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Closure Schemes for Nonlinear Bistable Systems Subjected to Correlated Noise:
Applications to Energy Harvesting from Water Waves
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Department of Mechanical Engineering, Massachusetts Institute of Technology
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The moment equation closure minimization (MECM) method has been developed for the inexpensive approximation of the
steady-state statistical structure of bistable systems, which have bimodal potential shapes and which are subjected to correlated
excitation. Our approach relies on the derivation of moment equations that describe the dynamics governing the two-time
statistics. These are then combined with a closure scheme that arises from a non-Gaussian probability density function (PDF)
representation for the joint response-excitation statistics. We demonstrate its effectiveness through the application on a bistable
nonlinear single-degree-of-freedom (SDOF) ocean wave energy harvester with linear damping, and the results compare
favorably with direct Monte Carlo simulations.

INTRODUCTION

In numerous systems in engineering, uncertainty in the dynamics
is as important as the known conservation laws. Such an uncer-
tainty can be introduced by external stochastic excitations, e.g.,
energy harvesters or structural systems subjected to ocean waves,
wind excitations, earthquakes, and impact loads (Grigoriu, 2002;
Stratonovich, 1967; Sobczyk, 2001; Soong and Grigoriu, 1993;
Naess and Moan, 2012; To, 2011). For these cases, deterministic
models cannot capture or even describe the essential features of the
response; to this end, understanding of the system dynamics and
optimization of its parameters for the desired performance is a
challenging task. On the other hand, a probabilistic perspective can,
in principle, provide such information, but then the challenge is the
numerical treatment of the resulting descriptive equations, which
can be associated with prohibitive computational cost.

The focal point of this work is the development of computational
methods for the inexpensive probabilistic description of nonlinear
vibrational systems of low to moderate dimensionality subjected to
correlated excitations. Depending on the system dimensionality
and its dynamical characteristics, numerous techniques have been
developed to quantify the response statistics, i.e., the probability
density function (PDF) for the system state. For systems subjected
to white noise, the Fokker–Planck equation provides a complete
statistical description of the response statistics (Wojtkiewicz et al.,
1999; Dunne and Ghanbari, 1997; Di Paola and Sofi, 2002). On the
other hand, for systems subjected to correlated excitations, the joint
response-excitation method provides a computational framework for
the full statistical solution (Sapsis and Athanassoulis, 2008; Venturi
et al., 2012; Cho et al., 2013). However, such methodologies rely
on the solution of transport equations for the PDF, and they are
associated with very high computational cost, especially when it
comes to the optimization of system parameters.

To avoid the solution of transport equations for the PDF, semi-
analytical approximative approaches have been developed that
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significantly reduce the computational cost. Among them, the
most popular in the context of structural systems is the statistical
linearization method (Caughey, 1959; Caughey, 1963; Kazakov,
1954; Roberts and Spanos, 2003; Socha, 2008), which can also
handle correlated excitations. The basic concept of this approach is
to replace the original nonlinear equation of motion with a linear
equation, which can be treated analytically, by minimizing the
statistical difference between those two equations. Statistical lin-
earization performs very well for systems with unimodal statistics,
i.e., close to Gaussian. However, when the response is essentially
nonlinear (e.g., as is the case for a double-well oscillator), the
application of statistical linearization is less straightforward and
involves the ad hoc selection of shape parameters for the response
statistics (Crandall et al., 2005).

An alternative class of methods relies on the derivation of
moment equations, describing the evolution of the joint response-
excitation statistical moments or (depending on the nature of the
stochastic excitation) the response statistical moments (Sancho,
1970; Bover, 1978; Beran, 1994). The challenge with moment
equations arises if the system equation contains nonlinear terms, in
which case we have the well-known closure problem. This requires
the adoption of closure schemes or methods, which essentially
truncate the infinite system of moment equations to a finite one.
The simplest approach along these lines is the Gaussian closure
(Iyengar and Dash, 1978), but nonlinear closure schemes have also
been developed (Crandall, 1980; Crandall, 1985; Liu and Davies,
1988; Wu and Lin, 1984; Ibrahim et al., 1985; Grigoriu, 1991;
Hasofer and Grigoriu, 1995; Wojtkiewicz et al., 1996; Grigoriu,
1999). In most cases these nonlinear approaches may offer some
improvement compared with the stochastic linearization approach
applied to nonlinear systems, but the associated computational cost
is considerably larger (Noori et al., 1987). For strongly nonlinear
systems, such as bistable systems, these improvements can be very
small. The latter have become very popular in energy harvesting
applications (Green et al., 2012; Harne and Wang, 2013; Daqaq,
2011; Halvorsen, 2013; Green et al., 2013; He and Daqaq, 2014;
Mann and Sims, 2009; Barton et al., 2010), where there is a
need for fast and reliable calculations that will be able to resolve
the underlying nonlinear dynamics in order to provide optimal
parameters of operation (Joo and Sapsis, 2014; Kluger et al., 2015).

The goal of this work is the development of a closure methodol-
ogy that can overcome the limitations of traditional closure schemes
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and can approximate the steady-state statistical structure of bistable
systems excited by correlated noise. We first formulate the moment
equations for the joint PDF of the response and the excitation at
two arbitrary time instants (Athanassoulis et al., 2013). To close
the resulting system of moment equations, we formulate a two-time
representation of the joint response-excitation PDF. We chose the
representation so that the single-time statistics are consistent in
form with the Fokker–Planck solution in steady state, while the
correlation between two different time instants is assumed to have
a Gaussian structure. Based on these two ingredients (dynamical
information expressed as moment equations and assumed form of
the response statistics), we formulate a minimization problem with
respect to the unknown parameters of the PDF representation so
that both the moment equations and the closure induced by the
representation are optimally satisfied. For the case of unimodal sys-
tems, the described approach reproduces the statistical linearization
method, whereas for bimodal systems it still provides meaningful
and accurate results with very low computational cost.

The approach we developed allows for the inexpensive and
accurate approximation of the second-order statistics of the system
even for oscillators associated with double-well potentials. In
addition, it allows for the semianalytical approximation of the full
non-Gaussian joint response-excitation PDF in a postprocessing
manner. We illustrate the approach we developed through a nonlinear
single-degree-of-freedom (SDOF) ocean wave energy harvester
with double-well potential subjected to correlated noise of the
Pierson–Moskowitz power spectral density. We demonstrate how
the proposed probabilistic framework can be used for performance
optimization and the selection of parameters.

METHOD DESCRIPTION

In this section, we give a detailed description of the proposed
method for the inexpensive computation of the response statis-
tics for dynamical systems subjected to colored noise excitation.
The computational approach relies on the following two basic
ingredients:

• Two-time statistical moment equations. These equations will
be derived directly from the system equation and will express the
dynamics that govern the two-time statistics. For systems excited
by white noise, single-time statistics are sufficient to describe the
response, but for correlated excitation, this is not the case, and it is
essential to consider higher-order moments. Note that higher-order
(i.e., higher than two) statistical moment equations may be used, but
in the context of this work, two-time statistics would be sufficient.

• PDF representation for the joint response-excitation statistics.
This will be a family of PDFs that will express geometrical proper-
ties of the solution such as multimodality, tail decay properties,
correlation structure between response and excitation, or others. In
this work we will use representations inspired by the analytical
solutions of the dynamical system when it is excited by white
noise. These representations will reflect features of the Hamiltonian
structure of the system and will be used to derive appropriate
closure schemes that will be combined in the moment equations.

Based on these two ingredients, we will formulate a minimization
problem with respect to the unknown parameters of the PDF
representation so that both the moment equations and the closure
induced by the proposed representation are optimally satisfied.
We will see that for the case of unimodal systems, the described
approach reproduces the statistical linearization method, whereas
for bimodal systems, it still provides meaningful and accurate
results with very low computational cost.

For the sake of simplicity, we will present our method through
a specific system involving a nonlinear SDOF oscillator with a

Fig. 1 Nonlinear energy harvester with normalized system parame-
ters

double-well potential. This system has been studied extensively in
the context of energy harvesting, especially in the case of white
noise excitation (Daqaq, 2011; Daqaq, 2012; Gammaitoni et al.,
2009; Ferrari et al., 2010). However, for realistic setups, it is
important to be able to optimize/predict its statistical properties
under general (colored) excitation. More specifically, we consider a
nonlinear harvester of the form:

ẍ+�ẋ+ k1x+ k3x
3
= ÿ (1)

where x is the relative displacement between the harvester mass and
the base, y is the base excitation representing a stationary stochastic
process, � is the normalized (with respect to mass) damping
coefficient, and k1 and k3 are normalized stiffness coefficients (see
Fig. 1).

Two-Time Moment System

We consider two generic time instants, t and s. We multiply the
equation of motion at time t with the response displacement x4s5
and apply the mean value operator (ensemble average). This
will give us an equation that contains an unknown term on the
right-hand side. To determine this term, we repeat the same steps
but we multiply the equation of motion with y4s5. This gives us the
following two-time moment equations:

ẍ4t5y4s5+�ẋ4t5y4s5+ k1x4t5y4s5+ k3x4t5
3y4s5= ÿ4t5y4s5 (2)

ẍ4t5x4s5+�ẋ4t5x4s5+ k1x4t5x4s5+ k3x4t5
3x4s5= ÿ4t5x4s5 (3)

Here the excitation is assumed to be a stationary stochastic process
with zero mean and a given power spectral density; this can have an
arbitrary form, e.g., monochromatic, colored, or white noise. Since
the system is characterized by an odd restoring force, we expect
that its response will also have zero mean. Moreover, we assume
that after an initial transient phase, the system will be reaching
a statistical steady state, given the stationary character of the
excitation. Based on properties of mean square calculus (Sobczyk,
2001; Beran, 1994), we interchange the differentiation and the mean
value operators. Then the moment equations will take the form:
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¡
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Expressing everything in terms of the covariance functions will
result in:
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where the covariance function is defined as:

C ts
xy = x4t5y4s5=Cxy4t − s5=Cxy4�5 (8)

Taking into account the assumption for a stationary response (after
the system has gone through an initial transient phase), we can
rewrite the above moment equations in terms of the time difference
� = t − s:
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The above procedure completes the derivation of the moment
equations describing the dynamics of the system in a statistical
steady state. Note that all the linear terms in the original system’s
equation are expressed in terms of the covariance functions, while
the nonlinear (cubic) terms show up in the form of fourth-order
moments. To compute the latter, we will need to adopt an appropriate
closure scheme.

Two-Time PDF Representation and Induced Closure Schemes

In the absence of higher-than-two order moments, the response
statistics can be analytically obtained in a straightforward manner.
However, for higher-order terms, it is necessary to adopt an
appropriate closure scheme that will close the infinite system
of moment equations. A standard approach in this case, which
performs very well for unimodal systems, is the application of
Gaussian closure, which utilizes Isserlis’ theorem (Isserlis, 1918) to
connect the higher-order moments with the second-order statistical
quantities. Despite its success for unimodal systems, Gaussian
closure does not provide accurate results for bistable systems.
This is because, in this case, the closure induced by the Gaussian
assumption does not reflect the properties of the system attractor in
the statistical steady state.

Here we aim to solve this problem by proposing a non-Gaussian
representation for the joint response-response PDF at two different
time instants and for the joint response-excitation PDF at two
different time instants. These representations will:

• incorporate specific properties or information about the
response PDF (single-time statistics) in the statistical steady state;

• incorporate a given correlation structure between the statistics
of the response and the excitation, e.g., Gaussian;

• have a marginal PDF consistent with the excitation PDF (for
the case of the joint response-excitation PDF); and

• induce a non-Gaussian closure scheme that will be consistent
with all of the above properties.

Representation Properties for Single-Time Statistics

We begin by introducing the PDF properties for the single-time
statistics. The selected representation will be based on the analytical
solutions of the Fokker–Planck equation that are available for
the case of white noise excitation (Soize, 1994; Sobczyk, 2001)
and for vibrational systems that have an underlying Hamiltonian
structure. Here we will leave the energy level of the system as a

Fig. 2 (a) Representation of the steady-state PDF for single-time
statistics of a system with double-well potential. The PDF is shown
for different values of the system’s energy level; (b) The joint-
response excitation PDF is also shown for different values of the
correlation parameter c ranging from small values (corresponding
to large values of �� �5 to larger ones (associated with smaller values
of ���5.

free parameter (this will be determined later). In particular, we will
consider the following family of PDF solutions (see Fig. 2a):
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where U is the potential energy of the oscillator, � is a free
parameter connected with the energy level of the system, and F is
the normalization constant expressed as:
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Correlation Structure Between Two-Time Statistics

Representing the single-time statistics is not sufficient, since
for correlated excitation, the system dynamics can be effectively
expressed only through two-time (at least) statistics. Although the
response steady-state PDF is assumed to have a non-Gaussian
form, we represent the correlation between two different time
instants having a Gaussian structure. Based on this assumption, we
obtain PDF representations for the joint response-response and
response-excitation at different time instants.

Joint Response-Excitation PDF. We first formulate the joint
response-excitation PDF at two different time instants. Denoting
with x the argument that corresponds to the response at time t,
with y the argument for the excitation at time s = t − � , and with
g4y5 the (zero-mean) marginal PDF for the excitation, we have the
expression for the joint response-excitation PDF:

q4x1 y5=
1
M

f 4x5g4y5ecxy (13)

where M indicates a normalization constant and c defines the
degree of correlation between the response and the excitation.

We note that the semipositive definite property of the covariance
matrix associated with this process defines a range of possible values
for the constant c. In particular, denoting with è the covariance
matrix that describes the correlation at different time instants, we
have:

è=

[

�2
x �xy

�xy �2
y

]

(14)
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This matrix should be semipositive definite; i.e., for every nonzero
column vector u, the following should be satisfied:

uTèu≥ 0 (15)

Since the above matrix has a positive trace, the semipositive definite
property is guaranteed if and only if the determinant is greater
than or equal to zero. This condition provides a relation between
the covariance �xy (connected with c5 and the variances of the
marginal distributions:

−

√
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x�

2
y ≤ �xy ≤

√

�2
x�

2
y (16)

To connect the covariance �xy with c, we expand the former in a
Taylor series, keeping up to the third-order terms in c:
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This will give us the following condition for c:
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√
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For the systems considered in this paper, we found that a third-order
expansion is necessary and sufficient for good numerical results.

Joint Response-Response PDF. The joint PDF for two different
time instants of the response, denoted as p4x1 z5, is a special case
of what has been presented previously. In order to avoid confusion,
a different notation z is used to represent the response displacement
at a different time instant s. Then we have:

p4x1 z5=
1
N
f 4x5f 4z5ecxz (19)

where N is a normalization constant and c is a correlation constant.
As stated previously, the correlation between two time instants has
been assumed to have a Gaussian structure, and similar constraints
on the possible values of c hold for this case as previously. We also
note that the response displacement z at a different time instant
still follows the same non-Gaussian PDF corresponding to the
single-time statistics of the response (Eq. 11).

In Fig. 2b, we present the above joint PDF (Eq. 13) with the
marginal f (response) having a bimodal structure and the marginal
g (excitation) having a Gaussian structure. For c = 0, we have
independence, which essentially expresses the case of very distant
two-time statistics, while as we increase c, the correlation between
the two variables increases, referring to the case of small values of � .

Induced Non-Gaussian Closure

Using these non-Gaussian PDF representations, we will approxi-
mate the fourth-order moment terms that show up in the moment
equations. In the context of the PDF representations given above,
the relation between x4t53x4s5 and x4t5x4s5 is very close to linear
(see Fig. 3).

To this end, we choose a closure of the form (for both the
response-response and the response-excitation terms):

x4t53x4s5= �x1x x4t5x4s5 (20)

Fig. 3 The relation between x4t53x4s5 and x4t5x4s5. The exact
relation is illustrated by the red curve, and the approximated relation
using non-Gaussian PDF representations is illustrated by the black
curve.

where �x1x is the closure coefficient. The value of �x1x can be
found if we expand both x4t53x4s5 and x4t5x4s5 with respect to c.
A first-order Taylor expansion will give:

�x1x =
x4x2c

x2x2c
=

x4

x2
(21)

Therefore, for a given marginal f , we can find analytically what
would be the closure coefficient under the assumptions of the
adopted closure scheme. Note that this constant depends directly
on the energy level of the system defined by � since the moments
x2 and x4 depend on it. Similar relations can be derived for the
term x4t53y4s5. We will refer to Eq. 21 as the “closure constraint.”
This will be one of two constraints that we will include in the
minimization procedure for the determination of the solution.

Closed Moment Equations

The next step involves the application of the closure scheme above
on the derived two-time moment equations. By direct application
of the induced closure schemes of Eq. 9 and Eq. 10, we have the
linear set of moment equations for the second-order statistics:
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Using the Wiener–Khinchin theorem, we transform the above
equations to the corresponding equations for the power spectral
density:

84j�52
+�4j�5+ k1 +�x1yk39Sxy4�5= 4j�52Syy4�5 (24)

84j�52
−�4j�5+ k1 +�x1xk39Sxx4�5= 4j�52Sxy4�5 (25)

These equations allow us to obtain an expression for the power
spectral density of the response displacement in terms of the
excitation spectrum:
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Integrating the last equation will give us the variance of the response
displacement:
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Minimizing the deviation of the right-hand side from the left-hand
side of the last equation is the second constraint, the dynamics
constraint1 which we will try to minimize together with the closure
constraint defined by Eq. 21. It expresses the second-order dynamics
of the system.

Moment Equation Closure Minimization (MECM) Method

The last step is the minimization of the two constraints, the
closure constraint (Eq. 21) and the dynamics constraint (Eq. 27),
which have been expressed in terms of the system response variance
x2. The minimization will be done in terms of the unknown energy
level � and the closure coefficient �x1x . More specifically, we define
the following cost function, which incorporates the two constraints:
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Note that, in the context of statistical linearization, only the first
constraint is minimized, while the closure coefficient is the one that
follows exactly from a Gaussian representation. Therefore, in this
context there is no attempt to incorporate in an equal way the effect
of error in the dynamics and the error in the PDF representation.
Minimization of this function essentially imposes interplay between
these two factors in order to obtain a solution that satisfies both as
closely as possible. For linear systems and an adopted Gaussian
PDF for the response, as expected, the above cost function vanishes
identically.

We also emphasize that in the above cost function, we have only
included the closure coefficient �x1x for the joint PDF involving
the response-response statistics. The corresponding coefficient
for the joint response-excitation statistics �x1y is taken to be
identical to the one obtained through the expansion of the moments
as follows:

�x1y =
x3y

xy
=

x4y2c+ 1
6

(

3x64y252 −3x4x24y252
)

c3

x2y2c+ 1
6

(

3x44y252 −34x2524y252
)

c3
1 c=cr (29)

where the moments have been expanded in a Taylor series (up to
the third order) with respect to c as in Eq. 17, and c is taken to be
equal to the maximum correlation parameter, cr , which satisfies the
condition in Eq. 18. We choose c in this way so that we have the
best possible approximation of the closure coefficient when we are
closer to the strongly correlated regime, i.e., for small values of
�� �. With this choice the closure coefficient �x1y becomes a known
function of the energy level � and the excitation variance.

APPLICATION

We apply the described MECM method to a nonlinear vibrational
system, which is an SDOF bistable oscillator with linear damping

that simulates energy harvesting. For the application, it is assumed
that the stationary stochastic excitation has a power spectral density
given by the Pierson–Moskowitz spectrum, which is typical for
excitation created by random water waves:

S4�5= q
1
�5

exp
(

−
1
�4

)

(30)

where q controls the intensity of the excitation.

SDOF Bistable Oscillator Excited by Colored Noise

For the colored noise excitation that we just described, we apply
the MECM method. We consider a set of system parameters that
correspond to a double-well potential. Depending on the intensity
of the excitation (which is adjusted by the factor q5, the response
of the bistable system “lives” in three possible regimes. If q is very
low, the bistable system is trapped in either of the two wells, while
if q is very high, the energy level is above the homoclinic orbit
and the system performs cross-well oscillations. Between these
two extreme regimes, the stochastic response exhibits combined
features and characteristics of both energy levels, and it has a
highly nonlinear, multifrequency character (Dykman et al., 1985;
Dykman et al., 1988).

Despite these challenges, the presented MECM method can
inexpensively provide a very good approximation of the system’s
statistical characteristics, as shown in Fig. 4. In particular in Fig. 4,
we present the response variance as the intensity of the excitation
varies for two cases of the system’s parameters. We also compare
our results with direct Monte Carlo simulations and with a standard
Gaussian closure method (Sobczyk, 2001; Soong and Grigoriu,
1993; Grigoriu, 2002). For the application of the MECM method,
we employ the PDF representation (Eq. 11).

We observe that for very large values of q, the computed approx-
imation closely follows the Monte Carlo simulation. On the other
hand, the Gaussian closure method systematically underestimates
the variance of the response. For lower intensities of the excitation,
the exact (Monte Carlo) variance presents a nonmonotonic behavior
with respect to q due to the coexistence of the cross-well and
intrawell oscillations. Although the Gaussian closure has very poor
performance on capturing this trend, the MECM method can still
provide a satisfactory approximation of the dynamics. Note that the
nonsmooth transition observed in the MECM curve is due to the
fact that for very low values of q, the minimization of the cost
function (Eq. 28) does not reach a zero value, although this is
the case for higher values of q. In other words, in the strongly
nonlinear regime, neither the dynamics constraint nor the closure
constraint is satisfied exactly, yet this optimal solution provides a
good approximation of the system dynamics.

Fig. 4 Mean square displacement with respect to the amplification
factor of the Pierson–Moskowitz spectrum for a bistable system
with two different system parameters: (a) � = 1, k1 = −1, and
k3 = 1; (b) �= 005, k1 = −005, and k3 = 1
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Fig. 5 Correlation functions Cxx and Cxy of the bistable system
with system parameters �= 1, k1 = −1, and k3 = 1 subjected to
the Pierson–Moskowitz spectrum: (a) Amplification factor of q = 2;
(b) Amplification factor of q = 10

After we have obtained the unknown parameters � and �x1x

by minimizing the cost function for each given q, we can then
compute, in a postprocess manner, the covariance functions and the
joint PDF. More specifically, since a known � allows for a given
�x1y (Eq. 29), we can immediately determine Cxy4�5 by taking the
inverse Fourier transform of Sxy found through Eq. 24. The next
step is the numerical integration of the closed moment Eq. 23
utilizing the determined value �x1x with initial conditions given by:

Cxx405=

∫

x2f 4x3�5dx and Ċxx405= 0 (31)

where the second condition follows from the symmetry properties
of Cxx. Note that we integrate Eq. 23 instead of using the inverse
Fourier transform as we did for Cxy4�5 so that we can impose
the variance found by integrating the resulting density for the
determined �. The results, as well as a comparison with the
Gaussian closure method and a direct Monte Carlo simulation, are
presented in Fig. 5. We can observe that through the proposed
approach, we are able to satisfactorily approximate the correlation
function, even close to the nonlinear regime q = 2, where the
Gaussian closure method presents important discrepancies.

Finally, using the computed parameters � and �x1x , we can also
approximate the non-Gaussian joint PDF for the response-response
excitation at different time instants. This will be given by:

fx4t5x4t+�5y4t54x1 z1 y5

=
1
R
f 4x3�5f 4z3�5g4y5 exp4c1xz+ c2yz+ c3xy5 (32)

where R is a normalization constant and the parameters c1, c2, c3

are found by expanding the corresponding moments in a Taylor
expansion, i.e., through the approximations:

Cxx4�5=

∫ ∫ ∫

xzfx4t5x4t+�5y4t54x1 z1 y5dxdydz

= c1

(

x̄2
)2

+O
(

c2
1

)

(33)

Cxy4�5=

∫ ∫ ∫

yzfx4t5x4t+�5y4t54x1 z1 y5dxdydz

= c2x̄
2ȳ2

+O
(

c2
2

)

(34)

Fig. 6 Joint PDF fx4t5x4t+�5y4t54x1 z1 y5 computed using the MECM
method and direct Monte Carlo simulations. The system parameters
are given by �= 1, k1 = −1, and k3 = 003, and the excitation is
Gaussian following a Pierson–Moskowitz spectrum with q = 20.
The PDF is presented through two-dimensional marginal PDFs as
well as through isosurfaces: (a) � = 3; (b) � = 10.

Cxy405=

∫ ∫ ∫

xyfx4t5x4t+�5y4t54x1 z1 y5dxdydz

= c3x̄
2ȳ2

+O
(

c2
3

)

(35)

If necessary, higher-order terms may be retained in the Taylor
expansion, although for the present problem, a linear approximation
was sufficient. The computed approximation is presented in Fig. 6
through two-dimensional marginal PDFs as well as through isosur-
faces of the full three-dimensional joint PDF. We compare with
direct Monte Carlo simulations, and as we are able to observe, the
computed PDF closely approximates the expensive Monte Carlo
simulation. We emphasize that in order to accurately capture the
joint statistics using the Monte Carlo approach, we had to use 107

number of samples. On the other hand, the computational cost
through the MECM method is trivial.

CONCLUSIONS

We have considered the problem of determining the non-Gaussian
steady-state statistical structure of bistable nonlinear vibrational
systems subjected to colored noise excitation. We first derived
moment equations that describe the dynamics governing the two-
time statistics. We then combined those with a non-Gaussian
PDF representation for the joint response-excitation statistics. This
representation has: (i) a single-time statistical structure consistent
with the analytical solutions of the Fokker–Planck equation and
(ii) a two-time statistical structure with Gaussian characteristics.
Using this PDF representation, we derived a closure scheme that
we formulated in terms of a consistency condition involving the
second-order statistics of the response, the closure constraint. A
similar condition, the dynamics constraint, was derived directly
through moment equations. We then formulated the two constraints
as a low-dimensional minimization problem with respect to the
unknown parameters of the representation. The minimization of
both the dynamics constraint and the closure constraint imposes
interplay between these two factors in order to obtain a solution
that satisfies both constraints as closely as possible.

We then applied the presented method to a nonlinear oscillator
in the context of ocean wave energy harvesting, which is a single
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degree of freedom (SDOF) bistable oscillator with linear damping.
For the application, it was assumed that the stationary stochastic
excitation has a power spectral density given by the Pierson–
Moskowitz spectrum. We have shown that the presented method can
provide a very good approximation of the system’s second-order
statistics when compared with direct Monte Carlo simulations,
even in essentially nonlinear regimes, where Gaussian closure
techniques fail completely to capture the dynamics. In addition, we
can compute, in a postprocess manner, the full (non-Gaussian)
probabilistic structure of the solution. We emphasize that the
computational cost associated with the new method is considerably
smaller than that associated with methods that evolve the PDF of
the solution, since it relies on the minimization of a function with
a few unknown variables.

These results indicate that the new method can be a very good
candidate when it comes to the calculation of the stochastic response
for a vibrational system with complex potentials, as it is required in
parameter optimization or selection. Future endeavors include the
application of the presented approach in higher-dimensional contexts
involving nonlinear energy harvesters and passive protection of
structures, as well as in the development/optimization of structural
configurations able to operate effectively under intermittent loads
(Mohamad and Sapsis, 2015).
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