach a statistical equilibrium.
Moreover, the DO modes continuously oscillate, creating artificial
fluctuations in the amount of variance in the subspace.

On the other hand, we see that the QG and QG–DO methods
overcome these limitations. In particular, the QG–DOmethodwith
a two-dimensional subspace gives the best performance (see the
information distance panel in Fig. 6), since it captures the energy
transfers from the high-energy mode to the other two modes.
In contrast, the QG method, by construction, cannot capture any
nonlinear energy transfers, and the information distance grows
monotonically as a result of this continuous error.With our remark
at the end of Section 5.2, it is not surprising that theQG–DOmethod
with s = 1 behaves similarly to the QG method.

In the bottom-right panel of Fig. 6 we also present the pdf
inside the DO subspace (for s = 2) after the system has
reached a statistical equilibrium. The pdf had been visualized
using a histogram on the samples of the stochastic coefficients
(Y1, Y2). This is comparedwith the corresponding histogram of the
projection of the Monte Carlo realizations to the QG–DO subspace
with s = 2, and it is clear that the QG–DO method captures these
non-Gaussian statistics very well.
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Fig. 7. Trace of covariance and pdf in VS resolved with the QG–DO method (s = 2) for the case of step-function time dependence f (t) on the parameters.
Time-dependent parameters I: step-function and periodic dependence

Here we validate our UQ algorithms for a time-dependent
set of system parameters. In particular, the system parameters
change suddenly from a set that corresponds to a Gaussian steady
state to one that corresponds to a strongly non-Gaussian steady
state with an energy cascade. The results are shown in Fig. 7 in
terms of the covariance trace and the response pdf inside the
stochastic subspace. In both regimes, the QG–DO method with
a two-dimensional subspace compares very well with the direct
Monte Carlo simulation. The next numerical experiment involves
the same setup as previously, but with periodic variation of the
system parameters as well as with deterministic periodic forcing.
The results are shown in Fig. 8. Direct DO reduction creates
important error in both the first-order and second-order statistics.
Additionally, from the form of the captured variance (upper-right
panel), it is clear that themodes followanaperiodic trajectory since
the captured covariance time series is non-periodic.

On the other hand, the QGmethod has surprisingly good perfor-
mance, given that it does not capture any nonlinear energy trans-
fers. This can clearly be seen from the information distance panel,
where the QG and QG–DO (s = 1) discrepancies are presented
during the temporal regimes where the system parameters corre-
spond to strong nonlinear energy transfers. For a two-dimensional
subspace, the blended QG–DO method reduces this error signifi-
cantly, since it captures a large part of the non-Gaussian structure
and thus it models an important portion of the nonlinear energy
fluxes.

Time-dependent parameters II: random dependence

In the final numerical experiment that we consider, the system
parameters fluctuate stochastically (see the beginning of the
section for a detailed description) between a set that corresponds
to strong energy transfers and one where we have Gaussian
statistics (zero energy transfers). The results are presented in
Fig. 9. We observe that both the first-order and second-order
properties of the system present strong fluctuations. In contrast to
the standard DOmethod, the QG and the QG–DOmethods are able
to track very well the variations of the system statistics. Moreover,
in a similar manner to the previous numerical experiment, the
QG–DO method with the two-dimensional subspace outperforms
the QG and QG–DO s = 1 methods in the regimes where strong
energy transfers are present (i.e. regimes where f (t) ≃ 0).

The above numerical experiments illustrate clearly the need to
consider, even through a very simplified and inexpensive approach
like the QG method, the maximum number of relevant modes
so that we capture essentially irreducible features such as non-
normal dynamics or important variance in modes that essentially
behave linearly (i.e. they do not interact with other modes).
Nonlinear interactions such as energy transfers between modes
require knowledge of the non-Gaussian structure, and, as we saw
in this case, the blending of the QG closure with a non-Gaussian
reduced-order DO algorithm provides an inexpensive approach for
UQ in such systems.

Application of the QG–DO method to large-dimensional systems

The direct use of the QG closure in the blended QG–DO
algorithm is impractical for u ∈ RN with N ' 1000. In this
important practical situation, one can choose the {vi}Mi=1 to span
a fixed M-dimensional subspace with M sufficiently large and
repeat the derivation of the QG–DO algorithm. This subspace can
be chosen, for example, to capture both intermittency and low-
frequency variability through the NLSA algorithm [7].

7. Conclusions and future directions

Reduced-order modeling has been proven successful for de-
scribing a variety of systems that have low-dimensional attractors.
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Fig. 8. Comparison of the considered UQ algorithms for the triad system for periodic dependence of system parameters. The time-series results are presented in terms of
the first and second moments, and they are compared with direct Monte Carlo simulations.
Here, we have analyzed and illustrated generic limitations of order
reduction in dynamical systems with essentially irreducible fea-
tures. Such features as non-normal dynamics, variance over a wide
range of modes, and energy transfers due to nonlinear terms are
typical in realistic applications involving turbulent fluid flows and
advection of passive tracers. The quantification of the UQ perfor-
mancewas done using an empirical information framework aswell
as through more standard measures.

Subsequently, we developed a blended method using two ex-
isting approaches. The first ingredient was the classic quasilinear
Gaussian closure, which is an inexpensive way to model a wide
range of modes, although the underlying Gaussian assumption
ignores important energy transfers (connected with third-order
moments) that may be present in systems with strong nonlinear-
ities such as those that we consider. This important drawback of
the QG method was overcome by blending this inexpensive ap-
proach with the DO framework that models the full non-Gaussian
statistical features, but only for a low-dimensional stochastic sub-
space. The blending of themethods resulted in a newapproach that
overcomes the limitations of its two ingredients and performswell
and inexpensively in modeling strong energy transfers associated
with non-Gaussian statistics. Beyond the very good performance
in capturing second-order statistics over the full phase space, the
blended method was also able to provide accurate high-order sta-
tistical information within the stochastic subspace.

Our analysis was restricted to systems inwhich the finite size of
the stochastic attractor is due to the external stochastic excitation
only, i.e. systems with stable mean state. This limitation is due
to the choice of the QG method (as one of the ingredients of the
blended approach) which cannot handle systems with persistent
internal instabilities [22]. Therefore, a different approach should be
followed, based on the blending of amodified quasilinear Gaussian
closure and reduced-order subspace techniques as DO. Results
along this direction will be reported by the authors in the near
future [24].
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Fig. 9. Comparison of the considered UQ algorithms for the triad system for random dependence of system parameters. The time-series results are presented in terms of
the first and second moments, and they are compared with direct Monte Carlo simulations.
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