Kevin Remick’
e-mail: remick2@illinois.edu

Alexander Vakakis

Department of Mechanical

Science and Engineering,

University of lllinois at Urbana-Champaign,
1206 W. Green Street,

Urbana, IL 61801

Lawrence Bergman
D. Michael McFarland

Department of Aerospace Engineering,
University of lllinois at Urbana-Champaign,
104 S. Wright Street,

Urbana, IL 61801

D. Dane Quinn

Department of Mechanical Engineering,
University of Akron,

Akron, OH 44325

Themistoklis P. Sapsis
Department of Mechanical Engineering,
Massachusetts Institute of Technology,

Cambridge, MA 02139

Sustained High-Frequency
Dynamic Instability of a
Nonlinear System of Coupled
Oscillators Forced by Single or
Repeated Impulses: Theoretical
and Experimental Results

This report describes the impulsive dynamics of a system of two coupled oscillators with
essential (nonlinearizable) stiffness nonlinearity. The system considered consists of a
grounded weakly damped linear oscillator coupled to a lightweight weakly damped oscil-
lating attachment with essential cubic stiffness nonlinearity arising purely from geometry
and kinematics. It has been found that under specific impulse excitations the transient
damped dynamics of this system tracks a high-frequency impulsive orbit manifold (IOM)
in the frequency-energy plane. The IOM extends over finite frequency and energy ranges,
consisting of a countable infinity of periodic orbits and an uncountable infinity of quasi-
periodic orbits of the underlying Hamiltonian system and being initially at rest and sub-

Jjected to an impulsive force on the linear oscillator. The damped nonresonant dynamics

tracking the IOM then resembles continuous resonance scattering, in effect, quickly tran-
sitioning between multiple resonance captures over finite frequency and energy ranges.
Dynamic instability arises at bifurcation points along this damped transition, causing
bursts in the response of the nonlinear light oscillator, which resemble self-excited
resonances. It is shown that for an appropriate parameter design the system remains in a
state of sustained high-frequency dynamic instability under the action of repeated
impulses. In turn, this sustained instability results in strong energy transfers from the
directly excited oscillator to the lightweight nonlinear attachment; a feature that can be
employed in energy harvesting applications. The theoretical predictions are confirmed by

experimental results. [DOI: 10.1115/1.4025605]

Keywords: dynamical instability, strong nonlinearity, impulsive excitation

1 Introduction

It has been shown that linear damped oscillators with essen-
tially nonlinear damped attachments provide a means for efficient
broadband vibration suppression [1-3], in contrast to the linear
vibration absorber whose operation is narrowband [4]. Targeted
energy transfer has been observed in these strongly nonlinear sys-
tems, with the attachments being commonly referred to as nonlin-
ear energy sinks [5,6]. Targeted energy transfer describes the
nearly irreversible passive transfer of a significant amount of
energy initially stored in a linear structure to an appropriately
designed strongly nonlinear lightweight attachment which acts, in
essence, as a passive broadband adaptive boundary controller
[7-12]. The complex dynamics of these systems results from the
capacity of the essentially nonlinear attachment to engage in reso-
nance captures with modes of the linear structure over an exten-
sive range of frequencies and energies. This behavior arises from
the dynamics of the underlying Hamiltonian systems, which pos-
sess highly degenerate eigenstructures with pairs of complex con-
jugate imaginary and multiple zero eigenvalues. These result in
complex high codimensional bifurcations, which may lead to
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interesting nonlinear dynamics such as chaotic motions and
dynamic instabilities.

An additional interesting feature of this class of highly degener-
ate systems is the occurrence of nonlinear instabilities associated
with geometric stiffness [13] or damping nonlinearities [3]. In
Ref. [3] a rather unexpected result was reported; namely, that a
geometrically nonlinear viscous damping element can lead to dy-
namical instability of the linear oscillator to which it is attached.
This instability appeared as a buildup of the response of a nonlin-
ear attachment as it engaged in resonance capture with the linear
oscillator, in similarity to classical self-excited systems with
energy intake such as the Van der Pol oscillator or systems under-
going aeroelastic flutter. An additional interesting dynamical phe-
nomenon reported in Ref. [13], where a peculiar damped
nonlinear transition into a state of sustained nonlinear resonance
scattering [14-16] in a system of two coupled oscillators with
essential stiffness was reported. This transition was realized only
for sufficiently weak damping and only in the neighborhood of the
low-frequency branch of the impulsive orbit manifold (IOM) of
the underlying Hamiltonian dynamical system. Moreover, sus-
tained resonance scattering was realized only in certain frequency
ranges and was eliminated when the dynamics was attracted to a
1:3 resonance capture which was manifested as dynamic instabil-
ity in the transient response of the system, in a manner similar to
that in Ref. [3].

In a Hamiltonian system of coupled oscillators with strong stiff-
ness nonlinearities, an IOM consists of a countable infinity of
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periodic orbits and an uncountable infinity of quasi-periodic orbits
and typically extends over broad frequency and energy ranges
[17]. These orbits, which are in the form of nonlinear beats, arise
when an impulsive force is applied to the linear oscillator with the
system being initially at rest. A periodic impulsive orbit corresponds
to a rational relationship of the dominant frequencies of the
responses of the oscillators, while a quasi-periodic impulsive orbit
corresponds to an irrational frequency relationship. As shown in
Refs. [3,13] and in the present work, dynamic instability is associated
with excitation of the dynamics in the neighborhood of the IOM.
The present work extends the aforementioned results in two
ways. First, it is shown that sustained high-frequency dynamical
instability can be realized in systems of impulsively excited
strongly nonlinear coupled oscillators; this contrasts with previ-
ously reported results [3,13], where only low-frequency dynamic
instabilities were reported. Second; in contrast to previous studies
where free damped transitions were considered, the nonlinear dy-
namics under a repetitive series of impulses are considered in this
report and it is shown that the dynamic instability can be sustained
under this type of periodic excitation. It is anticipated that these find-
ings will find application in areas such as energy harvesting of vibra-
tions of systems under periodic or near-periodic excitations. These
theoretical findings are validated by a series of experimental tests.

2 System Configuration and Impulsive
Forcing Scenarios

The configuration of the system of coupled oscillators is
depicted in Fig. 1. It is composed of a grounded weakly damped
linear oscillator coupled to a lightweight attachment through a lin-
ear weak viscous damper and an essentially nonlinear spring of
the third order (i.e., possessing cubic nonlinearity and no linear
stiffness component). Geometric and kinematic nonlinearities in
this system are realized due to transverse deformations of the lin-
ear springs with constants k3 relative to the direction of oscillation
of the attachment [12]. An excitation f{(r) is applied to the linear
oscillator at # =0 with the system at rest.

The equations of motion of the system shown in Fig. 1 are
expressed in normalized form as follows:

K4 x4 (k=) +oix+ Clx—v) =F(@)  (la)

e+ (v — %) +Cv—x) =0 (1)
where x denotes the response of the linear oscillator, v is the
response of the nonlinear oscillator, and the over-dot denotes dif-
ferentiation with respect to the time variable ¢. The normalized pa-
rameters are defined as w():(kl/ml)l/z, C =ks/my, A =bi/my,
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s
NV it
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Fig. 1 Configuration of the two-degree-of-freedom coupled
oscillator with essential geometric nonlinearity
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Ary =bo/my, e =my/m;, and F(t) =f(t)/m;, where the physical pa-
rameters are presented in Fig. 1. By considering the small mass
parameter 0 < ¢ < 1, the lightweightness of the nonlinear attach-
ment compared to the directly excited linear oscillator is denoted.
This work considers impulsive forcing excitation in the form of
single or repetitive impulses.

The first excitation scenario of a single impulse was studied by
Anderson et al. [13] and it was shown, both theoretically and
experimentally, that the corresponding damped transition approxi-
mately tracks the lower frequency branch of the impulsive orbit
manifolddOM) of the underlying Hamiltonian system (that is,
system (1) with the damping constants set equal to zero). This
work will generalize these results by showing the high-frequency
IOM tracking by the damped dynamics of system (1). In turn,
these high-frequency dynamics will be manifested as the dynamic
instability of the coupled system in the form of relatively high-
amplitude and high-frequency oscillations of the (indirectly
forced) nonlinear attachment. Moreover, in the single impulse ex-
citation scenario it is assumed that system (1) is initially at rest at
t=0—, and a single impulse equal to F(r) =Iyo(¢) is applied to the
linear oscillator at t =0+. Hence, the equations of motion (1) are
complemented by the initial conditions

x(0+) =0, ¥(0+)=1, v(O0+)=¥0+)=0 (2

In the second excitation scenario, the linear oscillator is excited
by a periodic series of identical impulses. For the first impulse, it
is assumed again that at t = 0— the system is initially at rest, there-
fore, immediately after the initial impulse is applied the initial
conditions are given by Eq. (2). This case defines the impulsive
period T as the time delay between consecutive impulses and the
normalized impulsive period as the multiple » of the fundamental
period To=2n/wy of the linear oscillator between consecutive
impulses, n="T/T,. For example, a normalized impulsive period
of 5 would define a periodic forcing scheme in which an impulse
of magnitude [, is applied to the linear oscillator every five funda-
mental periods. In mathematical form the periodic series of
impulses is defined as F(5;T) = S0 olod(t — kT), where N
denotes the total number of applied impulses in the given compu-
tation or experiment. In this scheme, the pth impulse applied to
the linear oscillator at t = pT+, p > 1 corresponds to the follow-
ing initial conditions for system (1) immediately after the applica-
tion of the pth impulse:

X(pT+) - X(pT_)7
v(pT+) = v(pT—-),

x(pT+) = x(pT—) + Iy,

v(pT+) =v(pT-), p=1,...,N ®)
Hence, the initial state of the system will differ for each consecu-
tive impulse, depending on the remaining vibration energy in the
two coupled oscillators at the time of application of the pth
impulse. In Eq. (3), continuity for all state variables at the time of
application of the impulse is imposed, except for the velocity of
the linear oscillator, which exhibits a discontinuity equal to the in-
tensity of the applied impulse.

Various impact periods and impulse magnitudes are considered
to study the occurrence of sustained dynamic instability in this
system, manifested as the repetitive excitation of high-frequency
and relatively high-amplitude oscillations of the (indirectly
forced) lightweight attachment in the neighborhood of a high-
frequency part of the IOM of the underlying Hamiltonian system.
Since the dynamics of the corresponding undamped system (1)
play an important role in exciting sustained dynamic instability in
this system, Sec. 3 is devoted to a brief overview of the underlying
Hamiltonian dynamics and discusses the IOM of this system.

3 Underlying Hamiltonian Dynamics

Before studying the dynamics of system (1), the underlying
Hamiltonian system corresponding to 4y =4, = F(r) =0 is
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considered by depicting its dynamics in a frequency energy plot
(FEP) [2,12,13]. This plot depicts branches of periodic and
quasi-periodic orbits at varying energy levels. In particular, the
dominant frequency of each orbit is plotted as a function of the
(conserved) energy. The Hamiltonian FEP will be used as a
framework to study the forced dynamics of the weakly damped
system (1) since, depending on the applied initial energy, the
weakly damped dynamics will transition between different
branches of the FEP; this will be shown by computing the wavelet
transform spectra of the damped responses and superimposing
these spectra on the Hamiltonian FEP. The wavelet transform will
be applied in order to analyze a time series of a given transient
response to obtain frequency transitions as wavelet spectra. The
wavelet transform involves a windowing technique with variable-
sized regions, in which small time intervals are considered for
high-frequency components and, conversely, larger time intervals
are considered for lower frequency components. This provides a
valuable ‘dynamic’ time-frequency analysis tool, which is more
beneficial compared to the stationary signal analysis provided by
the fast Fourier transform in the sense that it reveals the temporal
evolutions of the dominant frequency components of a given damped
transition as energy decreases due to damping dissipation. Depending
on the level of damping and the initial state of the system, this
damped transition will be shown to ‘visit’ and make transitions
between different branches of the FEP with decreasing energy.

In Fig. 2 the FEP of the underlying Hamiltonian system (1) for
the parameters

£=8.814x 1072, wy=15.367rad/s, C=4.315x 10°N/Kgm®

is presented; these parameters correspond approximately (with the
exception of the exponent of the essential stiffness nonlinearity as
discussed in the following text) to the experimental system that
will be considered in a following section with un-normalized
parameters

my = 1.9853 Kg, my = 0.175 Kg,
ks = 8.568 x 10° N/m’

ki = 469 N/m,

Two global backbone branches of orbits are presented which are
defined over broad frequency and energy ranges; namely,
branches S11* corresponding to in-phase and out-of-phase peri-
odic orbits in 1:1 resonance, with both oscillators of the system
vibrating with identical frequencies. Two of the countable infinity
of local subharmonic tongues are also depicted; namely, branches

Frequency (rad/sec)

0:2 g 5
10 10 10 10 10
Energy

Fig. 2 Frequency-energy plot of the underlying Hamiltonian
system (1)

Journal of Vibration and Acoustics

S13 and S15 corresponding to 1:3 and 1:5 resonances, respec-
tively, between the linear oscillator and the nonlinear attachment
(which oscillates with lower frequency). As discussed in Ref.
[12], the countable infinity of periodic orbits lie on pairs of in-
phase/out-of-phase subharmonic tongues (such as the depicted
branches S13 and $15), which are defined over finite energy
ranges and are connected to the backbone branches (in fact, each
of these subharmonic tongues represents mode mixing between
the in-phase and out-of-phase modes of the system).

Of particular interest to this study will be the impulsive orbit
manifold (IOM) of the Hamiltonian system. The IOM consists of
a countable infinity of periodic orbits and an uncountable infinity
of quasi-periodic orbits of the Hamiltonian system corresponding
to the initial impulsive excitation of the linear oscillator and all
other initial conditions zero; i.e., x(0+) = Iy, x(0+) = v(0+)
=v(0+) = 0. In Ref. [13], it was shown, analytically and experi-
mentally, that damped transitions in the neighborhood of the
low-frequency portion of the IOM imply sustained nonlinear reso-
nance scattering on that manifold. That work predicted that damp-
ing plays a critical role in exciting this type of damped transitions
(i.e., ‘tracking’ the IOM); specifically, light damping allows for a
slow variation of energy in the system, leading to sustained reso-
nance scattering away from basins of attraction to resonance cap-
tures. Indeed, increased damping causes the breakdown of
resonance scattering, which results in immediate resonance cap-
ture. As shown in Sec. 4, under single or repetitive impulsive exci-
tation of the linear oscillator in the damped system (1), the
resulting dynamical transitions in neighborhoods of the high-
frequency portion of the IOM will be responsible for sustained
instability of the dynamics, appearing as multifrequency high-
amplitude oscillations of the nonlinear attachment.

The superposition of the wavelet spectrum of a specific damped
transient response on the Hamiltonian FEP of Fig. 2 provides val-
uable qualitative and quantitative information regarding the fre-
quency content of the damped dynamics. Although such FEP-
wavelet superpositions are purely phenomenological, one needs to
consider that the dynamical effects of weak viscous damping are
purely parasitic, i.e., they do not introduce any new dynamics in
the system compared to the underlying Hamiltonian one. Hence,
the FEP depictions of the wavelet spectra of the damped transi-
tions provide information on the branches of solutions of the
underlying Hamiltonian system that are ‘visited’ in a given
damped transition; the actual transitions between branches are
then dictated by the level and distribution of damping within the
system. For more information of the use of the FEP to study tran-
sient nonlinear dynamics the reader is referred to Ref. [12] and the
references therein. To construct the FEP depictions in the results
of the following sections, one applies the following sequence of
computations: (i) for a given impulse (or series of impulses)
applied to the linear oscillator one computes the numerical wave-
let spectrum of the responses of the system, (ii) at any given time,
one computes the total (continuously decreasing) instantaneous
energy of the system following the application of the impulse, and
(iii) by plotting the frequency responses obtained by the wavelet
spectra versus the corresponding instantaneous energy (i.e., elimi-
nating the time variable) one obtains a frequency-energy depiction
of the damped transition, which can be superimposed to the Ham-
iltonian FEP in order to study the nonlinear dynamic transitions
that occur in the dynamics.

Section 4 initiates the study of the damped dynamics of system
(1) by performing numerical simulations for single and repetitive
impulse excitation, and studies the resulting high-frequency dy-
namical instabilities by wavelet analysis and superpositions of the
wavelet spectra on the FEP of Fig. 2. The two impulse excitation
scenarios are separately considered.

4 Computational Study

The computational study of the damped dynamics of Eq. (1) is
initiated by considering single impulse excitation and studying the
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Table 1 Physical system parameters for the model of Fig. 1

Parameter Value

m 1.9853 Kg

my 0.175 Kg

ky 469 N/m

ks 25.068 x 10°N/m?

by 0.0726 N s/m

b, 0.0030N s/m
Table2 Normalized parameters for the model of Fig. 1

Parameter Value

€ 8.814 x 1072

o 15.367 rad/s

c 12.627 x 10°N/Kg m*

A 0.0366 N s/Kg m

2 0.00151 N s/Kg m

resulting damped transitions by superimposing their wavelet spec-
tra on the FEP of the underlying Hamiltonian system. Although
this type of superposition is purely phenomenological, it will help
one interpret the damped response in terms of resonance captures
or resonance scattering in the branches of the FEP visited during
that specific response [12]. The system parameters for the model
of Fig. 1 were selected as shown in Table 1, which correspond to
the normalized parameters for the theoretical model (1) shown in
Table 2. These parameters differ from the experimentally identi-
fied parameters for the experimental model discussed in Sec. 5,
the reason being that no linear component complementing the
nonlinear stiffness was considered so that the nonlinear coefficient
k3 had to be adjusted to account for its purely (essentially) nonlin-
ear nature. In addition, purely cubic stiffness nonlinearity was
assumed in this theoretical model, in contrast to the experimen-
tally estimated nonlinear exponent of 2.95 as discussed in Sec. 5.

0.01
g
= 0.005
@
£
_g 0 prrrm A A ANNANANNNNNNNNNN
2
© .0.005
-0.01
00 0 10 20 30
Time (Sec)
(a)
Relative Diplacement Wavelet
50
§ 407 | ow-frequency 10 tracking
8 30
z 1:3 Resonance capture
S 20
=
[
= 10 \I/
0
0 10 20 30
Time (sec)

()

All frequency-energy Hamiltonian plots utilized in this section
were computed using the previous adjusted system parameters.

Here, note that in the preceding theoretical model there is a
great reduction of the mass ratio ¢ compared to the system consid-
ered by Anderson et al. [13] with a mass ratio of ¢ =0.4046; as
shown in the following text, this drastic reduction of the mass of
the nonlinear attachment has a drastic effect on the damped dy-
namics and, in particular, its frequency content. In particular,
whereas in Ref. [13] it was shown that the dynamics can track the
lower frequency portion of the IOM, in the present case with the
much lighter nonlinear attachment, the dynamics will be shown to
track the higher frequency portion of the IOM, resulting in high-
frequency dynamic instability of the system.

The theoretical model (1) was numerically integrated with the
initial conditions (2) for a range of applied impulses in order to
study the effect of the energy input on the damped dynamics. Fig-
ure 3 depicts the response of the theoretical model subject to a sin-
gle impulse of relatively small intensity /o =0.007 m/s. Although
the responses of the linear oscillator and the nonlinear attachment
are small, interesting resonance captures in the damped dynamics
are observed when considering the wavelet spectrum of the rela-
tive response x — v (cf., Fig. 3(c)) and superimposing it on the
FEP of the underlying Hamiltonian system (cf., Fig. 3(d)). It is
deduced that the dynamics initially engages in resonance capture
in the vicinity of the S11— out-of-phase backbone branch before
transitioning to the lower frequency S13 subharmonic tongue,
which results in a gradually increasing (albeit small) amplitude of
oscillation of the nonlinear attachment. This type of low-
frequency damped transition is typical of transitions reported in
previous works [12,13] and the corresponding dynamical instabil-
ities reported therein. In this case, the initial energy input into the
system provided by the impulse is too low to cause high-
frequency transient dynamic instability associated with tracking
of the high-frequency portion of the IOM.

The response of the system for the normalized impulse intensity
of 1o =0.010 m/s is shown in Fig. 4. It is clear that a small increase
in the input energy results in a qualitatively different dynamic
response. In particular, in the initial highly energetic regime the
response of the nonlinear attachment occurs in the neighborhood

0.01
E
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=
@
=
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2
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Fig. 3 Damped response of the theoretical model for single impulse excitation of normalized
intensity /= 0.007 m/s: (a) displacement of the nonlinear attachment, (b) displacement of the
linear oscillator, (c) wavelet spectrum of the relative displacement, and (d) wavelet spectrum of

(c) superimposed on the Hamiltonian FEP
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Fig. 4 Damped response of the theoretical model for single impulse excitation of normalized
intensity /p =0.010m/s: (a) displacement of the nonlinear attachment, (b) displacement of the
linear oscillator, (c) wavelet spectrum of the relative displacement, and (d) wavelet spectrum of
(c) superimposed on the Hamiltonian FEP

of the intersection between the out-of-phase backbone branch
S11— and the high-frequency portion of the IOM; this is deduced
by the strong high-frequency harmonics in the initial part of the
wavelet spectrum of the damped relative response of Fig. 4(c). In
the later part of the damped responses, broadband beat phenomena
(appearing as pulsations) in the wavelet spectrum of Fig. 4(c) are

noted; these nonlinear beats result due to
spaced resonance captures as the IOM

the existence of closely
approaches the out-of-

phase S11— branch [17]. These phenomena result in the
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high-frequency dynamical instability in the damped response,
which manifests itself in the form of strongly modulated damped
responses of both the linear oscillator and (especially) the nonlin-
ear attachment. It is important to note again that this dynamic
instability arises from the presence of the essential stiffness nonli-
nearity and weak viscous damping in the coupling, since it cannot
be realized in linear or weakly nonlinear settings. Moreover, to
the authors’ best knowledge, this is the first report of high-
frequency dynamical instability by tracking of the high-frequency
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Fig. 5 Damped response of the theoretical model for single impulse excitation of normalized
intensity = 0.070 m/s: (a) displacement of the nonlinear attachment, (b) displacement of the
linear oscillator, (c) wavelet spectrum of the relative displacement, and (d) wavelet spectrum of
(c) superimposed on the Hamiltonian FEP
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Fig. 6 Damped response of the theoretical model for periodic impulse excitation of normalized
intensity I = 0.010 m/s: (a) relative displacement between the nonlinear attachment and the lin-
ear oscillator, and (b) displacement of the linear oscillator
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Fig. 7 First cycle of the damped response of Fig. 6, following the first impulse: (a) relative dis-
placement between the nonlinear attachment and the linear oscillator, (b) displacement of the
linear oscillator, (c) wavelet spectrum of the relative displacement, and (d) wavelet spectrum of

(c) on the Hamiltonian FEP

011013-6 / Vol. 136, FEBRUARY 2014

Transactions of the ASME

Downloaded From: http://asmedigitalcollection.asme.org/ on 11/17/2013 Terms of Use: http://asme.org/terms



5 10° ) ) x10°

£ _
§ 25 < 25
-5
§ o"Il,lh'h””l”l'” I‘l”‘ ”’ 8 o A ‘
\
§ “””I““I“l””“ I“llllll -g LA A M Nh'i LAIAR LA
225 S 25
s [(a) = (b)
™0 15 20 25 0 15 20 25
Time (Sec) Time (Sec)
Relative Diplacement Wavelet Relative Diplacement Wavelet
40 40
gao gso-
g j
‘ézo ‘§'2o ‘
g i
g 10 g 10f i
O | - ‘F'.).-. |
0 -5 10 1o 0 10°  10° 10"
Time (sec) Energy

Fig. 8 Second cycle of the damped response of Fig. 6, following the second impulse: (a) rela-
tive displacement between the nonlinear attachment and the linear oscillator, (b) displacement
of the linear oscillator, (c) wavelet spectrum of the relative displacement, and (d) wavelet spec-
trum of (¢) on the Hamiltonian FEP
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Fig.9 Third cycle of the damped response of Fig. 6, following the third impulse: (a) relative dis-
placement between the nonlinear attachment and the linear oscillator, (b) displacement of the
linear oscillator, (c) wavelet spectrum of the relative displacement, and (d) wavelet spectrum of
(c) on the Hamiltonian FEP
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Fig. 10 Initial conditions of the linear oscillator and the nonlinear attachment at

the beginning of each of the ten impulsive cycles of the damped response depicted

in Fig. 6

portion of the IOM. In the previous study by Anderson [13], a
similar dynamical instability was reported but this was associated
exclusively with low-frequency IOM tracking; in that work, no
high-frequency IOM tracking could be realized due to the rela-
tively large value of the normalized mass ratio (which was close
to 40% compared to the 8% value used in the present study).

The response of the system for the relatively high impulse in-
tensity /o=0.070 m/s is shown in Fig. 5. In this case, the high-
frequency IOM tracking is more clearly visible, confirming the
occurrence of high-frequency dynamic instability in this system.
The high-frequency IOM tracking is evident when one considers
the slowly varying strong high-frequency harmonic in the relative
response of the wavelet spectrum of Fig. 5(c). Moreover, as seen
from the wavelet spectrum superposition of Fig. 5(d), the response
of the nonlinear attachment starts tracking the high-frequency por-
tion of the IOM right from the start of the damped dynamics, with
continuously decreasing frequency and energy for the duration of
the simulation. This sustained high-frequency resonance scatter-
ing results in large-amplitude and strongly modulated oscillations
of the nonlinear attachment and, hence, to the strong transient
dynamic instability of the damped response. In this case, the linear
oscillator oscillates at its own natural frequency (i.e., slower com-
pared to the linear oscillator), concurrently with the complex dy-
namics of the nonlinear attachment.

In the next step of the computational study the repetitive
impulse excitation scenario is considered, whereby the linear os-
cillator is forced by a periodic series of identical impulses with
the system being initially at rest, as outlined by the conditions (2)
and (3). The principal aim of the study is to demonstrate that it is
possible to consistently bring the nonlinear attachment into a state
of dynamic instability by repeatedly tracking the high-frequency
portion of the IOM, as in the previous case of single impulse exci-
tation. For consistency, the system parameters for the following
computational study remain the same as in the previous single
impulse excitation scenario. The damped responses of system (1),
subject to the initial conditions (2) and intermediate conditions
(3), were considered for a range of applied normalized impulse
intensities /y applied at time instants =pT, p=0, 1, 2,.... Follow-
ing each applied impulse the initial conditions and the energy of
the system were considered, and the resulting damped transitions
were studied by superimposing their wavelet spectra on the Ham-
iltonian frequency-energy plot (as in the previous case of single
impulse excitation).

Figure 6 presents the damped response of the system for 10
applied impulses of normalized intensity /o =0.010 m/s and nor-
malized period n =T/Ty=25 (i.e., the period of the applied peri-
odic impulse excitation was 25 times the natural period of
oscillation of the linear oscillator). Here, note that similar to the
previous case, the response of the (unexcited) nonlinear attach-
ment is larger than the response of the (directly excited) linear os-
cillator, indicating the repetitive excitation of dynamic instability
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in this case. Moreover, the excitation of the dynamic instability af-
ter application of each impulse occurs for nonzero initial condi-
tions of the system (in contrast to the single impulse excitation
scenario), providing a first indication of robustness of the dynamic
instability mechanism.

To study the damped dynamics of the system and prove the ex-
citation of high-frequency dynamic instability after the application
of the initial impulses, Figs. 7-9 present a detailed analysis of the
dynamics following each of the first three impulses of Fig. 6. The
level of normalized impulse intensity is chosen so that the initial
energy level in the system is the same as the initial energy level of
the simulation of Fig. 4, where high-frequency dynamic instability
in the response of the nonlinear attachment resulted from tracking
by the damped dynamics of the high-frequency portion of the
IOM. The normalized impulsive period n =25 was chosen accord-
ing to the forcing scheme that was physically realizable in the ex-
perimental realization of the repetitive impulse scenario, as
discussed in Sec. 5.

As seen in the relative displacement time series in Fig. 6, large
amplitude oscillations are maintained for the duration of the simu-
lation and for each of the impulses. Considering in detail the first
cycle of the response presented in Fig. 7, the wavelet spectrum
superposition on the FEP indicates that the instantaneous fre-
quency of the nonlinear attachment is fluctuating between several
of the superharmonic resonance branches existing in the neighbor-
hood of the IOM (which are not depicted in the FEP for this sys-
tem). The relative displacement time series indicates that this is a
pulsing (beating) phenomenon attributed to superharmonic reso-
nance captures (RCs), similar to that depicted in Fig. 4. Recall at
this point that that damped transitions in the neighborhood of the
high-frequency portion of the IOM are characterized by continu-
ously decreasing frequency and energy in the wavelet spectrum of
the corresponding time series which, clearly, is not the trend in
the response of the first cycle of Fig. 7. However, considering in
detail the following cycle depicted in Fig. 8, the wavelet spectra
superposition on the FEP indicate that the damped response of the
relative response of the nonlinear attachment is now tracking the
high-frequency portion of the IOM for the entire duration of the
second cycle (i.e., the response of the system between the second
and the third impulses). This state of sustained resonance scatter-
ing (SRS) results in the relatively high energy transfer from the
linear oscillator to the nonlinear attachment, as depicted by the
high amplitude oscillations in the relative displacement time se-
ries and the resulting high-frequency dynamic instability.

In addition, by examining the third cycle of the damped
response depicted in Fig. 9 in detail, it is deduced that the wavelet
spectrum of the relative response between the nonlinear attach-
ment and the linear oscillator again tracks the high-frequency por-
tion of the IOM for the entire duration of this cycle. In fact, the
response of the system during the third cycle is similar to the
response during the second cycle, despite the different initial
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Table 3 Summary of resonance captures for the repeated
impulse excitation scenario with /o =0.010 m/s and n =25

Impulse number Type of dynamic response

Superharmonic RC
SRS
SRS
SRS
SRS

SRS (primarily)

Superharmonic RC
SRS
SRS
0 SRS

— 0 00 1O\~

conditions of the system at the start of each cycle (as shown in
Fig. 10). This indicates that the described high-frequency instabil-
ity can be robustly excited, even for varying initial conditions of
the system at the beginning of each cycle following repetitive
impulse excitation.

The robustness of the excitation of high-frequency dynamic
instability in this case is further confirmed by the results reported
in Table 3, where a summary of the analysis of the dynamic
responses for all ten cycles of the damped response of Fig. 6 is
provided. Two different types of damped dynamics can be real-
ized in this case, namely, superharmonic resonance capture (RC)
(similar to the response of the first cycle in Fig. 7) and sustained
resonance scattering (SRS) (similar to the responses of the second
and the third cycles in Figs. 8 and 9); eight of the ten impulsive
cycles correspond to high-frequency dynamic instability of the
response of the nonlinear attachment, tracking the high-frequency
IOM. More specifically, as seen in the relative displacement time
series of Fig. 6, impulsive responses of the first and seventh cycles
exhibit similar qualitative features, exhibiting the superharmonic
frequency fluctuations. It is interesting to note that the dynamics
during the sixth impulsive cycle escapes the SRS near the end of
the cycle; this might explain why the dynamics in the seventh
cycle exhibits superharmonic resonance capture. However, fol-
lowing this, the dynamics of the eighth cycle returns to a state of
SRS and the high-frequency dynamic instability is excited again.
This repeated excitation of the SRS occurs despite the different
initial conditions of the system at the beginning of each cycle fol-
lowing an impulse excitation as depicted in Fig. 10. An interesting
observation is that the SRS (and high-frequency dynamic instabil-
ity) appears to occur for impulsive cycles where the nonlinear
attachment has an initial velocity magnitude greater than a certain
threshold; i.e., v|(pT+)| > 0.005 m/s. Further analytical verifica-
tion of this observation will be the scope of future work.

Motivated by the previous numerical results and the theoreti-
cally predicted robust excitation of high-frequency dynamic insta-
bility of the system under single and repeated impulsive forcing,
an experimental study was undertaken in order to confirm the
theoretical predictions. The results of this study are discussed
in Sec. 5.

5 Experimental Study

The fixture is presented in Fig. 11. The experimental system
consists of two masses that oscillate along an air track, which
greatly reduces damping due to friction. The more massive linear
oscillator is grounded through a linear leaf spring, while the
lighter nonlinear attachment is coupled to the linear oscillator
using a piano wire of diameter equal to 0.5 mm. The strong stiff-
ness nonlinearity required for the realization of the high-
frequency dynamic instability is implemented by means of the
piano wire oriented to be perpendicular to the direction of the
motion of the attachment; when this wire has no pretension, its
transverse deformation gives rise to an essential stiffness nonli-
nearity whose dominant component is third order (i.e., pure cubic
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Fig. 11 Experimental realization of the system of Fig. 1: con-
figuration for (a) single impulse excitation, and (b) periodic
impulse excitation

nonlinearity [12]). Although the piano wire is mounted so that
there is no pretension in the wire in order to minimize any linear
component in the coupling stiffness of the nonlinear attachment,
nevertheless, a small linear term occurs, as discussed in the fol-
lowing text; however, as pointed out in Ref. [12] this small linear
term is not expected to affect the strongly nonlinear dynamical
phenomena that need to be validated by the experimental study.
Moreover, an additional small linear term in the coupling stiffness
is inevitable due to the force that the air track imparts on the non-
linear attachment. The air track pressure is set to a near minimum
value of 50 psi to support the weight of the linear oscillator and
this pressure adds an artificial linear component to the coupling
stiffness due to the lightweight nature of the nonlinear attachment.

Single impulsive forces are applied to the linear oscillator by
means of an impact hammer, whereas periodic impulsive forces
are applied by means of a long-stroke shaker. The parameter val-
ues of the experimental system were identified by performing lin-
ear modal analysis (for the parameters of the linear oscillator) and
nonlinear system identification utilizing the restoring force surface

Table 4 Experimentally identified system parameters

Parameter Value

m 1.9853 Kg

ny 0.1750 Kg

ki 469 N/m

ks 8.568 x 10" N/m”
o 2.95

Kiin 80.0N/m

by 0.0726 N s/m

by 0.0200 N s/m
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method [18,19] (for the nonlinear attachment). The system param-
eters were identified, as shown in Table 4. Note that the experi-
mentally identified exponent of the essential stiffness nonlinearity
is oo =2.95 which, although close, is not exactly equal to the theo-
retically assumed cubic nonlinearity used in the theoretical study
of Sec. 4. Moreover, in the experimental system a small but non-
negligible linear stiffness component for the nonlinear (coupling)
stiffness of the attachment equal to kj;, =80 N/m is identified,
which again is contrary to the assumption of pure nonlinearizable
stiffness nonlinearity of the attachment in the theoretical model of
Sec. 4. As discussed in Ref. [12], however, this small linear com-
ponent is not expected to affect the dynamics in a significant way.
It is noteworthy that damping in the experimental system is rather
weak; the numerical study confirms the assumption that weak vis-
cous damping is essential for obtaining the high-frequency dy-
namical instability, thus the experimental model satisfies this
requirement. It is important to note that some uncertainty existed
in the identified system parameters due to the effect of the air
track pressure on the carts, unmodeled friction effects in the sys-
tem, and occasional contact of the carts with the air track. All
Hamiltonian frequency-energy plots depicted in this section are
identical to the one depicted in Fig. 2; i.e., they are based on the
preceding experimentally identified system parameters but for the
exponent of the nonlinearity which was adjusted to 3 (i.e., exact
cubic nonlinearity was assumed instead of the experimental expo-
nent value of 2.95), and the linear component of the stiffness non-
linearity which was omitted (i.e., it was assumed to be kj;, =0).
This provides a measure of consistency in the interpretation of the
experimental responses when their wavelet spectra are depicted in
the underlying Hamiltonian FEP.

As in the computational study of Sec 4, first the single impulse
excitation scenario is considered. The computational study pre-
dicted the impulsive excitation levels that would allow for sus-
tained resonance scattering in the higher frequency portion of the
IOM (PCB Piezotronics, Inc., Depew, NY). As stated earlier, for
the single impulse excitation a PCB modal hammer was used to
apply the excitation to the linear oscillator with the system ini-
tially at rest. The velocity time series measurements of the two
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oscillators were obtained using two Polytec VibraScan laser vibr-
ometers at a sampling frequency of 512 Hz. The data acquisition
for the two systems was synchronized using the impact hammer
as the triggering mechanism, with a small pretrigger time of
640 ms. The synchronized response of the oscillator system was
very important for the accurate computation of the wavelet spectra
of the relative displacement time series and the relative displace-
ment frequency-energy plots, since it eliminated any phase-lags
between the measured responses of the linear oscillator and the
nonlinear attachment. The raw velocity time series data were then
numerically integrated once to obtain the corresponding displace-
ment time series for each of the two oscillating components of the
system. The displacement time series data were corrected using a
high pass 4th order Butterworth filter with a cutoff frequency of
1.28 Hz to eliminate drift in the data from the signal noise. The in-
stantaneous total system energy during the dynamics could then
be computed similarly to the numerical case, followed by numeri-
cal computation of the wavelet spectra of the relative displace-
ment time series and superposition of these wavelet spectra on the
Hamiltonian FEP, exactly as in the computational study.

The system was forced using a wide range of excitation magni-
tudes corresponding to situations in which sustained resonance
scattering was numerically observed. Exciting a damped transition
on the lower frequency portion of the IOM for this system proved
to be unobtainable (contrary to Ref. [13], where a heavier nonlin-
ear attachment was used and low-frequency IOM tracking was the
only possibility). Following the notation of Sec. 4 the predicted
range for a transition on the lower portion of the IOM (as in the
transition of Fig. 3) was for an initial normalized impulsive inten-
sity /o in the range 0.007 —0.012m/s. In practical terms, this
impulse range was hard to excite using a modal hammer, since
physical hammer excitations less than /o =0.015 m/s caused very
low amplitude oscillations, as predicted by the numerical investi-
gation. However, in the experimental tests these low amplitude
oscillations were predominantly linear, indicating that the air track
pressure was having a stronger polluting effect on the dynamics of
the lightweight nonlinear attachment at these low amplitudes.
Therefore, the remaining experiments focused on exciting the
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Fig. 12 Damped experimental response for the single impulse excitation of normalized inten-
sity Ip = 0.0198 m/s: (a) displacement of the nonlinear attachment, (b) displacement of the linear
oscillator, (c) wavelet spectrum of the relative displacement, and (d) wavelet spectrum of (¢)

superimposed on the Hamiltonian FEP
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cillator, (c) wavelet spectrum of the relative displacement, and (d) wavelet spectrum of (c) super-

imposed on the Hamiltonian FEP

upper portion of the IOM,where the theoretically predicted high-
frequency dynamical instability was expected to occur.

The predicted range for a transition on the upper portion of the
IOM (as in the transitions of Figs. 4 and 5) was for normalized
impulse intensities of 0.014m/s < [y < 0.080m/s. In practical
terms this impulsive magnitude range corresponded to an energy
range 107*—1072J of the FEP depicted in Fig. 2. In the experi-
mental tests this energy range was robustly excitable with the
modal hammer, with the resulting high-amplitude oscillations of
the system exhibiting strongly nonlinear characteristics, indicating
that the air track had a negligible (linear) effect on the dynamics.
It is important to note here that the numerically predicted impulse
magnitudes did not correspond directly to the required physical
impulse magnitudes to obtain transitions in the same energy
range. This was because the forcing in the numerical simulation
was in the form of a Dirac delta function, while the forcing practi-
cally realized by the modal hammer was approximately in the
form of a half-sine wave. This, however, did not present a prob-
lem in the experimental forcing scheme, but rather provided an
important distinction between the numerical simulation and exper-
imental trial.

The experimental response of the system of Fig. 11(a) for a nor-
malized impulse intensity equal to /o =0.0198 m/s is depicted in
Fig. 12. This initial excitation energy input into the linear oscilla-
tor achieved by means of the modal hammer is comparable to the
energy input depicted in the theoretical response of Fig. 4. Indeed,
the responses and the wavelet spectra of the responses of the lin-
ear and nonlinear oscillators compare favorably. Similar to the
theoretical case of Fig. 4, the dynamics of the nonlinear attach-
ment occurs in the neighborhood of the intersection between the
out-of-phase backbone branch S11 — and the high-frequency por-
tion of the IOM for the entire duration of the simulation. That this
is, indeed, the case is verified by the nearly constant wavelet spec-
trum of the relative response in Fig. 12(c). This result is typical
for the experimental setup with initial excitation levels of ~ 10~*2
J and below. As stated earlier, damped transitions of the dynamics
in the neighborhood of the lower frequency part of the IOM could
not be experimentally realized with the current experimental
setup.

Journal of Vibration and Acoustics

A different picture of the damped dynamics is obtained for
stronger applied impulses. Figure 13 depicts the experimental
response of the system for a higher normalized impulse intensity
equal to /o =0.1454m/s. This initial excitation energy input into
the linear oscillator by means of the modal hammer is comparable
to the energy input in the theoretical computation depicted in Fig.
5. Similar to the theoretical result, the experimental responses of
Fig. 13 verify the occurrence of high-frequency dynamical insta-
bility resulting by tracking the higher frequency portion of the
IOM. That this is, indeed, the case is verified by the slowly (and
continuously) decreasing frequency spectrum of the relative
response of Fig. 13(c). Hence, the theoretical prediction of high-
frequency dynamical instability of Sec. 4 is experimentally vali-
dated. As seen in the superposition of the wavelet spectrum of the
relative response on the Hamiltonian FEP of Fig. 13(d), the non-
linear dynamics starts tracking the high-frequency portion of the
IOM right from the beginning of the motion and keeps on tracking
the IOM with decreasing frequency and energy (due to damping
dissipation). Interesting dynamics then occur at #=3s, when the
instantaneous frequency of the relative oscillation starts fluctuat-
ing between different resonances in the neighborhood of the upper
IOM and the S11 4 backbone branch. Following this phase of the
dynamics, the damped dynamics again starts tracking the upper
portion of the IOM at t=10s and for the remainder of the pre-
sented window of experimental measurement. The tracking of the
higher frequency portion of the IOM results in high-frequency
dynamic instability of the system in the form of ‘bursts’ in the ve-
locity time series of the nonlinear attachment (see Fig. 13(b)).

The experimental study indicates that this state of sustained res-
onance scattering by tracking the upper portion of the IOM and
the ensuing instability in the response of the nonlinear attachment
is robust (and fully reproducible) for normalized impulse inten-
sities in the range of 107*J < Iy < 1072 J. In fact, high-frequency
dynamic instability due to tracking of the upper portion of the
IOM was observed in 17 out of 20 experimental trials performed
in the aforementioned energy range, indicating that the reported
dynamic instability is robust in the experimental system.

In an additional series of experiments, the periodic impulsive
excitation scenario is considered using the modified experimental
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Fig. 15 Experimentally realized impulsive forces for the experimental test

fixture of Fig. 11(b) which enabled the excitation of the linear os-
cillator by a periodic series of identical impacts. As seen in Fig.
11(b) the core experimental fixture remains the same as the exper-
imental fixture depicted in Fig. 11(a) for the single impulse excita-
tion scenario; however, in the present case the ground for the
linear oscillator was shifted to a separately standing structure that
surrounds the air track. An APS Dynamics ELECTRO-SEIS®
Model 400 long-stroke electromagnetic shaker was aligned along
the axial direction of the air track to the right of the linear oscilla-
tor, with respect to Fig. 11(b). The shaker stinger was supported
by a self-aligning linear ball bearing and aligned with a suitable
impact location in line with the vertical and horizontal axial center
of mass of the linear oscillator. A PCB force transducer with a
hard plastic tip (as was the case with the modal hammer) was
mounted to the tip of the stinger in order to measure the precise
waveform of the applied impulsive force that was applied during
each cycle. Elastic bands within the shaker were adjusted so that
the separation between the linear oscillator and stinger tip was
held at 0.5 in. prior to the application of each impulse. A positive
half-square waveform of duration less than 25 ms was input to the

011013-12 / Vol. 136, FEBRUARY 2014

shaker controller followed by a negative half-square waveform of
duration 100 ms. The positive square wave applied a fast impul-
sive force to the linear oscillator similar to the impulse imparted
by the modal hammer in the single impulse excitation scenario.
The negative square wave quickly retracted the shaker armature
and stinger in order to avoid undesirable double impulse excita-
tions to the linear oscillator. The elastic bands then brought the
stinger back to the prescribed 0.5 in. separation before the next
impulse was applied by the shaker. This waveform was then
applied to the system at the desired impact period and at the
desired impulsive magnitude. For the experiments, a period equal
to T~ 10 s per impulse was selected in order to match the normal-
ized period n =25 used in the previous computational study for
this excitation scenario.

The velocity time series measurements for the two oscillators
were obtained using the two Polytec laser vibrometers, but at a
higher sampling frequency of 1024 Hz in order to obtain more
accurate forcing data. Due to the sample size restrictions of the
Polytec scanning system in use, the duration of the experiment
was limited to ~ 30 s or three impulse cycles. Moreover, the force
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of (¢) on the Hamiltonian FEP

transducer at the tip of the striker was used to synchronize (trig-
ger) the data acquisition for the two laser systems, with a small
pretrigger time of 640 ms. The data was processed the same way
as for the previously described single impulse experimental trials.
The forcing data from the force transducer was used to split the
entire experimental trial into impulsive cycles, allowing for sepa-
rate FEP analysis of the transient dynamics of the system at each
cycle. As in the case of the single impulse experimental trials,
only the cases where damped transitions occurred on the upper
branch IOM triggering dynamic instability will be presented here.

As described by the conditions (3), the two oscillators have a
nonzero state of motion before the application of the pth impulse,
which differentiates the dynamics from the case of single impulse
excitation. It follows that the initial energy in the system is now a
function of the displacement and velocity of the two oscillators at
the application of each repetitive impulse, rather than just the ve-
locity of the linear oscillator as in the previous case of a single
impulse. Nevertheless, the computational study of the previous
Sec. 4 predicted that sustained resonance scattering (and, hence,
high-frequency dynamic instability in the response of the nonlin-
ear attachment) could be robustly realized in this case, especially
if the nonlinear attachment possesses a relatively high initial
energy at the beginning of each impulsive cycle.

Figure 14 depicts the experimental responses for the first three
impulsive cycles of the system. The impulse intensities were cho-
sen so that the initial energy levels of the system were in the range
of 107* — 1072J, in which the previous theoretical study pre-
dicted the occurrence of high-frequency dynamical instability
resulting from repeated tracking of the higher frequency portion
of the IOM. As stated earlier, data was acquired only for three im-
pulsive cycles due to hardware restrictions. As seen in the relative
displacement time series of Fig. 14(a), the nonlinear attachment
undergoes high-frequency complex oscillations which occur in
the nonlinear attachment. Here, note that this is different than
the computational results depicted in Fig. 6 where the amplitudes
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of oscillation of the nonlinear attachment were larger than
those of the linear oscillator. This can be attributed to the fact
that the forcing scheme was slightly different in the experimental
case. In particular, due to the finite forcing waveform that
could be practically realized by the shaker, each impulse deliv-
ered to the linear oscillator was of finite duration (in contrast to
the o-function excitation in the theoretical case), of slightly vary-
ing intensity, and at slightly varying time periods between
impulses. The exact forcing scheme realized in this particular ex-
perimental trial is shown in Fig. 15 and confirms these assertions
regarding the uncertainties in the repetitive series of impulsive
excitations.

The first three impulsive cycles of the experimental response of
Fig. 14 were analyzed in detail as in the theoretical case and the
results are depicted in Figs. 16—18. As seen from the experimental
impulsive forces depicted in Fig. 15, the forces applied to the lin-
ear oscillator are not of the same magnitude and are only nearly
periodic. Focusing on the results of Fig. 16(d), it is noted that the
wavelet spectra-FEP superposition does not clearly show the fre-
quency transition on the upper portion of the IOM for the relative
displacement; however, the wavelet spectrum of the relative dis-
placement depicted in Fig. 16(c) indicates that the dynamics of
the nonlinear attachment briefly tracks the IOM, but primarily
gets captured on the high-frequency superharmonic resonance
branches. The instantaneous frequency of the nonlinear attach-
ment then fluctuates between two superharmonic resonance
branches, in similarity to the numerical simulation presented in
Fig. 7, which depicts the first cycle of the theoretical case.

Considering the second impulsive cycle of Fig. 17, the results
clearly indicate the capture of the dynamics on the upper portion
of the IOM right from the beginning of the cycle. This experimen-
tally confirms the theoretical prediction and shows that the high-
frequency dynamical instability can be robustly excited, even by
repetitive impulsive forcing with the previously mentioned uncer-
tainties. It is noteworthy that interesting dynamics occur at r=4s
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within the second impulsive cycle, when the frequency starts fluc-
tuating between different resonances in the neighborhood of the
upper IOM. After this intermediate dynamics, the nonlinear
attachment returns to tracking the upper IOM at t=6.5s for the
remainder of the cycle.

The third impulsive cycle is considered in Fig. 18 and indicates
similar behavior to the second cycle, with consistent excitation of
the high-frequency dynamical instability associated with tracking
by the dynamics of the upper portion of the IOM. This further
confirms the capacity of the strongly nonlinear attachment to
engage in sustained resonance scattering on the IOM in the second
impulsive excitation scenario. An additional series of experimen-
tal tests similar to the one presented in Figs. 1618 were per-
formed. The high-frequency dynamical instability was readily
repeatable, indicating that sustained resonance scattering is robust
in the impulsively forced system.

6 Concluding Remarks

This report presented a computational and experimental study
of the impulsive dynamics of a linear oscillator coupled to a light-
weight attachment by means of an essentially nonlinear stiffness
nonlinearity of the third degree. The term ‘essential nonlinearity’
describes the lack of (or the presence of a small) linear component
in the stiffness characteristic. This strong nonlinearity is realized
by geometric effects, i.e., by introducing nonlinear effects appear-
ing due to midplane stretching of a linearly elastic wire with negli-
gible or very small internal tension. The presence of essential
stiffness nonlinearity leads to a negligible (or very small) linear-
ized eigenfrequency of the attachment; in effect, removing any
preferential resonance frequency in its dynamics. This enables it
to engage in nonlinear resonance with the linear oscillator over
broad frequency and energy ranges. The resulting broadband dy-
namics of the strongly nonlinear attachment is manifested in the
form of high-frequency dynamical instabilities, whereby the non-
linear attachment reacts to impulsive excitation of the linear oscil-
lator with relatively high-amplitude oscillations of varying
frequency content.

These high-frequency oscillations of the attachment are due to
the continuous resonance scattering of its dynamics on the high-
frequency portion of the impulsive orbit manifold (IOM) of the
system, a dynamical phenomenon that is exclusively due to the
essential stiffness nonlinearity of the problem and cannot exist in
linear or weakly nonlinear settings. As a result, this system repre-
sents a good candidate for vibration energy harvesting in situa-
tions where a primary system is forced by single or repetitive
impulses; lightweight attachments of the type considered in this
work can be designed so that the resulting high-frequency dynam-
ical instabilities can be employed for energy harvesting. The aim
of the current work of the authors is in the development of such
harvesting devices.
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