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a  b  s  t  r  a  c  t

In  the  present  work,  we  describe  a nonlinear  stiffening  load cell  with  high  resolution  (the  ability  to  detect
1%  changes  in the force)  that  can  function  over a large  force  range  (5 orders  of  magnitude),  and  exhibit
minimal  hysteresis  and  intrinsic  geometric  protection  from  force  overload.  The  stiffening  nature  of  the
load  cell  causes  its deflection  and  strain  to  be  very  sensitive  to  small  forces  and  less sensitive  to  large
forces.  High  stiffness  at high  forces  prevents  the  load  cell  from  over-straining.  We  physically  implement
eywords:
onlinear load cell
igh resolution
antilever

the  nonlinear  springs  with  cantilever  beams  that increasingly  contact  rigid  surfaces  with carefully  chosen
curvatures  as  more  force  is  applied.  We analytically  describe  the  performance  of  the  load  cell as  a function
of  its  geometric  and  material  parameters.  We  also  describe  a method  for  manufacturing  the  mechanical
component  of  the  load  cell  out of  one  monolithic  part,  which  decreases  hysteresis  and  assembly  costs.
We  experimentally  verify  the theory  for two load  cells  with  two different  sets  of parameters.
. Introduction

Load cells are useful for applications ranging from material
trength testing to prosthetic limb sensing [1], monitoring infusion
umps delivering drugs [2], agricultural product sorting [3], suc-
ion cup strength measuring [4], and human–robot collision force
ensing [5].

Load cells can measure forces via several different methods,
ncluding hydraulic or pneumatic pistons and deforming materi-
ls. For hydraulic or pneumatic load cells, the force is applied to a
iston that covers an elastic diaphragm filled with oil or air respec-
ively, and a sensor converts a pressure measurement to a force

easurement. Use of hydraulic load cells is limited by high cost
nd complexity. Pneumatic load cells are limited by slow response
imes and a requirement for clean, dry air [6]. The most common
oad cells are solid materials that deform when subject to an applied
orce.

Deforming load cells come in many different shapes, such as
ending beams (a cantilever), S-beams (an “S”-shaped configura-
ion of beams), single point load cells (a double-clamped beam, for
hich the force measurement is insensitive to the position of the
oad along the beam), shear beam load cells (an I-beam produces
 uniform shear across its cross-section that can be measured by
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strain gauges), and “pancake” load cells (bending disks) [6]. All of
these load cells deflect linearly.

Traditional linear load cells can be designed for almost any force
capacity. Bending beam load cells are typically used for force ranges
of 5.0 × 101–2.5 × 104 N and pancake load cells can be used for force
ranges up to 2.5 × 106 N [6]. Many linear load cells are designed to
withstand a limited amount of force overcapacity using overstops
that prevent over-deflection; typically up to 50–500% load capacity
before breaking [7]. Because they deform linearly, these load cells
also have constant resolution (that is, the smallest force increment
that they can measure) for their entire force range.

There are several challenges to designing a load cell. One wants
to reduce the load cell mass and volume to minimize its effect on
the test sample. Additionally, the load cell should have minimal
hysteresis for accurate measurements in both up-scale and down-
scale, and low side-load sensitivity (response to parasitic loads) [6].
One of the most critical design challenges is the trade-off between
force sensitivity and range: It is desirable to maximize strain or
deflection in the load cell in order to increase force measurement
resolution because strain and deflection sensors have limited res-
olution; typically 14-bits between 0 and their maximum rated
measurement [8–10]. Simultaneously, one wants to maximize the
load cell’s functional force range and protect it from breaking due
to forces that exceed that range, which requires limiting its strain.
Different studies have made various modifications to the tradi-
tional linear load cell to increase its force range and sensitivity, and
minimize side-load sensitivity. Chang and Lin [3] studied a “capital
G-shaped” load cell with two force ranges: for small forces, a top
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http://www.sciencedirect.com/science/journal/01416359
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Table 1
Nomenclature for load cell components.

1/4 load cell One of the four symmetrical spring
elements, as shown in Fig. 1.

Rigid block One of two symmetrical rigid blocks, each
with four surfaces with a carefully chosen
curvature.

Cantilever One of four cantilevers with length LCant,
width b, and thickness t.

Contact point, xc Point that separates the cantilever segment
in contact with the surface and free
cantilever segment and is a function of the
applied force.

Cantilever segment in contact
with the surface

Segment of the cantilever that is tangent to
the surface, with a length from x = 0 to
x  = xc .

Free cantilever segment Segment of the cantilever that is not
tangent to the surface, with a length from
x = xc to x = L, as shown in Fig. 1.

Moment compliance ring, or
3/4-ring

270◦ circular arc used as a rotational spring
to connect the cantilever tips to the rigid
vertical bars.

Rigid connection Junction of the cantilever tip and rigid
vertical bar when the load cell does not
have a 3/4-ring.

Rigid vertical bar Component connecting the top and bottom
cantilevers. It cannot rotate due to
symmetry when the load cell is in pure
tension/compression loadings.

Rigid crossbar Horizontal component connecting the left
and right rigid vertical bars that stiffens
the load cell’s response to parasitic
moments and horizontal forces.

Root gap Location of removed material near the root
of  the surface curve that may be required
by machining limitations described in
Section 3.

Root insert Rigid blocks that follow the surface curve
42 J.M. Kluger et al. / Precision

ensitive flexure deflects alone. For large forces, the sensitive flex-
re contacts a stiffer flexure, and the two flexures deflect together
t the higher stiffness. In this way, the load cell is more sensitive
o small forces and does not yield for large forces. Other devices
se multiple linear load cells of increasing stiffnesses in series, as
escribed in several U.S. patents [11,12]. The multiple load cells of

 single device deflect together until overload stops prevent the
eaker load cells from deflecting too far, after which the stiffer

oad cells continue to deflect. A microcontroller determines which
oad cell measurement to display. Using this approach, Storace and
ette [11] were able to measure weights over a range of 1 g to 30 kg.
ne way to minimize sensitivity to side-loads such as undesired
oments is to use multiple load cells (i.e. 3) and take the average

orce measurement [11]. Challenges with these designs are that
he linear load cell components have limited resolution, and using

ultiple load cells in one device may  be bulky or expensive.
Another approach for designing a load cell with high force reso-

ution and capacity is to use a nonlinear mechanism rather than
 linear one. A nonlinear load cell may  have a low stiffness at
ow forces (and therefore high force sensitivity) and a high stiff-
ess at large forces (and therefore protection from yielding due to
ver-deflection). The design may  also be volume compact and inex-
ensive due to requiring only one nonlinear spring and sensor per
evice.

A nonlinear spring may  be physically realized in many different
ays. The simplest form of a nonlinear spring is a cubic spring. One
ay to implement a cubic spring is by linear springs supporting a
roof mass at various angles to its direction of travel. For example,
acFarland et al. [13] investigate a nonlinear spring realized by a

hin elastic rod (piano wire) clamped at its ends without preten-
ion that displaces transversely about its center. To leading order
pproximation, the stretching wire produces a cubic stiffness non-
inearity. Similarly, Hajati et al. [14] describe a spring made out of a
oubly-clamped piezoelectric beam. The double-clamps cause the
eam to axially stretch as it bends, resulting in a nonlinear stiff-
ess. Mann and Sims [15] describe a spring that is implemented
y a magnet sliding in a tube with two opposing magnets as the
nd caps. This configuration causes the stiffness to be the summa-
ion of a linear and cubic component. Kantor and Afanas’eva [16]
escribe the nonlinear stiffness of a clamped circular plate with
ariable thickness along its radius, which has a force-displacement
urve similar to that of a cubic spring.

This paper describes a nonlinear stiffening load cell with high
esolution (within 1% of the force value) that can function over a
arge range (5 orders of magnitude), with minimal hysteresis and
ntrinsic geometric protection from force overload. The stiffening
ature of the load cell causes its deflection and strain to be very
ensitive to small forces and less sensitive to large forces. When
sed with a constant-resolution sensor, this causes the load cell as

 whole to have higher resolution for smaller forces. High stiffness
t high forces prevents the load cell from over-straining. In Section
, we develop the theory for this load cell, which uses cantilever
eams that increasingly contact surfaces with carefully chosen cur-
atures as more force is applied. In Section 3, we describe a method
or manufacturing the mechanical component of the load cell out
f one monolithic part, which decreases hysteresis and assembly
osts. In Section 4, we experimentally verify the theory for two
oad cells fabricated using the described method. Our findings are
ummarized in Section 5.

. Theoretical modeling
We  design the load cell as a 2 × 2 symmetric grid of nonlin-
ar spring elements, as shown in Fig. 1. Load cell deflection occurs
etween the top and bottom rigid blocks. The nonlinear springs
and can be inserted into the root gaps,
described in Section 3.

are physically realized by cantilevers that make contact with rigid
surfaces as they deflect (splitting each cantilever length into a “seg-
ment in contact with the surface” and a “free segment”). As the
contact length increases, the shortening length of the free can-
tilever segment causes the stiffening spring behavior. The single
cantilever-contact surface nonlinear spring mechanism was first
described by Timoshenko [17]. We  analyze a similar nonlinear
spring in Kluger et al. [18] and Kluger [19] in the context of energy
harvesting from ambient vibrations. The tips of the bottom can-
tilevers connect to the tips of the top cantilevers by vertical rigid
bars, which cannot rotate due to symmetry. To further ensure
symmetry, we  design the device with a rigid horizontal crossbar
connecting the vertical rigid bars, as shown in Fig. 1(b), which
strengthens the load cell’s resistance to parasitic moments and hor-
izontal loads. In this paper, we study load cells where the cantilever
tips are either rigidly connected to these vertical bars (Fig. 1(a)) or
connected to the vertical bars via moment-compliant flexures that
are physically realized by three-quarters of a circular ring (Fig. 1(b)).
As we  show in Section 2.5, adding the 3/4-rings reduces the maxi-
mum  stress in the load cell at a given applied force.

Throughout this paper, we  will use notation for the nonlinear
spring components listed in Table 1.

We set the 1/4 surface shape to follow the curve

S = D
(

x

L

)n

, (1)

where L = LSurf = LCant is the cantilever and surface length (assum-

ing small cantilever deflections), x measures the location along the
length of the beam from its root, D is the end-gap between the
surface and undeflected cantilever, and n is a power greater than
2. In theory, any curve with a monotonically increasing curvature
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ig. 1. (a) Load cell with rigid connections between the cantilever tip and rigid v
/4-rings and a rigid horizontal crossbar.

d2S/dx2 > 0) should behave similarly to the derivation described in
his paper.

Below, we derive the deflection for 1/4 of the load cell with
oment-complaint 3/4-rings using the Euler-Bernoulli moment-

urvature relation for beams. Setting the radius of the 3/4-ring to 0
ecovers the force versus deflection theory for the load cell with
igid cantilever tip connections. The full load cell’s deflection is
wice that of the 1/4 load cell due to the vertical stacking of the
lements. The total force applied to the load cell is twice the force
pplied to the 1/4 load cell by the rigid side bar due to the load cell’s
orizontal symmetry (this can be seen by balancing the forces after
aking a horizontal cut through the load cell’s center).
A free body diagram of the loading on the free cantilever

egment is shown in Fig. 2(a). Below, we derive the load cell’s force-
eflection relationship when the load cell is in compression mode.
he theory for tension mode is identical. Both modes cause a tensile
xial force in the cantilever segment in contact with the surface due
o balanced horizontal forces at the cantilever root and the contact
oint. As long as the surface slope is small, the horizontal force has

 negligible effect on the load cell force-deflection theory.
.1. Internal moment along the beam

We  solve the boundary value problem of the internal moment
n the free cantilever and 3/4-ring segments when a given force is
 bar, deflected in compression. (b) Undeflected load cell with moment compliant

applied downwards, as shown in Fig. 2(a), where the unknown vari-
ables are the contact point location, xc, and value of the tip moment,
MTip. The contact point, xc, is the axial location where the cantilever
stops contacting the surface and becomes a free cantilever. We
assume that to the left of the contact point, the cantilever segment
in contact with the surface is tangent to the surface. Therefore, for
the boundary value problem, we  assume that the free cantilever
segment’s root, xc, is tangent to the surface (the beam and surface
have equal locations and slopes). Mxc is the moment and Fz is the
vertical force imposed by the surface and cantilever segment in
contact with the surface on the free cantilever segment at xc that
allow the load cell to be in static equilibrium. At the junction of
the free cantilever segment and 3/4-ring, we require equal rota-
tion, �Cantilever = �Ring and moments, MTip, for continuity, as shown
in Fig. 2(b) and (c). The rigid side bar applies a vertical force at the
top of the 3/4-ring, point b. The rigid side bar also applies a moment,
MB, because it cannot rotate due to symmetry.

To solve this boundary value problem, we first express the
internal moments in the free cantilever segment and 3/4-ring as
functions of the unknown variables: the contact point xc, and tip
moment MTip, which are functions of the applied force F. Refer-

ring to Fig. 2(b), the internal moment along the free cantilever as a
function of distance x from the full cantilever root is

MInternal,Cant = −F(L − x) + MTip. (2)
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ig. 2. (a) Free body diagram of free segment of 1/4 load cell. (b) Free cantilever seg
he  full cantilever root. The free cantilever segment root is at x = xc . The free cantile

eferring to Fig. 2(c), the internal moment along the 3/4-ring is

Internal,Ring = FR(1 + sin�) + MTip. (3)

Next, we equate the rotation at the junction of the cantilever
nd 3/4-ring. Since the root of the free cantilever (the contact point,
c) is tangent to surface, it has the same angle with respect to the
orizontal as the surface at that location. That is, the entire free
egment of the cantilever is rotated clockwise by

xc = tan−1
(

dS

dx
|xc

)
≈ dS

dx
|xc , (4)

here we use the small angle approximation.
To find the rotation of the free cantilever segment due to bend-

ng, we use the Euler-Bernoulli beam moment-curvature relation,

d2w

dx2
= −MInternal,Cant

EI
−→ �Cantilever,Bending ≈ dw

dx
|L

= −
∫ L

xc

MInternal,Cant

EI
dx, (5)

here we integrate the beam curvature to find the tip angle and
gain use the small angle approximation. MInternal,Cant is defined in
q. (2).

Integrating Eq. (5), the internal moment in the free cantilever
egment causes the free cantilever tip to rotate clockwise relative
o its root xc, by
Cantilever,Bending = FL2
Free

2EI
− MTipLFree

EI
, (6)

here LFree = L − xc is the free cantilever length.
 of free body diagram. (c) 3/4-ring segment of free body diagram. The x-origin is at
ment length is LFree = L − xc .

To find the rotation of the 3/4-ring tip, �Ring, relative to its top
(point B in Fig. 2(c)), we note the moment-curvature relation for a
curved beam,

MInternal,Ring

EI
= 1

Rdeformed
− 1

Roriginal
= ��,  (7)

where ��  is the change in beam curvature. Each infinitesimal
arclength increment along the 3/4-ring rotates an infinitesimal
angle, ı� ≈ ��  dl. Using Eq. (7), the total rotation of the 3/4-ring
tip relative to point B is

�Ring =
∫ LRing

0

�� dl =
∫ 3�/2

0

MInternal,Ring

EI
Rd�, (8)

where the arclength dl = Rd�, and MInternal,Ring is defined in Eq. (3).
Integrating Eq. (8), the internal moment in the 3/4-ring causes

its tip to rotate clockwise relative to its top (point B) by

�Ring = (3�  + 2)R2F + 3�RMTip

2EI
. (9)

Next, we  equate the rotation angle at the cantilever tip (due to
the surface angle at the contact point and the free length bending)
to the rotation of the 3/4-ring tip (due to bending), which must be
equal due to continuity,

�xc + �Cantilever,Bending = �Ring. (10)
We substitute Eqs. (4), (6), and (9) into Eq. (10) and solve for MTip,

MTip = (−3�R2 − 2R2 + L2
Free)F + 2 dS(xc)

dx EI

3�R + 2LFree
. (11)
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q. (11) expresses MTip as a function of the applied force, F, and

ontact point, xc (because LFree = L − xc and dS(xc)
dx are both functions

f xc). In Section 2.2, we determine xc as a function of F and MTip.
Eq. (11) also shows that for a load cell in compression, when

 >
√

3� + 2 R, MTip is positive for small forces but becomes nega-
ive for large forces (as LFree decreases). If L <

√
3� + 2 R, then MTip

s negative for any applied force. Physically, a positive MTip repre-
ents how for small forces, the 3/4-ring applies a moment to the
antilever tip that counteracts the cantilever’s bending due to the
pplied force. Simultaneously, the cantilever tip applies a moment
o the 3/4-ring at � = 3�/2 in the direction that causes its radius to
ecrease (overall, the 3/4-ring deflects downwards because of the
irectly applied force). For large forces (when the free cantilever
as stiffened due to a shorter length) or for load cells with suf-
ciently small L:R ratios, the cantilever applies a moment to the
/4-ring at � = 3�/2 in the direction that increases its radius, and
he 3/4-ring applies a moment to the cantilever that pushes the
antilever tip in the same direction as F. This is caused by the 3/4-
ing deflecting downwards with respect to � = 3�/2 and the free
antilever becoming stiffer. When the load cell is in tension, the
otation has negated signs and the components move in opposite
irections, but the theoretical relationships remain identical.

.2. Cantilever contact point with surface

We  determine the value of the contact point xc, for a given
orce by setting the surface curvature equal to the beam curva-
ure at the contact point. This is the contact condition because we
ssume that the beam segment in contact with the surface is tan-
ent to the surface (matching curvature). At the contact point, the
antilever curvature must be continuous because there is not an
pplied external moment at the contact point. Using the expres-
ion for the internal moment given by Eq. (2), the contact condition
ecomes:

d2S

dx2
|xc = MInternal,Cant

EI
|xc −→ d2S

dx2
|xc = F (L  − xc) − MTip

EI
, (12)

here MTip is the function of F and xc given by Eq. (11). The contact
oint for a given force can be determined by substituting Eqs. (1)
nd (11) into Eq. (12) and solving for xc.

For general surfaces, Eqs. (11) and (12) can be simultaneously
umerically solved for a given force. When the surface has a con-
tant radius of curvature (n = 2 in Eq. (1)), the left hand side of Eq.
12) is a constant, and the equation can be explicitly solved for the
ontact point and tip moment for a given force, as described in Sec-
ion 2.5.1. After determining the contact point xc, and tip moment

Tip, for a given force, we can calculate the load cell deflection.

.3. Deflection

For a given applied force, the deflection of the 1/4 load cell indi-
ated in Fig. 1 relative to the rigid block is the summation of four
omponents:

 = ı1 + ı2 + ı3 + ı4. (13)

he first component is the beam deflection at the contact point,
c. This deflection component is the vertical location of the surface
urve at xc,

1 = S(xc). (14)
The second component is the deflection of the free part of the
eam due to the beam’s slope at the contact point. Since the beam

s tangent to the surface at the contact point, its slope equals the
eering 43 (2016) 241–256 245

surface slope. The free length of the beam rotates by this slope (i.e.
small angle) about the contact point, which results in the deflection,

ı2 = dS

dx
|xc LFree, (15)

where LFree = L − xc is the length of the free cantilever, assuming
small deflections.

The third deflection component is due to the free cantilever
bending. This can be found by integrating the moment-curvature
relation, Eq. (5), twice and using boundary conditions that the
deflection and slope due to bending equal zero at the free beam’s
root (the contact point, xc). This deflection component is:

ı3 = FL3
Free

3EI
− MTipL2

Free
2EI

. (16)

The fourth deflection component is due to the 3/4-ring bend-
ing. When an infinitesimal segment of the 3/4-ring, ıl = Rd�, bends,
it rotates the segments of the ring on either side of it by an angle
ı� = ��  ıl with respect to each other, where ��  is the change in the
curvature of the beam at the infinitesimal segment due to bending.
Based on geometry and the small angle approximation, the ver-
tical tip deflection due to this change in angle is the horizontal
distance between the infinitesimal segment and the 3/4-ring tip,
X = R(1 + sin�), multiplied by the change in angle, ı�.  Integrating
this infinitesimal deflection along the 3/4-ring results in the total
deflection of the 3/4-ring due to bending:

ı4 =
∫

lCurve

X ı� =
∫ 3�

4

0

R (1 + sin�) �� Rd�

=
∫ 3�

4

0

R2 (1 + sin�)
MInternal,Ring

EI
d�, (17)

where the change in curvature of the beam, ��  is caused by the
internal moment defined in Eq. (3). Substituting in Eq. (3) for
MInternal,Ring and integrating the right hand side of Eq. (17), the
deflection of the 3/4-ring top (point b) with respect to the cantilever
tip is:

ı4 = (9�  + 8)FR3 + (6�  + 4)MTipR2

4EI
. (18)

As expressed in Eq. (13), the deflection of the 1/4 load cell is the
summation of the deflection components given by Eqs. (14)–(16),
and (18), where xc and MTip for a given force, F, are found by simul-
taneously solving Eqs. (11) and (12). We  multiply the applied force
F, and deflection ı, of the 1/4 load cell by 2 to determine the applied
force 2F, and deflection 2ı, of the entire load cell.

2.4. Stress

For a load cell that will undergo repeated cycles of stress, ensur-
ing that the maximum stress is below a certain value will prevent
yield and extend the load cell’s fatigue lifetime. The normal stress,
�, of a thin beam is related to its strain, ε, by � = Eε, where E is the
elastic modulus of the beam material. This stress formula is valid for
curved beams with R � t/8, where t is the thickness of the beam’s
cross-section relative to the neutral axis [20]. For a beam in pure
bending, the strain relates to the beam’s change in curvature, ��
(defined in Eq. (7)), by 	 = ��t/2. In the free segments of the load
cell, ��  relates to the internal moment by MInternal = EI��,  where
I is the beam’s moment of inertia about its neutral axis. Combin-

ing these expressions, the normal stress in the cantilever can be
expressed as � = Et��/2  or � = Mt/2I.

The stress along the cantilever and 3/4-ring for a given applied
force is defined by several equations. For the cantilever segment in
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ontact the surface, the cantilever curvature equals the surface cur-

ature (�� = d2S
dx2 ) because the cantilever is tangent to the surface.

he surface shape, S(x), is given by Eq. (1). Substituting Eq. (1) into
 = Et��/2, the cantilever segment in contact with the surface has
tress:

InContact = E
t

2
Dn(n − 1)

Ln
xn−2, (19)

here x is the axial distance along the cantilever from its root and
he load cell parameters are labeled in Fig. 1. When the load cell
s in compression, the cantilever of the South East 1/4-load cell
ndicated in Fig. 1 contacts the surface below it, and the top of this
eam segment is in tension. When the load cell is instead in tension,
his beam segment contacts the surface above it, and the top of the
eam segment is in compression.

For the free cantilever segment (xc < x < L), the internal moment
s defined in Eq. (2). Substituting the expression for internal

oment into � = Mt/2I,  the stress along the top of the beam (for
he indicated 1/4 load cell in Fig. 1) is:

Straight,Free = t

2I

(
F(L − x) − MTip

)
(20)

If the surface has nonlinearity, n = 2, then the load cell deflects a
ertain distance before the cantilever contacts the surface, and the
quation for stress along the beam is found by substituting xc = 0
nto Eq. (20), where MTip is a function of xc.

Eq. (19) shows that when the surface has n > 2, the stress
ncreases along the beam length, x, in the cantilever segment in
ontact with the surface because the surface curvature increases
long x. When n = 2, the stress is constant in the cantilever segment
n contact with the surface because the surface has a constant cur-
ature. Eq. (20) shows that in the free cantilever segment, the stress
ecreases along the axis, x, and may  become negative. The can-
ilever curvature must change from positive to negative to satisfy
he 0-slope tip condition when R/L = 0. When R/L > 0, the moment
pplied by the moment compliant 3/4-ring on the cantilever tip
ecreases the tip curvature but does not require it to become neg-
tive.

Therefore for a given force, the maximum stress in the cantilever
ccurs at the contact point, as we will show in Fig. 6 in Section 2.5.2.
Here, we use the sign conventions for the top of beam in the South-
ast 1/4 load cell when the load cell is in compression.) The stress
t the contact point is given by:

xc = E
t

2
Dn(n − 1)

Ln
xn−2

c = t

2I
((L − xc)F − MTip), (21)

here Eq. (21) is found by substituting x = xc into Eqs. (19) and
20). Since the contact point moves to the right as the applied force
ncreases and the surface curvature increases to the right, the stress
t the contact point increases as more force is applied. The mini-
um stress in the cantilever occurs at the cantilever tip (found by

ubstituting x = L into Eq. (20)) or at the full cantilever root. When
he load cell has moment compliant 3/4-rings, sufficiently large
orces cause the entire cantilever to contact the surface, and the
tress at x = L is defined by Eq. (21) when xc = L. When the load cell
as rigid connections instead of 3/4-rings, the load cell will break
efore the tip becomes tangent to the surface because continuity
ould require the tip slope to both equal 0 and be tangent to the

urface.
When the load cell has moment compliance 3/4-rings, the stress
long the inside radius of the 3/4-ring is

Ring = −t

2I
(FR(1 + sin�) + MTip(xc)). (22)
eering 43 (2016) 241–256

Eq. (22) shows that there are two  extrema in the stress along
the 3/4-ring. At � = �/2, the stress is

�Ring|�=�/2 = −t

2I

(
2FR + MTip(xc)

)
. (23)

At � = 3�/2, the stress is

�Ring|�=3�/2 = −t

2I

(
MTip(xc)

)
. (24)

We note that � = 3�/2 is the same point as x = L, and the equa-
tions above result in the same internal moment and stress at these
two points. For small forces, the stress magnitude is larger at � = �/2
than at � = 3�/2. Equating Eqs. (23) and (24), the stress magnitude at
� = 3�/2 exceeds the stress magnitude at � = �/2 when F = − MTip/R
(MTip becomes negative as described in the last paragraph of Section
2.1).

For the reasons described above, when designing the load cell to
have a specific safety factor against yield, there are several possible
locations to check for the maximum stress magnitude. These points
are the cantilever root (x = 0; applicable only when n = 2 and before
the cantilever has begun contacting the surface. This stress is found
using Eq. (20) when xc = 0), the contact point (x = xc, Eq. (21)), the
cantilever tip (x = L, Eq. (20) or � = 3�/2, Eq. (24)), and � = �/2 on
the 3/4-ring (Eq. (23)). To check the stress at these points, one must
know xc and MTip as a functions of the applied force (see Eq. (11)
and Section 2.2). The relative magnitudes of the stresses along the
load cell flexures depends on the ratio of cantilever length to 3/4-
ring radius, L:R, and the contact point value, xc. Section 2.5 further
illustrates the effect of parameters on the stress.

2.5. Effect of parameters on load cell performance

We  measure a load cell’s performance by its force-measurement
resolution and force range. Resolution, the smallest force increment
that the load cell can distinguish, is limited by the load cell stiffness
(or strain gradient with respect to the applied force) and the res-
olution of the sensor that converts the load cell displacement (or
strain) into an electrical signal.

Typical sensors can distinguish 14-bits (214 increments)
between 0 and full-scale deflection (or strain), after accounting for
sensor noise [8–10]. If the load cell uses a single optical or eddy-
current sensor and one wants the load cell to resolve the entire load
cell force, 2F, to within 100P% of its current value, then there is a
limit to the maximum allowable load cell stiffness at each force.
We assume that the sensor is sized for maximum sensitivity in the
deflection range so that its resolution is resSensor = 2ıMax

214 . At a given

force, 2F, the load cell stiffness is defined as K = d(2F)
d(2ı) . For this stiff-

ness, a small change in the applied force causes a small change in
the deflection: d(2ı) = d(2F)

K . For the desired resolution, when the
change in force is d(2F) = P × 2F, we  require the change in deflection,
d(2ı), to be larger than the smallest deflection increment that the
sensor can detect: that is resSensor ≤ 2FP

K . Rearranging this expres-
sion, for a force measurement resolution of 100P% of the applied
force 2F, the maximum allowable load cell stiffness as a function of
the applied force is

KSingleSensor ≤ 214(2F)P
2ıMax

. (25)

For increased resolution, one may  use multiple optical or eddy-
current sensors on a single load cell that are active in different
deflection ranges. For example, the highest resolution for typical
optical sensors is 1 × 10−7 m,  when they have displacement ranges

of 2.5 mm  [9,10]. Two of these 2.5 mm deflection sensors could be
used for a load cell with a 5 mm deflection range: the structure
may  be designed so that when the load cell deflects between 2.5
and 5 mm,  the gap between the upper-range sensor and its target is
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ig. 3. (a) Nondimensionalized theoretical force versus deflection. (b) Nondimension
antilever and surface for varied parameters.

etween 0 and 2.5 mm.  Of course, using multiple sensors increases
he device cost.

When daisy-chaining multiple high resolution sensors in this
ay and using sensors that can resolve 0.1 �m,  then for 100P% force

esolution, we require a change in displacement per force: d(2ı)
d(2F) ≥

10−7m
P×2F , or stiffness,

MultipleSensors = d(2F)
d(2ı)

≤ 2FP

10−7
. (26)

If the applied force is F = 0.01 N [1 g], and one desires 100P = 1%
orce resolution, then it is desirable to have a stiffness of K = d(2F)

d(2ı) ≤
000 N/m. If F = 1, 000 N [100 kg], it is desirable to have K ≤ 1e8 N/m.

If the load cell uses a strain gauge with 14-bit resolution instead
f a displacement sensor, then the smallest strain increment that
n analog-to-digital converter can distinguish is εRes = εMax

214 , when
he gauge and Wheatstone bridge are sized for the maximum strain
nd we assume the maximum strain is on the order of 1000 
ε,
hich is the optimal range for strain gauges and strain limit for a

ong fatigue life in aluminum or steel load cells [7]. Then, to detect a
00P% change in force, the requirement on the strain gradient with

espect to the applied force is

dε

d(2F)
≥ εRes

P × 2F
−→ dε

d(2F)
≥ εMax

214P × 2F
. (27)
d theoretical force versus deflection with a log force scale. (c) Contact point between

In addition to resolution limitations, load cell force range is
limited by the stress: stress at any point in the cantilever or 3/4-
ring cannot exceed the material yield stress. At large forces, load
cells with lower stiffnesses deform more and consequently have
larger stress than stiffer load cells at the same force. On  the other
hand, load cells that are too stiff deflect too little for high force
measurement resolution. Therefore, optimal load cell performance
is a trade-off between force range (not bending too much) and force
accuracy (not bending too little). To maximize both force resolution
and range, it is optimal to design the load cell so that its stiffness is
just below the maximum allowable value or strain just above the
minimum allowable value for a desired measurement resolution.

In Section 2.5.1, we analytically derive the equations relating
geometric and material parameters to the performance of a load
cell with a constant-curvature surface. In Section 2.5.2, we  discuss
the effect of varied parameters on load cells with general surfaces.
Figs. 3–8 illustrate the load cell performance for varied nondimen-
sionalized parameter ratios.

2.5.1. Surface with a constant radius of curvature
When the surface nonlinearity is n = 2, the expression for the
surface shape, Eq. (1) can be rewritten as

S = D(
x

L
)
2

= x2

2RSurf
, (28)
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Fig. 4. Nondimensionalized theoretical load cell stiffness versus force for varied
parameters. (a) Linear scaling. (b) Log scaling. The maximum allowable stiffness
lines represent the stiffness limits for 100P% force resolution of the applied force for
a  displacement sensor with 14-bit effective resolution, with a displacement range
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Fig. 5. Nondimensionalized theoretical load cell stiffness versus force, log scaling.

2F̄ =
3EID

, (34)
f  0 m to ıMax.

here d2S/dx2 = 1/RSurf is the surface’s constant curvature along its
xis.

This constant curvature greatly simplifies the equations for the
onlinear load cell behavior and allows for analytic expressions
elating the applied force F, tip moment MTip, and contact point xc.
imultaneously solving Eqs. (11) and (12) (using Eq. (28) for S) for
he relationship of F, xc, and MTip results in

 = EI (3�R + 2L)

RSurf

(
(3� + 2) R2 + 3�R (L − xc) + (L − xc)2

) (29)

nd

Tip =
(

(−3� − 2) R2 + L2 − x2
c

)
EI

RSurf

(
(3� + 2) R2 + 3�R (L − xc) + (L − xc)2

) . (30)
Eqs. (29) and (30) define the applied force on the 1/4 load
ell and moment at the cantilever tip-3/4-ring junction (labeled
n Figs. 1 and 2) as functions of the contact point between the
The maximum allowable stiffness lines represent the stiffness limits for 100P% force
resolution at the applied force for a displacement sensor with 0.1 �m resolution,
independent of sensor range.

cantilever and surface, xc. When the 3/4-ring radius, R = 0 (in addi-
tion to n = 2), the contact point equation, Eq. (29), simplifies to

xc = L −
√

2LEI

RSurfF
. (31)

Eq. (31) shows that as the force, F, increases, the point of contact
between the cantilever and surface, xc, approaches the cantilever
length, L. When R = 0, the expression for MTip, Eq. (30), also simpli-
fies to

MTip = L2
FreeF + 2 dS(xc)

dx EI

2LFree
, (32)

where LFree = L − xc, and xc is the function of F defined in Eq. (31).
Then, the deflection equation, Eq. (13), simplifies to

ı = FL3
Free

12EI
+ S′(xc)LFree

2
+ S(xc), (33)

where again xc is defined in Eq. (31).
Please note that the values of F and ı in Eqs. (31)–(33) are for

the quarter-load cell. They are actually one-half the applied force
and deflection of the entire load cell.

2.5.2. Discussion of effect of parameters on general surfaces
Many geometric and material parameters may  be adjusted to

optimize the load cell performance. These parameters include the
cantilever’s elastic modulus E, length L, width b, and thickness t;
the 3/4-ring radius R; and the surface nonlinearity power n and
end-gap D; as labeled in Fig. 1.

The 3/4-ring width and thickness may  also be adjusted indepen-
dently of the cantilever width and thickness. Increasing either of
these dimensions increases the 3/4-ring rotational stiffness, which
has a similar effect to decreasing R. For simplicity in this analysis,
we assume that the 3/4-ring width and thickness remain equal the
cantilever width and thickness.

It can be shown that the force, deflection, stiffness, contact point,
stress, and strain nondimensionalize to

2FL3
2ı̄ = 2ı

D
, (35)
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¯ = d(2F̄)

d(2ı̄)
= L3

3EI

dF

dı
, (36)

¯  = x

L
, (37)

¯  = �L2

DtE
, (38)

¯  = ε

εx̄c=0.9
, (39)
here we use the coefficient of 2 in Eqs. (34) and (35) to repre-
ent the entire load cell deflection and applied force (whereas the
revious analysis in Section 2 examined F and ı for only the 1/4

oad cell indicated in Fig. 1). Eq. (34) shows that the force required

ig. 7. Nondimensionalized theoretical maximum stress magnitude versus applied
orce for varied parameters.
 3/4-ring when 2F̄ = 30 is applied to the load cell for varied parameters.

for a given deflection increases proportionally with the cantilever
stiffness (where a cantilever’s stiffness is 3EI/L3. EI = Ebt3/12 is the
cantilever rigidity, and L is its length). Eq. (35) shows that the deflec-
tion for a given force increases proportionally with the surface
end-gap, D. Eq. (38) shows that increasing the cantilever length,
L, decreases the stress for a given deflection, while increasing the
cantilever thickness, t, elastic modulus, E, or surface end-gap, D,
increases the stress. In Eq. (39), we choose to normalize the strain
by the strain at the cantilever tip when 90% the beam length is
in contact with the surface. We  choose to normalize the strain this
way so that if the cantilever is roughly 10 cm long, then 0.1L = 1 cm is
roughly the allowable space for adhering a strain gauge to the can-
tilever tip. For other studies and applications, ε could be normalized
by another factor.

Figs. 3–8 show the effect of the surface nonlinearity, n, and ratio
of the 3/4-ring radius to straight beam length, R/L, on the nondi-
mensionalized load cell performance.

Fig. 3(a) and (b) shows the theoretical nondimensionalized
force versus deflection. For all parameter sets, the force suddenly
approaches very large values as the cantilever approaches the criti-
cal deflection value, D (the load cell reaches the deflection value 2D).
The physical reason for this sudden increase is that at large enough
forces, the entire cantilever length contacts the surface, and the tip
cannot deflect any further. The surface nonlinearity, n, defines the
smoothness of the transition to very large force values. Specifically,
for small values of n, the load cell force suddenly grows very large
close to the critical value of deflection, D. For larger values of n,
there is a smooth transition to the large-force regime.

The ratio R/L determines the slope of the asymptotic line
approached by the force versus deflection curve at large forces. For
R/L = 0, the asymptotic line is vertical: the load cell deflection cannot

exceed 2D because the only flexible elements of the structure, the
cantilevers, each deflect to D when their entire lengths are in con-
tact with the rigid surfaces. For larger R/L, the force versus deflection
curve asymptote has a slope equal to the 3/4-ring stiffness. This is
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Fig. 8. (a) Theoretical strain versus force at the cantilever tip (strain gauge location
1  labeled in Fig. 1). The strain is normalized by the strain at location 1 when the
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and increases along the cantilever length. Therefore, the maximum
0%  of the cantilever length is in contact with the surface (xc = 0.9L). (b) Theoretical
radient of the strain with respect to the nondimensionalized force.

ecause as x̄c −→ 1, the load cell deflection is effectively due to the
/4-rings deflecting alone.

Fig. 3(c) shows the theoretical nondimensionalized cantilever-
urface contact point versus force. For the n = 2 surface, contact does
ot begin (x̄c > 0) until a critical force is reached. Before this crit-

cal force, the load cell behaves linearly. For larger n surfaces, the
ontact point is larger for a given small force and smaller for a given
arge force. This is because as n increases, the surface shape is flatter
ear the root and rounder near the tip. Where the surface is flatter
larger n and near the root), the contact point increases more for

 given increase in the applied force. Where the surface is rounder
smaller n and near the tip), the contact point increases less for the
ame increase in applied force.

Increasing the R/L ratio increases the contact point for any given
orce (until the contact point becomes and remains x̄c = 1). This is
ecause increasing R/L decreases the stiffness of the moment com-
liance 3/4-ring connecting the cantilever tip to the rigid vertical
ars.

Fig. 4 shows the nondimensionalized load cell stiffness versus

orce on both a linear and log scale. The plots include sample
ines for chosen PD

ıMax
values that indicate the maximum allowable

tiffness of a load cell so that a displacement sensor with the ability
eering 43 (2016) 241–256

to resolve resSensor = 2ıMax
214 can measure the force within 100P%.

Using Eqs. (25) and (36), we nondimensionalize the maximum
allowable stiffness of a load cell with 100P% force resolution and
a single sensor:

KSingleSensor ≤ 214(2F)P
2ıMax

−→ K̄SingleSensor ≤ 214(2F̄)P

2ı̄Max
. (40)

Fig. 5 duplicates the theoretical load cell stiffness versus force
plot, but now indicates the maximum allowable stiffness for 100P%
force resolution if multiple displacement sensors are allowed so
that a load cell with any deflection range can be measured with
0.1 �m resolution. Using Eqs. (26) and (36), we nondimensionalize
the maximum allowable stiffness of a load cell with 100P% force
resolution and sensors with resolutions of 0.1 �m:

KMultipleSensors ≤ 2FP

10−7
−→ K̄MultipleSensors ≤ 2F̄PD

10−7
. (41)

The dependence of the maximum allowable nondimensiona-
lized stiffness on D is due to the dimensionalized resolution of
the displacement sensor. Fig. 5 shows that for a surface end-
gap of D = 5 mm,  the load cell satisfies the stiffness requirement
for 1% force measurement resolution over a nondimensiona-
lized force range from about 10−2 ≤ 2F̄ ≤ 104 (six orders of
magnitude).

The load cell stiffness shown in Figs. 4 and 5 is closely related
to the contact point values shown in Fig. 3(c). We  observe that the
load cell with the n = 2 surface deflects linearly until the critical
force that causes the cantilever to begin contacting the surface.
Increasing the value of surface nonlinearity n increases the load
cell stiffness for small forces and decreases the stiffness at large
forces. This is because a surface with a larger n value more severely
interferes with the cantilever’s initial deflection (because a surface
with a larger n is flatter near the root and rounder near the tip). The
resulting larger rate of cantilever-surface contact with increased
small forces is shown in Fig. 3(c). For large forces and large contact
points, the larger n surface is rounder, and therefore larger incre-
ments of force are required to increase the contact point (i.e. make
the load cell stiffer).

For the surfaces with R/L > 0, once the full cantilever length con-
tacts the surface (x̄c = 1), the load cell stiffness is constant. This is
because once the full cantilever is in contact with the rigid surface,
further load cell deflection is due to the 3/4-ring deflecting linearly.
Increasing R/L decreases the load cell stiffness for all force values
because it decreases the stiffness of the moment complaint 3/4-ring
at the cantilever’s tip. When R/L = 0, the full cantilever length does
not contact the surface for a finite force. This is because cantilever
contact with the surface at x̄ = 1 would require the cantilever tip
to be both tangent to the surface (a nonzero slope) and satisfy the
0-slope requirement of the rigid vertical bar to which it is attached.
Since the cantilever of a R/L = 0 load cell does not fully contact the
surface for a finite force, the stiffness continues to increase for all
force values.

Fig. 6 illustrates the stress along the cantilever when the non-
dimensionalized applied force is 2F̄ = 30. As described by Eq. (19),
to the left of the contact point, the stress is proportional to the sur-
face curvature. If the surface nonlinearity power, n equals 2, then
the surface curvature is constant, and therefore stress along the
beam segment in contact with the surface is also constant. If n > 2,
then the surface curvature equals 0 at the root and increases along
the surface length, so the stress in the cantilever is 0 at the root
stress occurs at the contact point. Here, we use the sign convention
for the top of the cantilever in the South-East 1/4 load cell indicated
in Fig. 1 when the load cell is in compression.
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The minimum stress in the cantilever (for the plotted 2F̄ and R/L
alues) occurs at x̄ = 1. This is because for the chosen parameter
ets, MTip is positive. Accordingly, Eq. (20) shows that the mini-
um  value of stress in the cantilever will be at x̄ = 1. Similarly, for

hese sets of parameters, the minimum value of stress in the entire
oad cell is at � = �/2 in the 3/4-ring. As described in Section 2.4,
hanging the ratio of R/L and the force value changes the location
f the maximum and minimum stress values in the load cell.

Increasing the surface nonlinearity, n, decreases the stress in the
antilever at small contact point values and increases the stress at
arger contact points. This is because the cantilever stress is propor-
ional to the surface curvature at the contact point. As can be seen
y differentiating Eq. (1), increasing n decreases the surface curva-
ure at small x values and increases the surface curvature at larger

 values. Increasing n also decreases stress in the free cantilever for
mall contact point values and increases stress in the free cantilever
or large contact point values. This is because larger n values make
he surface slope smaller at small x values and steeper at larger x
alues compared to a surface with a smaller n. A cantilever with a
arger positive slope at the contact point must have a larger curva-
ure to the right of the contact point so that the slope can equal 0
or another required smaller slope if R /= 0) at the cantilever tip, as
equired by the rigid vertical bar (or moment compliance ring).

Increasing R/L decreases the magnitude of the minimum stress
n the cantilever at x̄ = 1. This is because a 3/4-ring with a larger R/L
atio is a weaker rotational spring, and the required change in slope
etween the contact point and cantilever tip is smaller. Increasing
/L increases the stress at the contact point. This is because the
alue of the contact point x̄  is larger for a given force when R/L is
arger because the load cell is weaker. As described in the previous
aragraph, the stress at the contact point is always proportional to
he surface curvature, which increases with the contact point.

Fig. 7 shows the maximum nondimensionalized stress in the
oad cell versus force. Fig. 7 accounts for the stress along both the
antilever and 3/4-ring. Increasing n increases the stress for small
orces but decreases the stress at large forces (this is caused by the
ffected rate of contact described above). Fig. 7 shows that the load
ell with R/L = 0.02 has a change in slope at about 2F̄ = 5000. At this
orce, the location of the maximum magnitude in the load cell shifts
rom � = �/2 to � = 3�/2. Further calculations in the location of the

aximum stress are described in Section 2.4.
Fig. 8 plots the normalized strain versus force at the cantilever

ip, a possible location for a strain gauge. Fig. 8 also plots the strain
radient with respect to the force, which illustrates the force resolu-
ion that can be achieved by a strain gauge located at the cantilever
ip. Using Eqs. (27) and (39), the the maximum allowable strain
radient of a load cell with 100P% force resolution and a strain
easurement resolution of 14-bits nondimensionalizes to:

dε

d(2F)
≥ εMax

P × 214(2F)
−→ dε̄

d(2F̄)
≥ ε̄Max

P × 214(2F̄)
−→ dε̄

d(2F̄)

≥ 1

P × 214(2F̄)
, (42)

here we set ε̄Max = εMax
εx̄c=0.9

= 1 to represent designing the load cell

o that the cantilever does not contact the surface beyond x̄c = 0.9,
here the strain gauge is located. Fig. 8(a) shows that as n increases,

he strain at the cantilever tip for a given force decreases. This is
xpected because larger n load cells are initially stiffer than smaller

 load cells, so a given force causes less deformation. Fig. 8(a) also
hows that as R/L increases, the strain at the cantilever tip increases
or a given force. This is because larger R/L makes the load cell

eaker for small forces and therefore allow more deformation.

Figs. 3–8 can be used to select load cell geometric and material
arameters to meet certain performance criteria. Here, we present

 case-study of the procedure for designing a load cell that uses one
eering 43 (2016) 241–256 251

optical sensor, and has a 1% force resolution over applied forces
0.01N≤2F ≤ 1000N. Fig. 4 indicates that the load cell with n = 2,
R/L = 0.01 satisfies 1% force resolution over the nondimensionalized
5-order-of-magnitude range of 2.2 × 10−2 ≤ 2F̄ ≤ 2.2 × 103, when
we set D

ıMax
= 1 (i.e. size the optical sensor for a range of 2ıMax).

We choose n = 2 because it minimizes the load cell stiffness at small
forces compared to larger n surfaces. We  choose R/L = 0.01 as a trade
off between reduced stiffness at low forces (caused by larger R/L)
and reduced stress at high forces (caused by smaller R/L). Now, we
require that the minimum force dimensionalizes to 0.01 N:

2FMin = 3EID(2F̄min)
L3

−→ 0.01 = Ebt3D(2.2 × 10−2)
4L3

. (43)

We also require that the load cell satisfies the maximum allowable
stress at the maximum force. Fig. 7 shows that the n = 2, R/L = 0.01
load cell has a nondimensionalized stress value of �̄ = 34.5 when
2F̄ = 2.2e3, which dimensionalizes to

�Max ≤ �̄DtE

L2
= 34.5DtE

L2
. (44)

We use Eqs. (43) and (44) to choose values for the load cell’s
geometric and material parameters: elastic modulus E, cantilever
width b, thickness t, length L, and surface end-gap D. We  choose
to make the load cell out of aluminum, with an elastic modu-
lus of E = 70 GPa and maximum allowable stress of �Max = 200 MPa
for a near-infinite fatigue life. We  also set L = 15 cm,  b = 5 mm,  and
D = 2 mm as reasonable limits to the load cell size and machining
accuracy constraints. Then, Eqs. (43) and (44) are satisfied when
t = 0.4 mm.

3. Fabrication

We fabricated the mechanical components of the load cell from
one monolithic piece. The advantages of a monolithic load cell
compared to a load cell assembled from several parts are reduced
assembly cost and elimination of the hysteresis often caused by
bolts. One can fabricate a monolithic load cell by 3D printing,
milling, or waterjetting. We chose waterjetting because of its high
precision and ability to make small-diameter cuts.

A limitation when using the waterjet (or mill) is that the
machine cannot cut to an exact point where the cantilever and sur-
face roots meet, as shown in Fig. 1, because the water jet (or end
mill) has a minimum hole diameter that it can cut.

Here, we describe two solutions to overcome this limitation.
First, we design gaps in the surfaces near their roots to satisfy the
minimum cut that the machine can make in between the surface
and cantilever, as shown in Fig. 9. We  design the gaps to extend to
the minimum required distance along the surface axes to minimize
their effect on the theoretical load cell performance. Before contac-
ting the surface, the load cell deflects linearly. This means that for
small forces, the load cell remains at its initial stiffness instead of
stiffening, which is actually beneficial for measuring small loads
because larger deflections are measured more accurately by the
sensor. Developing the analytic theory for how the load cell behaves
with the root gaps rather than surfaces extending to the cantilever
roots results in long, complicated expressions. If properly designed,
the effects of these gaps should be minimal on the theory, as seen
in the experimental results described in Section 4.

A second fabrication option is to machine inserts (with a
0.25 mm clearance) that can be adhered into the root gaps, as shown
in Fig. 9. This allows the surface to effectively meet the cantilever
root at a point, which is required for nonlinear load cell behavior at

small forces.

We  fabricated two  prototype load cells. The first load cell has
cantilever tips that directly connect to the rigid vertical bars (“rigid
connections”). Load cell geometry prevents deflection exceeding
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Fig. 9. Fabricated aluminum load cells. Top: Load cell with moment compliant 3/4-
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made using the maximum compression point of the load cell an
ings and a horizontal crossbar without inserts. Middle: Inserts. Bottom: Load cell
ith rigid connections and root inserts in the root gaps.

 mm in both tension and compression in order to keep the stress
n the flexures below 200 MPa: in compression, the top and bottom
igid blocks contact each other at 8 mm deflection. In tension, the
verstops, labeled in Fig. 1, prevent over-deflection. This load cell
as cut from a 9.52-mm thick sheet of 6061 aluminum using an
max 2626 abrasive waterjet machine with a tilt-a-jet head for
chieving near-zero taper. This waterjet can cut to an accuracy of
.076 mm and make cuts as thin as 1 mm thick.

The second load cell has moment compliance flexures connect-
ng the cantilever tips to vertical rigid bars. These flexures are
hysically realized by 270◦ arcs (“3/4-rings”) with radii of R = 1 cm.
he rigid blocks prevent the load cell from deflecting beyond 10 mm
n compression. Although we did not include tension overstops in
his prototype, they may  be added to the rigid blocks as shown in
ig. 1.

This second load cell prototype also has a rigid horizontal cross-
ar connecting the left and right rigid vertical bars to reduce
arasitic rotations and horizontal deflections. The horizontal bar
tiffens the load cell against parasitic moments and horizontal
eflections because some of these parasitic motions require the
ertical rigid bars to rotate with respect to each other. We  note
hat a challenge in implementing this stiffener is that the load cell
hould have minimized weight in order to measure small forces
n a vertical configuration. To address this issue, we  propose cut-
ing holes in the crossbar and in the middle of the surfaces in order
o minimize their masses while maintaining their effective infinite
tiffness.

This second load cell was cut from a 6.35-mm thick sheet of 6061
luminum using an Omax MicroMAX waterjet machine, which has

 position accuracy of 15 �m and cut the sheet with a taper less
han 0.057◦.

The load cell with rigid connections has a cantilever thickness
 = 0.5 mm and a cantilever width b = 9.52 mm.  The load cell with

oment complaint rings has a cantilever thickness t = 1 mm and
 cantilever width of b = 6.35 mm.  Both load cells have the follow-
ng parameters: cantilever and surface lengths, L = 10 cm,  surface
onlinearity n = 3, maximum surface gap D = 5 mm,  elastic modulus

 = 65e9 Pa, and maximum allowable stress � = 200 MPa.
Max
As per the first solution for fabricating the load cell out of one

onolithic part, we designed gaps in the surfaces that extend from
he cantilever root to the axial coordinate, xGap, where the distance
eering 43 (2016) 241–256

between the surface and undeflected cantilever is SGap = 1 mm.
For surfaces that follow the curve S = D(x/L)n, the axial coordinate
corresponding to a chosen distance between the undeflected
cantilever and surface is xGap/L = (SGap/D)1/n. For the chosen pro-
totype parameters, each gap extends from the cantilever root to
xGap = 58 mm xGap/L = 0.58.

Based on the theory in Section 2, when the load cell has rigid
connections and the surfaces extend the full cantilever length,
the force (deflection) for which the xc = 0.58 mm is 1.0 N (5.5 mm),
which is 1.1% the force (60% the deflection) required for 95% of
the cantilever length to be in contact with the surface. With the
root gaps, the first contact between the cantilever and surface at
x = 58 mm  is 0.12 N. For the load cell with 3/4-ring connections and
surfaces that extend the full cantilever length, xc = 58 mm when the
force (deflection) is 3.8 N (9.7 mm), which is 17% the force (65% the
deflection) required for 95% of the cantilever length to be in contact
with the surface. With the root gaps, the first contact between the
cantilever and surface is at 0.40 N. After contact occurs at x/L = 0.58
when the root gaps are present, we  expect the cantilever to pivot at
the contact point as additional force is applied until the cantilever
is tangent to the surface at that point.

We  experimentally verify the effectiveness of these two fabri-
cation methods in Section 4.

4. Experimental verification

We  performed quasi-static force versus displacement tests to
verify the theory described in Section 2 and show the effectiveness
of the fabrication methods described in Section 3. We  performed
these tests on two fabricated load cells: one with rigid vertical bar
connections and one with moment compliant 3/4-ring connections,
using and not using inserts in the root gaps, in both tension and
compression modes, as shown in Fig. 9. For the load cell with 3/4-
ring connections, we performed cyclic loading to measure the load
cell’s hysteresis.

The load cells were made out of 6061 aluminum with the dimen-
sions listed in the captions of Figs. 11 and 12.

The tests used an Interface SMT1 load cell with a 2.2 lbf capacity
on an ADMET eXpert 5000 force tester machine with the single-
column vertical set-up shown in Fig. 10. The load cell recorded force
with a resolution of 1 × 10−4 N and the ADMET recorded displace-
ments with a resolution of 1 × 10−4 mm.  The nonlinear load cell
top was bolted to the Interface load cell, and the nonlinear load cell
bottom was  bolted to the tabletop.

For the nonlinear load cells and force tester machine that were
readily available, bolting both the top and bottom of the nonlinear
load cell made the experimental set-up slightly overconstrained.
The bottom fixture did not perfectly align with the top fixture.
Gripping both ends of the load cell was  required for the tension
test. As described below, this overconstraint affected the experi-
mental results of the load cell with rigid connections. It played less
of a role for the load cell with the 3/4-ring connections because the
horizontal crossbar made it more robust to parasitic moments and
horizontal forces. A future solution for this experimental set-up is
to fabricate the load cells with holes through which close-fitting
pins can transmit the applied forces.

For the given experimental set-up, we determined the zero-
deflection point of the load cell by symmetry in the force versus
deflection curve. The zero-deflection point of the load cells was  not
obvious because gravity compressed the unloaded load cells. Fur-
ther, any slight misalignment between the top and bottom fixtures
unreliable deflection reference point.
We performed five trials for each load cell configuration and

determined the mean experimental force at each displacement.
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Fig. 10. (a) Force versus displacement experimental set-up of load cell with moment
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Fig. 11. Force versus displacement test results for the aluminum load cell with
rigid connections. The load cell parameters were: cantilever and surface lengths,
L  = 10 cm;  cantilever thickness, t = 0.5 mm;  cantilever width, b = 9.5 mm;  surface

linearly with a stiffness of 97.8 N/m until 0.12 N has been applied. As
illustrated in Fig. 11, the experimental results showed that the load
cell deflected with an initial stiffness of 78.2 N/m until 0.19 N was
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Fig. 12. Force versus displacement test results for the aluminum load cell with
moment compliant “3/4-ring” connections. The load cell parameters were: can-
ompliance 3/4-ring connections without inserts, in maximum compression. (b)
oad cell with rigid connections in maximum tension with inserts.

ig. 11 compares the mean experimental force versus displace-
ent to the theory for the load cell with rigid connections. As

hown in Fig. 11, we designed the load cell to have a maximum
llowable deflection of 8 mm in both tension and compression in
rder to keep the maximum stress in the load cell below 200 MPa.
ig. 12 compares the mean experimental force versus displacement
o the theory for the load cell with moment complaint 3/4-ring
onnections. As shown in Fig. 12, we designed this load cell to
ave a maximum allowable deflection of 10 mm  so that the max-

mum stress in the load cell remained below 200 MPa. Among all
f the experiment variations (load cell with rigid or 3/4-ring con-
ections, with or without root inserts, in tension or compression),
he standard deviation in the measured force for a given measured
eflection was less than 0.05% and occurred at small deflection
alues (near 2 mm)  in compression for the load cell with 3/4-ring
onnections. For all other measurements, the standard deviation
as less than 0.005%.

We  observed very good agreement between the experiments
nd theory for the load cell with rigid connections in compres-
ion both with and without inserts up to 6 mm deflection (after
hich, slight set-up misalignment caused overstop behavior ear-

ier than theoretically expected, as discussed below). Tests for the
oad cell with rigid connections in tension both with and with-
ut inserts followed a close trend with the theory as well except
or being slightly stiffer than theoretically expected at midrange

isplacements. We  observed very good agreement between the
xperiments and theory for the load cell with 3/4-ring connec-
ions with inserts in compression mode. The load cell with 3/4-ring
curve power n = 3; maximum surface gap, D = 5 mm;  elastic modulus, E = 65 GPa;
maximum allowable stress, �all = 200 MPa.

connections with inserts in tension mode also generally followed
the theory except for a midrange-deflection error that showed a
slightly higher force than expected and linear behavior. Tests for the
load cell with 3/4-ring connections with the root gaps in both com-
pression and tension modes showed larger initial linear regimes
than expected.

As described in Section 3, when the surfaces have root gaps, we
theoretically expect the load cell with rigid connections to deflect
tilever and surface lengths, L = 10 cm; cantilever thickness, t = 1 mm;  cantilever
width, b = 6.3 mm;  surface curve power n = 3; maximum surface gap, D = 5 mm,
rotational spring radius, R = 1 cm;  elastic modulus, E = 65 GPa; maximum allowable
stress, �all = 200 MPa.
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pplied in tension mode and with a stiffness of 98.3 N/m in com-
ression mode until 0.20 N was applied. We  theoretically expect the

oad cell with 3/4-ring connections to deflect linearly with a stiff-
ess of 166.7 N/m until 0.40 N is applied. As illustrated in Fig. 12,
he experimental results showed that the load cell deflected with
n initial stiffness of 165.2 N/m in tension mode until 1.2 N was
pplied and with a stiffness of 188.3 N/m in compression mode until
.96 N was applied. These differences were most likely due to slight
isalignment in the experimental set-up as described below.
We observed three main errors between the experiment and

heory:

. The load cell with rigid connections in tension was initially stiffer
than what is predicted by the theory. The load cell with root gaps
in tension mode had a maximum error from the theory of 0.32 N
(29%) at a deflection of 4.8 mm.

. The load cell with rigid connections in compression had a sudden
change in stiffness at a deflection of 6 mm,  due to the top and
bottom rigid surfaces touching each other and overstopping the
load cell 2 mm earlier than expected.

. The load cell with 3/4-ring connections and root gaps deflected
linearly in both tension and compression modes even after con-
tacting the beginning of the surface (xc = 0.58 mm)  rather than
behaving nonlinearly.

We provide several explanations for these and the other smaller
iscrepancies between the theory and experiment.

Error 1, the discrepancy between the theoretical and experi-
ental stiffnesses for the load cell with rigid connections in tension

n Fig. 11, may  have been due to two key issues.
First, the slightly overconstrained experimental set-up induced

arasitic moments and horizontal forces on the load cells. Misalign-
ent caused the four load cell quadrants to deflect asymmetrically,
hile the theory assumes that the load cell deflects symmetrically.
symmetry caused each of the cantilevers to have different contact
oints and therefore different effective stiffnesses at a given force.
e  observed that adding a horizontal crossbar, as was done for the

oad cell with 3/4-ring connections, made the load cell more robust
o parasitic loadings.

Second, the Omax 2626 did not cut the cantilevers of the load cell
ith rigid connections to a constant thickness along their lengths

s specified by the SolidWorks CAD. This error may  have been
aused by not correctly compensating for the kerf width in between
he cantilever and surface or vibrations during cutting. We  used
alipers to make 10 evenly-spaced measurements along the can-
ilever length on both the front and back of each load cell. Here,
front” refers to the side of the aluminum sheet that was face-
p while being waterjetted. We  found that the front of the load
ell, which had a nominal cantilever thickness of 0.5 mm,  had a
ean thickness of 0.49 mm and standard deviation of 0.05 mm.
e found that the back of the cantilever had a larger mean thick-

ess of 0.55 mm and standard deviation of 0.03 mm.  The different
ean thicknesses of the front and back of the load cell indicated

 tapered cut by the waterjet machine, despite using the tilt-a-jet
ead. The surfaces to which the cantilevers become tangent had a
imilar taper which may  have reduced any torsional effects in the
antilever due to its mean taper. The thickness values fluctuated
andomly along the cantilever length except for a bump on the back
f the cantilever at x = 58 mm,  where the root gap ended and the dis-
ance between the surface and cantilever was at its minimum value
f 1 mm.  At x = 58 mm,  the cantilever’s back thickness had its largest
alue of 0.64 mm,  and then the thickness decreased back to its mean

alue 10 mm further along the cantilever. All four cantilevers of the
oad cell showed this bump in thickness at x = 58 mm.

The bump in cantilever thickness at x = 58 mm affected the rate
f increase in the cantilever-surface contact point for increased
eering 43 (2016) 241–256

forces. As described in the Section 2, the increasing stiffness of
the load cell is highly dependent on the rate of increase of the
contact point (i.e. increasing the contact point shortens the free
cantilever segment and increases the load cell stiffness). Develop-
ing the theory of how the contact point relates to the applied force
for a cantilever with non-monotonically varied thickness is beyond
the scope of this paper. However, we expect a bump to cause the
load cell contact point to initially increase by a larger amount than
predicted for a smooth cantilever because the bump contacts the
surface before a smooth cantilever would contact the surface. This
causes the load cell stiffness to increase more for a given force
increase than if it had a smooth cantilever. After the apex of the
bump has contacted the surface, we  expect the contact point to
increase at a slower rate than predicted for a smooth cantilever
because the bump creates a separation between the rest of the sur-
face and free cantilever. This, in turn, causes the load cell stiffness
to increase at a slower rate as more force is applied compared to a
smooth cantilever.

The load cell with moment compliant 3/4-ring connections,
which had a nominal cantilever thickness of 1 mm and was  cut on
the Omax MicroMax had much more consistent cantilever thick-
nesses, with a mean value of 1.03 mm on the front, 1.04 mm  on the
back, and standard deviation of 0.03 mm among all of the measure-
ments.

Slight experimental set-up misalignment contributed to the
second error between the experiment and theory, for which the
experimental force suddenly increased to values significantly larger
than expected for the load cell with rigid connections in compres-
sion. This sudden increase in force was caused by the top and
bottom rigid blocks of the load cell contacting each other. In the
experiment, a slight angle in the top rigid block caused the left side
of the rigid blocks to contact each other before the right side. Theo-
retically, when the rigid blocks have 100 mm lengths on either side
of the fixture, the top rigid block left edge may  first contact the bot-
tom block left edge at 6 mm deflection instead of 8 mm deflection if
the relative angle between them is as small as 1.14◦. The theoretical
load cell model assumes simultaneous contact of the entire planes
of the rigid blocks.

Error 3 between the experiment and theory, for which the load
cell with 3/4-ring connections with root gaps deflected with two
linear regions instead of showing nonlinear behavior, can be seen
in Fig. 12. This error was caused by the cantilever pivoting about
the contact point at the start of the surface (xc = 0.58 mm)  rather
than increasing the contact point as the force was increased. The
theory for how the load cell deflects when its contact point piv-
ots around the start of the surface with root gaps at xc = 58 mm
is beyond the scope of this paper. However, the experimentally
observed constant slope of 889 N/m for compression mode and
799 N/m for tension mode were within 18% of the load cell stiff-
ness of 973 N/m that is predicted by the theory when the surface
does not have the root gaps and the contact point is xc = 0.58 mm.
When the contact point is xc = 0.58 mm  and the load cell has root
gaps, then we  expect its stiffness to be less because the cantilever
pivots at the contact point.

Finally, we  note that averaging among the four load cell quad-
rant stiffnesses may  have reduce manufacturing and asymmetry
errors. For example, in a vertical set-up, when the load cell had a
horizontal crossbar that weighed 0.37 N, all four cantilevers sagged
downward. This, in turn, caused the contact point of the upper can-
tilevers to be slightly less than that of the lower cantilevers when
the load cell was in compression mode. When the load cell was
in tension mode, the contact point of the upper cantilevers was

slightly larger than that of the lower cantilevers. In these situa-
tions, while the effective stiffness of two  quadrants was higher
than theoretically expected, the effective stiffness of the other
two quadrants was  lower than expected, and the overall result
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Fig. 13. Hysteresis tests. (a) Experimental results for load cycling for the load cell with moment compliant “3/4-ring” connections. (b) Closer look at experiment results of
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a).  (c) Experimental set-up for measuring hysteresis in the experimental set-up. Le
ester  experimental set-up.

as only a moderate effect on the stiffness of the load cell as a
hole.

.1. Hysteresis in the load cells

For the load cell with 3/4-ring connections, we performed cyclic
oading from near-minimum to near-maximum load to measure
he hysteresis in the load cell. The cycles were repeated 80 times
or each load cell configuration (compression or tension mode, with
r without inserts). The results are shown in Fig. 13. Overall, the
esults suggest that the load cells have little hysteresis.

First, we determined any hysteresis in the experimental set-
p that was not caused by the nonlinear load cell. For this simple
est, we used the set-up shown in Fig. 13c. Neglecting the extra
arge regions of displacement hysteresis at the cycle extremities,

e measured that the ADMET machine itself showed an average
ifference of 0.0071 mm between the increasing and decreasing
eflection magnitudes. We  suspect that the hysteresis was due to
he backlash of bolts or gears. In the paragraph below describing
ysteresis in the nonlinear load cell, we subtract the 0.0071 mm

rom the deflection differences.
Among all of the cyclic data sets, the maximum difference

etween the increasing and decreasing deflection magnitudes at
 given force was 0.1750 mm and occurred for the load cell in ten-
ion mode without inserts at a nominal force of 0.57 N (nominal
eflection of 2.956 mm,  increasing magnitude). The load cell in
ension with inserts showed a maximum deflection difference of
.0850 mm at 2.2 N. The load cell in compression without inserts
howed a maximum deflection difference of 0.1409 mm at 1.34 N.

he load cell in compression with inserts showed a maximum
eflection difference of 0.0955 mm at 2.19 N.

To work as an actual product, it is important to account for
hese deflection differences due to hysteresis. As an example of
pression set-up. Right, tension set-up. (d) Measured hysteresis in the ADMET force

the issues that arise due to the combined hysteresis and non-
linearity, we consider the measurement errors that arise if the
load cell prototype with 3/4-ring connections has a hysteretic
deflection jump of 0.11 mm.  When the force is increasing, the load
cell deflects 1.50 mm when 0.30 N is applied. When the force is
decreasing and 0.30 N is applied, the load cell deflects 1.61 mm due
to hysteresis. If the sensor is calibrated solely for increasing force
magnitudes, then it will correlate the 1.61 mm deflection to 0.333 N,
which is a force overprediction of 11%. At a larger force, when 4.45 N
is applied and the force is increasing, the load cell deflects 9.60 mm.
When the force is decreasing and 4.45 N is applied, the load cell
deflects 9.71 mm due to hysteresis. If the sensor is calibrated solely
for increasing force magnitudes, then it will correlate the 9.71 mm
deflection to 4.635 N, which is a force overprediction of 3.7%.

It may  be possible to design the load cell so that measurement
errors due to hysteresis remain below a certain force percentage.
Also, we  suggest that the software used to correlate a deflection
sensor reading to a force account for whether the measured force
is along an increasing or decreasing force trajectory.

5. Conclusions and future work

A load cell with increasing stiffness has a larger force mea-
surement resolution and force range than a traditional linear load
cell. We  physically implemented a stiffening load cell by design-
ing cantilevers to increasingly contact rigid surfaces (and therefore
have effectively shorter lengths) as additional force is applied.
We reduced stress in the load cell by combining cantilevers with
moment compliant 3/4-rings that act like rotational springs. Rigid

surfaces and overstops prevented the load cell from breaking for
forces beyond the load cell’s force range. A horizontal crossbar
reduced the load cell’s susceptibility to parasitic moments and hor-
izontal forces.
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We  investigated parameters that allow the nonlinear load cell to
easure forces with resolutions of 1% of the applied force over a 5-

rders-of-magnitude force range. High resolution was  achieved by
esigning the nonlinear load cell’s stiffness to remain below values
hat allow a sensor to detect the deflection change corresponding to

 100P% change in the force, where P is the chosen sensor resolution.
Additionally, we described a method of fabricating the load cell

ut of one monolithic part, which reduces assembly costs and the
ysteresis caused by bolts. While machines such as the waterjet
nd mill cannot cut the theoretical point-junction of the beam and
urface, machining gaps in the surface near the cantilever root and
eparate inserts can effectively create the point-junctions.

We  experimentally verified the nonlinear load cell theory and
howed the effectiveness of the fabrication method for two differ-
nt sets of load cell parameters. The experimental force-deflection
urves when inserts fill the root gaps effectively matched the force-
eflection curve when the inserts were not used. Manufacturing the

oad cell with gaps that do not need to be filled by inserts further
educes the load cell manufacturing cost. We  observed high sensi-
ivity of the load cell nonlinearity to the accuracy of the cantilever
nd surface cuts.

Future work on this project will include experimentally verify-
ng the theory with a load cell designed to function over several
rders of force magnitude. Additionally, we will investigate opti-
izing the load cell when the cantilever and 3/4-ring parameters

re allowed to vary along their lengths, x and �, respectively. We
ill also work on investigating a nonlinear load cell that imple-
ents the flexure-contact surface stiffening effect in a more volume

fficient way. Also, we will characterize the dynamic behavior of the
onlinear load cell, which is important for applications such as load
latforms.

Finally, we note that a future important step is determining how
o best attach a sensor to the nonlinear load cell and calibrate it
or measuring unknown forces. We  suggest that a favored cali-
ration method should be to use an instron machine such as the
DMET force tester with multiple high-accuracy linear load cells

hat span the entire range of the nonlinear load cell. Several thou-
and (force, deflection) data points could be used to correlate a
oad cell deflection to a force. If the load cell shows different force-
eflection curves in tension mode than in compression mode, then
hese modes may  be calibrated separately. This future calibration
ork will also include ensuring that the zero-deflection reference
oint is easily determined, which is highly important for a nonlin-

ar load cell. We  will investigate determining the zero-deflection
oint by using root gaps, which cause an abrupt change in load cell
tiffness at a specific deflection, or simply using deflection sensors
ith minimal drift.

[

[
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