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We introduce a minimization formulation for
the determination of a finite-dimensional, time-
dependent, orthonormal basis that captures directions
of the phase space associated with transient
instabilities. While these instabilities have finite
lifetime, they can play a crucial role either by altering
the system dynamics through the activation of
other instabilities or by creating sudden nonlinear
energy transfers that lead to extreme responses.
However, their essentially transient character makes
their description a particularly challenging task. We
develop a minimization framework that focuses on
the optimal approximation of the system dynamics
in the neighbourhood of the system state. This
minimization formulation results in differential
equations that evolve a time-dependent basis so
that it optimally approximates the most unstable
directions. We demonstrate the capability of the
method for two families of problems: (i) linear
systems, including the advection—diffusion operator
in a strongly non-normal regime as well as the
Orr-Sommerfeld /Squire operator, and (ii) nonlinear
problems, including a low-dimensional system with
transient instabilities and the vertical jet in cross-flow.
We demonstrate that the time-dependent subspace
captures the strongly transient non-normal energy
growth (in the short-time regime), while for longer
times the modes capture the expected asymptotic
behaviour.

© 2016 The Author(s) Published by the Royal Society. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2015.0779&domain=pdf&date_stamp=2016-02-10
mailto:sapsis@mit.edu
http://orcid.org/0000-0003-0302-0691
http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on February 10, 2016

1. Introduction

A broad range of complex systems in Nature and technology are characterized by the presence of
strongly transient dynamical features associated with finite-time instabilities. Examples include
turbulent flows in engineering systems (e.g. Kolmogorov [1] and unstable plane Couette flow
[2], reactive flows in combustion [3,4]), turbulent flows in geophysical systems (e.g. climate
dynamics [5,6], cloud processes in tropical atmospheric convection [7,8]), nonlinear waves (e.g.
in optics [9,10] or water waves [11-14]) and mechanical systems [15-19].

These systems are characterized by very high-dimensional attractors, intense nonlinear energy
transfers between modes and broad spectra. Despite their complexity, the transient features
of these dynamical systems are often associated with low-dimensional structures, i.e. a small
number of modes, whose strongly time-dependent character, however, makes it particularly
challenging to describe with the classical notion of time-independent modes. This is because
these modes, despite their connection with intense energy transfers and transient dynamics, often
have low energy and hence they are ‘buried” in the complex background of modes that are not
associated with intense growth or decay but only with important energy. These transient modes
often act as ‘triggers’ or “precursors’ of higher energy phenomena or instabilities and a thorough
analysis of their properties can have important impact for (i) the understanding of the system
dynamics and in particular the mechanisms associated with transient features (e.g. [20-22]),
(i) the prediction and quantification of upcoming instabilities that are triggered through these
low-energy dynamical processes (e.g. [14,23,24]), and (iii) the control and suppression of these
instabilities by suitably focusing the control efforts in the low-energy regime of these transient
phenomena (e.g. [25-27]).

Transient dynamics is central in understanding a wide range of fluid mechanics problems. In
the context of hydrodynamic stability, non-normality of the linearized Navier—Stokes operator
can cause significant transient energy growth [28,29]. It is well established now that the eigenvalue
analysis based on the largest real-part eigenvalue is unsuitable to predict the short-time evolution
of perturbations for convective flows [30]. Instead, the transient energy growth can be better
understood by analysing the pseudospectra of the linearized operator [31,32]. Transition from
laminar flow to turbulence is another active area of research in fluid mechanics, for which
understanding the transient dynamical features is crucial. For a finite-amplitude disturbance,
bypass transition has been observed in wall-bounded shear flows [33,34], in which case the non-
normal growth of localized disturbances leads to small turbulent spots, bypassing the secondary
instability process [35]. Recent computational and experimental studies also demonstrate the
sudden transition from laminar to turbulent motion in pipe flows, where turbulence forms
from localized patches called puffs [36,37]. On the other hand, intermittent behaviour is the
hallmark of turbulent fluid flows. Turbulent chaotic bursts appearing in spatially and temporally
localized events can dramatically change the dynamics of the system [38]. Prototype systems that
mimic these properties were introduced and analysed in [15,39—-41]. Transient dynamics have a
fundamental role in the intermittent behaviour of passive tracers as well, where even elementary
models without positive Lyapunov exponents [42,43] have been able to reproduce intermittent
behaviour observed in complex models. For such systems, the fundamental role of the random
resonance between Fourier modes of the turbulent velocity field and the passive tracer has been
recently illustrated [44].

In the context of uncertainty quantification and prediction a new family of stochastic methods
relying on the so-called Dynamical Orthogonality condition was recently developed to deal
with the strongly transient features of stochastic systems. Dynamically Orthogonal (DO) field
equations [45,46] and dynamically bi-orthogonal (BO) equations [47] evolve a subspace according
to the system stochastic PDE and the current statistical state of the system. Despite their success
in resolving low-dimensional stochastic attractors for PDEs [48-50], these methodologies are
often too expensive to implement for high-dimensional systems (e.g. DO or BO equations
require the simultaneous solution of many PDEs) and have important limitations in systems
characterized by intense energy transfers between modes [51-53]. In addition, in order to obtain
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an accurate description of the time-dependent dynamics, many modes should be included in
the analysis and the computational cost increases very rapidly (especially for systems with
high complexity). These important limitations have been tackled using blended approaches that
combine the time-dependent adaptive modes with appropriate nonlinear closures in a stochastic
framework appropriate for uncertainty quantification [52,54,55] and filtering [53,56] of turbulent
dynamical systems.

Our aim in this work is to develop a method that will generate adaptively a time-dependent
basis that will capture strongly transient phenomena along a given (deterministic) trajectory of
the system. This approach will rely on system observables obtained through either high-fidelity
numerical solvers or measurements, as well as the linearized equations of the system. The core of
our approach is a minimization principle that will seek to minimize the distance between the local
vector field of the system, constrained over the direction of the time-dependent modes, and the
rate of change of the time-dependent modes. A direct minimization of the defined functional will
result in evolution equations for the optimally time-dependent (OTD) basis elements. For systems
characterized by transient responses, these modes will adapt according to the (independently)
computed or measured system history in a continuous way, capturing at each time the transiently
most unstable directions of the system. For sufficiently long times where the system reaches an
equilibrium, we prove that the developed equations provide the most unstable directions of the
system in the asymptotic limit.

We demonstrate the developed approach over a series of applications, including linear and
nonlinear systems. As a first example, we consider the advection—diffusion operator where we
show how the OTD basis captures the directions associated with the non-normal behaviour.
The second example involves the Orr-Sommerfeld /Squire operator that governs the evolution
of infinitesimal disturbances in parallel viscous flows. Our goal here is also the computation of
time-dependent modes that explain the transient growth of energy due to non-normal dynamics.
The third problem involves a low-dimensional dynamical system as well as the nonlinear
transient dynamics of a jet in cross-flow. Using the developed framework, we compute the modes
associated with the transient but also asymptotically unstable directions of the phase space and
we assess their time-dependent stability properties.

2. Optimally time-dependent basis for transient instabilities

Let the dynamical system
Z=F(z,t),

defined on a state space A C R". We denote by St(z9) the position of the trajectory at time f that is
initiated on zg. Also, let

i=L(S;,Hu, with L(zt)=V.F(z,t), 2.1)

denote the linearized dynamical system around the trajectory S; and let the inner product between
two elements z; and zp be denoted as zj - zp. The linear time-dependent dynamical system
represented by the above equation has the solution

u(t) = @} u(to), 2.2)

where <1§fo is the propagator that maps the state of the system at time f( to t. The propagator can
be represented as the ordered product of infinitesimal propagators

L(St; )8t
7

m
@) = lim [ ]e (2.3)

61.‘—)0],:1
where t; lies in tg + (j — 1)8t < ti <to+jot and as 8t — 0, m — oo such that t =ty + mdt. Our aim
is to evolve a basis u;, i=1,...,r, i.e. a set of time-dependent, orthonormal modes, so that

u;(t) optimally follows <1>fouj(t0) for all times. To achieve this goal, we formulate the following
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Figure 1. Illustration of the distance function 7 used to define the time-dependent modes. (Online version in colour.)

quantity, which measures the distance between the action of infinitesimal propagator O on
an orthonormal basis u;(t) and u;(t + §t). We have
1 r
=lim — (t+ 80 — o Mui(D))12, 24
F (Stlin() (8t)2 21: llu(t + 8t) ' u; (1)l (24)
1=

where U(t) = [u1(t), ua(t),. .., u,(t)] is an arbitrary and time-dependent orthonormal basis, i.e. for
every time instant it satisfies the orthonormality condition

ui(t) . u]-(t) = (3,']', l,] = 1, .. T (25)

The above orthonormality condition given by equation (2.5) serves as a constraint on functional
F expressed in equation (2.4). We observe that, in the functional given by equation (2.4),

ui(t + 8t) = u;(t) 4 Sti; + O(8%)

and

D = LT 4 SHL(S, 1) + O(68),

where [ is the identity matrix. Replacing the above equations into the functional given by equation
(2.4) results in
,
‘F(L.ll,b.lz,. . -/1’.[1’): Z

i=1

ou;(t)
ot

2
— L(St, t)ui(t)H . (2.6)

In figure 1, we illustrate the distance function F. For each direction u;, we have, due to the
normalization property ||lu;|| =1, the rate of change #; lying in the orthogonal complement of u;.
Under this constraint, we choose as 1i; the vector that is closest to the image of 1; under the effect
of the operator L.

We emphasize that the minimization of the function (2.6) is considered only with respect to the
time derivative (rate of change) of the basis, U(t), instead of the basis U(t) itself. This is because
we do not want to optimize the subspace that the operator is acting on, but rather find an optimal
set of vectors, U(t), that best approximates the linearized dynamics in the subspace U. We then
solve the resultant equations and compute U(t). We will refer to these modes as the OTD modes,
and the space that these modes span as the OTD subspace.

Note that a direct minimization of the function (2.6), over finite-time intervals, with respect to
the modes U(t), would result in the well-known Euler-Lagrange equations. However, in this case,
the emphasis is put on finding the optimal ‘input’ to the operator L in order for the function (2.6)
to be minimized, while here our aim is different, i.e. we seek to find an optimal set of vectors that
approximate L in the best possible way, when L is acting on U.
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To summarize the above discussion, we are considering the following minimization problem:
For a trajectory S; find U(t) such that F(U) is minimized.

In the reminder of this paper, we will demonstrate that this minimization principle allows us to
capture any arbitrary and transient kind of growth caused by the linear operator, e.g. non-normal
or exponential. In what follows, we obtain a differential formulation for the evolution equations
that correspond to the proposed minimization problem.

(a) Evolution equations for the time-dependent modes

Before we proceed to the minimization of the function given by equation (2.6), we express
the orthonormality constraints for the basic elements in terms of their time derivatives. By
differentiating over time, we have

dui(t) auj(t)

n uj(t) + T ‘ui()=0, i,j=1,...,r 2.7)
The above condition is satisfied if the following condition is valid:
ou;(t)
alt - uj(t) = ij(t), (2.8)

where g;(t) is any arbitrary function for which ¢;; = —¢;;. Clearly, for any choice of ¢;;(t), the
above condition guarantees that if {u;(t)};_; is initially orthonormal, it will remain orthonormal
for all times. As we will see the choice of ¢;; does not change the evolved subspace. However, it
allows for different formulations of the evolution equations. Using the constraint (2.8), we have

the following theorem.

Theorem 2.1. The minimization principle (2.6) defined within the basis elements that satisfy the
constraint (2.8) is equivalent to the set of evolution equations
r

D) _ 151 ey ~ jzzlmst, Duuglt) - ui(8) — g (), k=1,...,7, 29)

where @;j is an arbitrary function for which ¢;; = —gj;.
Proof. We first formulate the minimization problem that also takes into account the appropriate

number of Lagrange multipliers, Aij(t),with i,j=1,...,r. In this way we obtain:

r i 2 T .
G, (LS, ) =Y (mgft) LSy, t)u,(t)) + 3 2400 (8”1“) ) - wij(t)) . e

‘ “ ot
i=1 ij=1

We consider the first derivative with respect to each u;(t) to obtain the set of equations

Gy - duk(t)
oy ot

- LS D 0) + 3 w0 .
=1

To obtain an extremum, we need the right-hand side of the last equation to vanish:

dug()
at

1 T
L(St, Bue(t) = 5 3~ hg(Bni(t), (2.11)
j=1

which should be solved together with condition (2.8). We take the inner product of equation (2.11)
with mode u(t) and obtain
A (t)

3“;:” - up(t) = L(St, tyu(t) - () — - = ().

Using the last equation and substituting A (t) in (2.11) will result in the evolution equations (2.9).
This completes the proof. |
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In a more compact form, the evolution equation for a finite-dimensional operator L € R"*" can
be obtained, where we express the OTD subspace in a matrix U € R**" whose ith column is u;.

The function g;; is correspondingly expressed in the matrix notation as @ € R with @ = {g;;}; =1
Thus, the evolution equation for the OTD modes can be expressed as:

ou

S =Lu- UUTLU — @), (2.12)

where ()T denotes the transpose of a matrix.
Now we define the reduced operator L(t) € R"™" that is obtained by projecting the original
operator onto the subspace U(t). Thus,

L.=U"LU. (2.13)
Therefore, the OTD equation could be equivalently expressed as:
ol
5 =LU UL~ ). (2.14)

In what follows, we will need the definition of equivalence between two subspaces.

Definition 2.1. The two OTD subspaces U € R"™*" and W € R"*" are equivalent at time t if there
exists a transformation matrix R € R™" such that U(t) = W(#)R, where R is an orthogonal rotation
matrix, i.e. RTR =1.

In the following we show that the evolution of two OTD subspaces U(f) € R**" and W(t) € R
under different choice of @(f), which are initially equivalent (at t = 0), will remain equivalent for
every time t > 0, i.e. U(t) = W(f)R(t), where R(t) € R"™*" is an orthogonal rotation matrix governed
by the matrix differential equation:

dr _ R®y — &R
dr (2.15)
and R(0) =Ry,

with @17 € R™" and @y € R™" being the two different choices of @ for the evolution of U and W,
respectively, while Rg is the initial orthogonal rotation matrix, i.e. U(0) = V(0)Ro. We first prove
the following lemma.

Lemma 2.1. The solution R(t) to the matrix differential equation given by equation (2.15) remains
an orthogonal rotation matrix for every time t > 0 given that the initial condition R(0) is an orthogonal
rotation, i.e. R(0)'R(0) =1, and ®y; and dyy are skew-symmetric matrices.

Proof. We show that d(RTR)/dt =0 for every t > 0:

WD kiR TR
= (Roy — @WR)'R + RT(RPy — PwR)
=—®yR"R + RT®wR + R"Roy; — RToR
=RTRo; — oyRTR.
Clearly RTR =T is a fixed point for the above equation. |

Next, we prove that, for a given dynamical system, the OTD subspaces that are initially
equivalent remain equivalent for all times.

Theorem 2.2. Suppose that U(t) € R™*" and W(t) € R"*" satisfy the evolution equation (2.12) with
different choices of @ (t) functions denoted by ®y(t) € R™" and @y (t) € R™", respectively. We also assume
that the two bases are initially equivalent, i.e. U(0) = W(0)Ro, where Ry € R™" is an orthogonal rotation
matrix. Then the subspaces U(t) and W(t) are equivalent for t > 0, with a rotation matrix R(t) e R™"
governed by the matrix differential equation (2.15).
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Proof. We plug U(t) = W(t)R(t) into the OTD equation for U(t):
WR + WR = LWR — WR(RTWTLWR — &y)).
Multiplying both sides from the right with RT and using the identity RRT =1, results in:
W =LW — WWT'LW — RoyR" + RR").
Now we substitute R from equation (2.15) into the above equation to obtain:
W=LW— WWTLW — &y),
which is the evolution equation for the OTD basis W(t). This completes the proof. |

Theorem 2.2 implies that the difference between the two bases will evolve along directions
already contained in the initially common subspace. To this end, both bases will continue to span
the same subspace and the variation between the two is only an internal rotation. Therefore, the
two families of equations will result in the same time-dependent subspace. There are multiple
choices for the function ¢;; and we now examine a special one.

(i) The dynamically orthogonal formulation

The simplest choice for the function ¢ in (2.8) is @i =0 for all 7, j. The resultant evolution equations

in this case will have the form U
d

T QLU, (2.16)
where Q:=1— UU" is the orthogonal projection operator onto the subspace U. Note that %ii=0
corresponds to the DO condition [45,48] that has been employed to derive closed equations for
the solution of stochastic PDEs. In this case, uncertainty is resolved only along specific modes
that evolve with time by projecting the original equation of the system over these directions. The
evolution of these modes (stochastic subspace) is done according to equations derived using the
DO condition and they have the general form of system (2.16). The equivalence of system (2.16)
with the minimization problem (2.6) provides a clear interpretation for the evolution of the DO
modes.

(b) Steady linearized dynamics

Here, we consider the special case where L is a time-independent operator. We prove that the basis
defined through the introduced minimization principle will asymptotically span the eigenvectors
of L associated with the most intense instabilities (i.e. eigenvalues with largest real part). In particular,
we have the following theorem.

Theorem 2.3. Let L € R"™" be a steady and diagonalizable operator that represents the linearization of
an autonomous dynamical system. Then

(i) Equation (2.16) has () =n!/(n — r)'r! equilibrium states that consist of all the r-dimensional
subspaces in the span of r distinct eigenvectors of L.

(if) From all the equilibrium states, there is only one that is a stable solution for equation (2.16). This
is given by the subspace spanned by the eigenvectors of L associated with the r eigenvalues having

the largest real part.

Proof. Let L& = @ A, where @ is the matrix of eigenvectors of the operator L with the column
of @ € R being the eigenvectors: @ = {¢1|¢2] - - - |¢n}, and A € R"*" is the diagonal eigenvalue
matrix whose entries are: A =diag(iq,22,...,An).

(i) First, we show that a subspace Uy that is in the span of precisely r eigenvectors of
the operator L is an equilibrium state for equation (2.16). Without loss of generality, we
consider the first r eigenvectors to span such a space, i.e. Ug € @, = span{¢1|¢z| - - - |¢;} associated
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with A, =diag(X1,12,...,Ar), and therefore Uy can be expressed in eigenvector coordinates
as: Uy = ®kp where kg € R is the projection coefficient. Therefore, LUy = L®rkg = PrArkg €
span{¢1|¢2| - - - |¢r}. As a result, LUy is in the null space of the orthogonal projector Q, and thus
QLU =0. This result is independent of the choice of eigenvectors. To this end, we note that,
for an operator L with distinct eigenvalues, there exists a number of (Z) =n!/(n —r)!r! of such
equilibrium states.

(ii) Next, we show that, from all the equilibrium states Uy, the subspace that is spanned
by the eigenvectors associated with the largest eigenvalues is the only stable equilibrium.
First, we investigate the stability of Upe ®,. We denote the complement of the space @,
with @, =span{¢,,1|¢ri2]-- - |¢pn} associated with the corresponding eigenvalues of A, =
diag(Ar+1, Ar42, ..., An). We consider a perturbation U' € R™*" that belongs to the orthogonal
complement of Uy, i.e. U’ € Ug,

Ui)=U+el'(t), Ut L U.
We note that the orthonormality condition for U(t), i.e. Ut)TU(t) =1, is satisfied for € < 1,
U TU(®) = (Uo + eU'(4)T(Up + ell' (1)
=UUp + e(UIU'(H) + U'(t) Up) + 2U'(HTU'(£)
=1+ U HTU (1)
~], fore<kl1.

In the above equation, we use the orthonormality condition of U’ L Uy that implies: UOT u) =
()T Uy = 0. Moreover, since Ug U'(t) = 0, we immediately obtain:

au' ()
T
u0

=0 t>0, 2.17
at - ( )
which requires the evolution of the perturbation, i.e. dU'()/dt, to remain orthogonal to Uy for all
times. Now, linearizing the evolution equation stated in equation (2.16) around the equilibrium
state U yields

aur
= QLU — UpU' LUy — U'UJ LU.

In the above equation, the term UTLUy =0, since LUy e span{¢1|¢2| - --|¢} and U’ L Up.
Therefore, the evolution equation for the perturbation equation becomes

ot 4 1171
el QLU — U'UyLUp. (2.18)
Next, we transform the evolution equation (2.18) into the eigenvector coordinates. The
perturbation U’ can be expressed in eigenvector coordinates as: U’ = ®«’, where «’ € R"™*.
Replacing Uy = @,k and U’ = &«’ into equation (2.18) results in

dr’

@qy = QP A — ik D1 Dy Ark. (219)

Having assumed that L is non-deficient, we multiply both sides of equation (2.19) by #~1,

d«’
== Ak — ki) &} &y Arico

=TT Ak — K/Ko_lArKo, (2.20)

where we introduced IT=®"'Q® and used the orthonormality condition of Ug Uy =
Kk @] @yicg = I. We then multiply both sides by «,* to obtain
dp’

T A — o' Ay, (2.21)
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where p’ =«’ky ! The perturbation p’ can be decomposed as

!
o= ("f ) , (2.22)
Pr,

where p; € R"™" and pj. € R’ with r + 1° = n. The matrix IT can be written as

0 =lyxn — & &l @f @

=Iuxn — @~ @il @1 (@, D). (2.23)
In the above equation, we note that
145 _ Irxr
TP, = (2.24)
0/'[><r

Kng¢;r(<pr Dpe) = (Kng¢;r¢rK0KO_1 Kokgq?,T(Drc)
= (Irxr @rxn-)- (2.25)

In the last equation, we used the orthonormality condition of Ug Uy= /c(;r q),T Dg=1 and
introduced ® = kg KOT CbrT ®@,<. Replacing equations (2.24) and (2.25) into equation (2.23) results in

Orxr  Orxr,
e ). 2.26
<Orr><r Ircxrc> ( )

By replacing equation (2.26) into equation (2.21), the evolution equation becomes

d e\ _(0 OAc\[p) _[rrAr 2.27)
dt \ ey, 0 A [ \py or Ar

The evolution equation for the perturbation must satisfy the orthogonality constraint aU'(t)/dt L
Up expressed by equation (2.17). The orthogonality constraint requires that

oy

05 = Ug (QLU' — U'ulLup) =0.

Since Uy € R™", the above orthogonality condition, in fact, imposes r constraints on the evolution
of perturbation p'(t). In the following, we simplify these constraints. In the above equation

U QLU — WUl LUp) =« f @ (@M 10 Ak’ — Dk’ ] & @, Ark)

= K§¢;¢(HAK/ — K/KalArKO)K(;lK()
= kg @ DT AP — p' Arig
_ T T / ’
=Ky D, (QD, dirc) (ITAp" — p' Ay
=" (Inxr @rer) (T AP = 0/ A0)k0,

Therefore, the orthogonality constraint aU’(t)/dt L Uy is equivalent to

(TIrscr @rxrf)(HAlO/ —p'A)=0. (2.28)

It follows that

re LT

0 OA« ’ TA
(Irxr @rxrc> (O ij) (:;7) — (Irxr @rxrc> (5{ Ar) =0, (2.29)
Te

or, equivalently,

O Ar.p;, — ppAr = O(p; Ay — Ar.py). (2.30)
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Using the orthogonality constraint given by equation (2.30) and using equation (2.27), the
evolution equation for p;(t) becomes

dp;
dt
The above equation shows that the evolution of p;(f) can be expressed solely based on the

evolution of p; (f). Thus, the stability of the solution only depends on the stability of p;c. The
evolution of p;_in the index notation is given by

= @(p;L.Ar - Arcp;c)~ (2.31)

/
Pij _
dt
Therefore, the asymptotic stability of p’ requires that

(Ai—kj)p{j, i=r+1,r+2,...,n, andj=12,...,1. (2.32)

real(;) < real(kj), fori=r+1,r+2,...,n, and j=12,...,r (2.33)

The inequality (2.33) shows that the subspace @, with eigenvalues having the largest real part is
the only stable solution to equation (2.16). This completes the proof. |

(c) Time-dependent linearized dynamics

Consider the evolution of an arbitrary (not orthonormal) subspace V(t) € R"*" under the time-
dependent linearized dynamics which is governed by

W _Lov
ot (2.34)
and V()= Vo,

and consider the corresponding OTD evolution

ou

9% _ LU — UL,

oF ) ) (2.35)
and U(0) = Up.

We choose the initial state of the OTD basis such that Uy and V( span the same subspace. In
the following theorem, we show that the OTD modes exactly span the subspace V(t). More
specifically, we show that the two subspaces U(t) and V(t) are related via a time-dependent
transformation matrix.

Theorem 2.4. Let V(t) € R"*" be the subspace evolved under the time-dependent linearized dynamics,
equation (2.34), and U(t) € R"*" be the OTD basis evolved with equation (2.35). Then, assuming that
initially the two subspaces are equivalent, i.e. there is a matrix Tqy such that Vo= UgTy, there exists a
linear transformation T(t) such that V(t) = U(t)T(t), where T(t) is the solution of the matrix differential
equation

T
T L(t)T(t) (2.36)
and T(0) = To.

Proof. We substitute the transformation V(t) = U(f)T(f) into the evolution equation for V(t),
UT + UT =LUT.
Substituting T from equation (2.36) after rearrangement results in
UT = LUT — UL,T.
Multiplying both sides of the above equation by T~! from the right results in
U=LU- UL,
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which is the OTD equation for U(t). The initial condition is also U(0) = Up. This completes the
proof. |

For dynamical systems with persistent instabilities, the evolution under the time-dependent
linearized equation (2.34) is unstable, and V(t) grows rapidly. Even for stable dynamical systems,
as we move away from f =0, almost any vector approaches the least stable direction. However,
the evolution of the OTD modes, due to their built-in orthonormality, is always stable, and, as
we will demonstrate in our results, the OTD evolution leads to a well-conditioned numerical
algorithm that peels off the most unstable directions of the dynamics.

(d) Mode ranking within the subspace

Having derived the subspace that corresponds to the most unstable directions, the next step is
to rank these directions internally, i.e. within the subspace. As we describe below, there are two
ways to rank the OTD basis based on the growth rate. Both of these approaches amount to an
internal rotation within the OTD subspace.

(1) The instantaneous growth rate oy(t) [19,57] is obtained by computing the eigenvalues of the
symmetric part of L,, i.e LY = (L, + LI) /2,

L7R® =R’ %, (2.37)

where ¥ = diag(o1(t), o2(t), . . ., 04(t)), and R? () € R"™*" is the matrix of eigenvectors. We rank these
values from the least stable to the most stable directions, i.e.

a1(t) = oa(t) - - - = oy(t).

We note that omax(t) = 01(t) is the numerical abscissa of the operator L,. Therefore, omax(t) represents
the maximum instantaneous growth rate within the OTD subspace.
(2) The instantaneous eigenvectors of the reduced operator can also be obtained through the
equation
L.R*=R"A,, (2.38)

where the eigendirections are represented by R*(t) € C™". The instantaneous eigenvalues are
denoted by A,(t) = diag(r1(t), A2(t), ..., A.(t)), where A; are ranked from the eigenvalue with the
largest real part A1(f) to the eigenvalue with the smallest real part A,(f).

Based on the above two rankings, we define the rotated OTD basis as

ure(t) = U(H)RM (1), (2.39)

where UM (f) € C"*" is the ranked representation of the OTD modes defining the space U, and
R*° is the rotation matrix obtained from either of the two described strategies for mode ranking
(equation (2.37) or equation (2.38)). For a non-Hermitian operator L, the ranking based on the
instantaneous eigenvectors R*(t) results in modes U*°, which may not be mutually orthogonal.
For this case, the orthogonal representation of the least stable directions can be obtained by
performing a Gram—-Schmidt orthonormalization.

3. Linear dynamics

Linear dynamics, and in particular non-normal behaviour, has a critical role in determining the
short-time fate of a disturbance in both linear and nonlinear dynamical systems. To study the
evolution of an initial condition under the effect of linear or linearized dynamics, a reduction
in eigenfunction coordinates is often used. However for highly non-normal operators, a large
number of eigenfunctions are required to correctly capture the non-normal behaviour, since the
eigenfunctions are far from orthogonal and, in fact, they constitute a highly ill-conditioned basis.
In what follows we demonstrate the computational efficiency of the OTD modes in capturing
non-normal behaviour and contrast the OTD basis with the eigenfunction basis for linear systems.
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(a) Advection—diffusion operator

As the first case, we consider the advection—-diffusion operator which has a wide range of
applications in fluid mechanics, financial mathematics and many other fields. Particularly, we
are interested to study the effect of non-normality on the reduced operator, in both the short-time
and the long-term asymptotic behaviour. The operator with zero boundary condition is given by

92u ou
Lu)=v—s —, 0,1
W=vaa T *elodl 3.1)
and u(0,t)=0, u(l,t)=0,

where v is the diffusion coefficient and c is the advection speed. The evolution equation for the
OTD basis is expressed by

au; .
= L(u;) — ), Ui)Uj =1,...
o = L) = (L), wpyuy, 0,j,=1,...1 52
and u;(0,6)=0, wu;i(1,t)=0,

where the inner product and the induced norm are

1
(u,v) :=J u(@v(x)dx, ull = (u,u)'/?.
0

To solve the evolution equation, we use Chebyshev collocation discretization implemented in
CHEBFUN [58]. The OTD basis is initialized with orthonormalized modes

sin(nmrx)

uy(x,0) n=12,...,r,

for all the cases considered in this section.

In the case of a nearly normal operator, i.e. large v, an optimal basis must be close to the
dominant eigenfunctions for all times. On the other hand, for a set of parameters that corresponds
to a non-normal operator, an optimal basis should differ from the eigenfunctions for short-time
dynamics, and only for ¢ >> 1 should it converge to the operator eigenfunctions. In the remainder
of this section, we demonstrate that the OTD subspace captures short- and long-time dynamics
for both normal and non-normal operators.

To analyse the behaviour of the OTD basis, we choose r =4. The instantaneous eigenvalues
of the reduced operator, real(i;(t)), for v =0.2 are shown with coloured solid lines in figure 2a.
The real part of the least stable eigenvalues of the operator L are shown with the dashed lines.
It is clear that the instantaneous eigenvalues quickly approach the least stable eigenvalues of L.
In figure 3a, the first two elements of the OTD basis, internally rotated in the eigendirection, ¢;
and ¢p, are shown at t =0.2 and t =4.0. These are superimposed with the two most unstable
eigenfunctions of the operator. At t =0.2 the modes are very close to the eigenfunctions of L, and
at t =4.0 the modes have essentially converged to the eigenfunctions. This demonstrates that,
due to the strongly normal behaviour of the operator at v =0.2, the eigenfunctions explain the
dynamics accurately for both short time and long time, and the OTD basis quickly converges to
the space spanned by the eigenfunctions.

At v =0.02, however, the instantaneous eigenvalues converge with a much slower rate and
much later, i.e. f > 3, to the operator eigenvalues, as shown in figure 2b. Accordingly, as can be
seen in figure 3b, the OTD basis elements are different from the eigenfunctions of L at t=0.2,
and it is only later that the basis approaches the eigenfunctions. Another important observation
is related to the advection direction of the OTD basis, which is left-ward. For instance at t =0.2,
the basis has advected an approximate distance of Ax =cAt =0.2 to the left. As a result, the OTD
basis has a strong presence in the region 0 < x < 0.8. This is not the case for the eigenfunctions of
L, which are primarily concentrated near x = 0.
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Figure 2. Instantaneous eigenvalues of the reduced operator with r = 4 for ¢ = 1. The dashed lines show the eigenvalues of
L with the largest real part. (a) v = 0.2; (b) v = 0.02. (Online version in colour.)
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Figure3. OTD basis forr = 4and ¢ = 1. The circles show the first two dominant eigenfunctions of L. The solid and dashed lines
show the first and second OTD modes, i.e. u% (x,t)and ug\ (x,1): (@) v =10.2; (b) v = 0.02. (Online version in colour.)

(b) Orr—Sommerfeld/Squire operator

As the second case, we consider the Orr—Sommerfeld /Squire (OS/SQ) equation that governs the
evolution of infinitesimal disturbances in parallel viscous flows. The eigenvalues of the OS/SQ
operator are highly sensitive to perturbations, and its eigenfunctions are linearly dependent,
resulting in a highly ill-conditioned linear dynamical system. To this end, the OS/SQ equation
is considered only for demonstration purposes, i.e. to illustrate that the OTD modes capture
correctly the short-time evolution of the infinitesimal disturbances, as well as their asymptotic
(long-term) behaviour.

We consider the plane Poiseuille flow in which the base-flow velocity is unidirectional and is
given by u(x,y,z) = U(y)ey, with U(y) = 1 — y?. The disturbance is taken to be

V' (x,y,2,1) = v(y, t) exp(iax + ipz),

!
v = (v/) and v= (v) ,
n n

where v" and 5’ are the wall-normal velocity and the vorticity, respectively, and « and g denote
the streamwise and spanwise wavenumbers, respectively.

with
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The Orr—Sommerfeld equation in velocity—vorticity formulation is given by

ov
— =Ly, 3.3
aF = LV (3.3)
with boundary conditions
v=Dv=n=0 at y==I, (3.4)
where L is a linear operator
Los 0
L= , 3.5
(LC LSQ) 65

with
1
Los = (D* — k»)~! [E(DZ —K®*)? + ieD?U — iaU(D? — k2)] ,
Lc =—-ipDU,
1
Lsq = E(DZ — k%) —iaDU,

and k= /a2 + B2 is the modulus of the wavevector and D = 9/9y. For the complete derivation of
the OS/SQ equations, we refer to [59].

For the choice of the inner product, we use the energy measure, which provides a physically
motivated norm that arises naturally from the OS/SQ equation [20]. The inner product is given
by

1 1
(V1,V2)E := ol J : viiMv, dy, (3.6)

M= ("2 ‘07’2 ‘1’> (37)

and () denotes the complex conjugate. In the following, we consider a discrete representation of
the operator L € C"*"". Assuming a solution of the form

where

v=¢expAit,
the initial value problem (3.3) transforms to an eigenvalue problem of the form
Lo =dA,

where A =diag(A1,A2,...,Ay) and @ ={¢1|¢2|--- ¢y} are, respectively, the matrices of the
eigenvalues and the eigenvectors of L.

Orszag [60] showed that, for Re < Re. 2~ 5772.22, all eigenvalues of the operator L have negative
real parts and therefore any perturbation is asymptotically stable. However, even for Re < Re,, the
energy of a perturbation may experience significant transient growth. This is a direct consequence
of the non-normality of L. In this section, we look at the evolution of the OTD modes for the
OS/SQ operator. In particular, we consider a three-dimensional perturbation witho =1and g =1
at Re = 5000, which corresponds to an asymptotically stable operator.

Since the dynamical system is linear, the linear tangent operator and L are identical. Thus, the
evolution equation for the OTD modes U = {uy, uy, ..., u;} becomes

3111‘ v ..
ﬁ =Lu1' — (Lui,u]-)Eu]', u; = (771‘) , l,]=1,2,...,1’, (3.8)
with the boundary conditions
vi=Dvij=n;=0 at y==£1,i=12,...,r (3.9)

For space we use Chebyshev collocation discretization with 256 points, while for time
advancement we use the first-order implicit Euler method.
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(i) Initial condition

We initialize the OTD subspace such that its span encompasses the optimal initial condition: an
initial condition v° that reaches the maximum possible amplification at a given time ¢ = fmax. The
optimal initial condition can be formulated as [20]

1v(tmax) I

Gtmax) = max-————-E = || exp(Atmax)|- (3.10)
Vo0 |[vollg

The value of || exp(AtmaX)ll‘% is equal to the principal singular value s of the propagator (bi‘;‘“x =
exp(Ltmax). It follows that

@™V =VS, (3.11)

where V(tmax) = {Vi(tmax), - - -, Vi (tmax)} are the right singular eigenvectors and Vo = {vy,, v, ...,
vy, } are the left singular eigenvectors, and S = diag{s1, s, . . ., 5} consists of singular values of the
operator <P§(‘]“‘“. In the above expression, v;(tmax) corresponds to the state of the solution at f = fyax
with the corresponding initial condition of v; . The initial state of the subspace of size r is chosen
to be

u,=v;, i=1,...,7

The admissible initial conditions for the OTD modes must satisfy (i) the orthonormality constraint
and (ii) the boundary conditions at the walls given by equation (3.9). It is straightforward to
show that the above choice is compatible with these criteria. We also note that, short of these
criteria, the choice of initial conditions for the OTD subspace is arbitrary. Certainly, the choice of
optimal initial condition is of high practical importance, to which significant attention is paid
in the literature. We refer readers to [20] and references therein. Moreover, due to the non-
normality of the operator, the optimal initial condition requires a large number of eigenmodes
for accurate representation, resulting in a relatively high-dimensional system in eigenmode
coordinates compared with the OTD modes.

(ii) Transformation matrix

We obtain a time-dependent reduction of the OS/SQ operator by projecting L onto the OTD
subspace using the energy inner product

LT’I'] (t) = <ui/ L(“j))E/ 1/] = 1/ el (312)

where L,(t) € C"™" is the reduced OS/SQ operator. The reduced operator is then used to evolve the
transformation matrix T(t) € C"™" according to equation (2.36). Using the same initial condition V
for both OTD modes and OS/SQ results in Tg being the identity matrix, i.e. To = I. In the following
section, we compare the evolution of V( under the full OS/SQ operator with the evolution of V
using the transformation relation V(t) = U(t)T(t).

(iii) Asymptotically stable subspace

We consider the evolution of the OTD subspace with ¥=2 and r=3 for three-dimensional
perturbations at Re =5000 and streamwise and spanwise wavenumbers of « =1 and g =1. At
this Reynolds number, all perturbations are asymptotically stable, while some perturbations
experience significant non-normal growth in the short-time regime. In figure 4, the norm of
the solution operator, ||eLt||%, is shown. As can be seen, the energy of some initial conditions
is amplified by a factor of over 100. The maximum energy growth can be achieved at tmax =
25.06 for the optimal initial condition. The optimal initial condition is obtained from equation
(3.11). We initialize the two OTD modes with the first two elements of the right singular
eigenvectors V.

Now, we first compare the evolution of the initial subspace with r=2 using the reduced
operator with that of the full OS/SQ operator for the choice of initial condition explained in §3b(i).
In figure 4, we compare the energy of vi(t) and v,(t) obtained from (i) evolution of the OTD and
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Figure 4. Transient energy growth, G(t) = ||v|%, for plane Poiseuille flow at Re = 5000 with o =1and B = 1. The solid
lines (blue and red) show the energy growth of two different initial perturbations computed with the reduced operator with
r = 2.The circles show the exact energy growth computed with the 05/5Q operator. (Online version in colour.)

using the transformation matrix T(f) to obtain v;(t) = u;(t)Tji(t), i,j=1,...,r, and (ii) by solving
the full OS/SQ operator, i.e. v;(t) = d)f]vio = eLtvl-O‘ In both cases, excellent agreement in both short-
time and long-time evolution is observed. This demonstrates that the OTD modes correctly follow
the evolution of a class of initial conditions according to theorem 2.4. Given that, at Re = 5000, the
0OS/SQ operator is highly non-normal, a large number of eigenmodes are required to correctly
follow the evolution of an initial condition. However, the OTD modes do not require additional
modes beyond the dimension of the initial subspace.

In figure 5, the instantaneous eigenvalues for r =2 along with numerical abscissa for r=2
and r=23 are shown. The black dashed lines show the real parts of the eigenvalues of the
OS/SQ operator. The eigenvalues shown are the four most unstable ones of the OS/SQ operator.
The significant non-normal energy growth manifests itself with positive real eigenvalues and
instantaneous growth rates in finite time, despite all eigenvalues of OS/SQ having negative real
parts. The instantaneous eigenvalues for the case with r =2 converge to the first two least stable
eigenvalues of the OS/SQ operator in accordance with theorem 2.3. For r =2, the largest real
instantaneous eigenvalue and the numerical abscissa omax are nearly identical. This shows that
uy(t) is nearly aligned with the direction of maximum growth for all times.

Now we explore some aspects of increasing the dimension of OTD from r =2 to r = 3. For the
sake of brevity, let us denote the quantities for the case r =3 with the superscript (). The initial
condition of the cases with r =2 and r =3 are Vo = {vy,, vo,} and V6 = {v1,, V2,, V3,}, respectively.
Clearly, Vo C V{, and consequently V() C V'(t) for all times. From the transformation between
U(t) and V(t), we can deduce that the embedding of the initial condition is preserved for the OTD
subspaces as well, i.e. U(t) C U'(¢) for all times. Therefore, it is to be expected that the maximum
growth rate in the case of r = 3 must always be larger than (or equal to) the corresponding value in
the case of ¥ = 2. In other words, omax(f) < omax(t) for all times. This observation is confirmed by
comparing the numerical abscissa for ¥ =2 and r = 3 as shown in figure 5. The abrupt changes in
the values of numerical abscissa are the result of eigenvalue crossing in the symmetric part of the
reduced operator L;, where the direction of maximum growth switches from one eigendirection
to the other.

Figure 6 shows the OTD modes for the case of r =2 at three time instants of their evolution
at the streamwise plane x = m: (i) the initial state ¢ =0, (ii) maximum energy t = tmay, and (iii) at
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Figure 5. Plane Poiseuille flow at Re = 5000, « =1and S = 1: instantaneous real eigenvalues with r =2 (blue lines);
numerical abscissa with r = 2 (grey lines); numerical abscissa with r = 3 (red); the real part of the first four least stable
eigenvalues of the 05/5Q operator (dashed lines). (Online version in colour.)
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Figure 6. (a—f) Snapshots of the OTD modes with r = 2at Re = 5000 and o = Tand 8 = Tin the streamwise plane x = 7
The contour shows the vertical velocity. (Online version in colour.)
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large time t = 300. The initial state is marked by flow patterns that oppose the base shear. As time
evolves from t =0 to t < tmax, the OTD modes tilt into the mean shear flow, resulting in significant
growth rates for the subspace. At t =300, the modes eventually approach the two most unstable
eigenmodes of the OS/SQ operator. This demonstrates that the time-dependent modes capture
characteristically different regimes in the evolution of the subspace.

4. Nonlinear dynamics

Here, we consider two nonlinear systems for which we compute the OTD modes. The first system
is a low-dimensional dynamical system, while the second one is a more complex application
involving an unstable flow with strongly transient characteristics.

(a) Low-dimensional dynamical system

We design a low-dimensional dynamical system in order to demonstrate transient growth over
different directions and how these can be captured by the developed approach. In particular, we
consider the following system:

d
&1 =—a1z1 + €zp + bz, 4.1)
dt
d
g = 6_121 — anzy (4.2)
d 1

and by [ ——— -1, (4.3)

dt Ja+z

where we take a; =ap =2, € =0.05 and b =20. For these parameters, the dynamical system has
an almost periodic behaviour, where each cycle exhibits four distinct regimes: (1) a non-normal
growth in the z; —zp plane, (2) exponential decay in the z; —z> plane to the origin, (3) an
exponential growth in the z3 direction, and (4) an exponential decay in the z3 direction. In
figure 7a, we present the trajectory of the dynamical system coloured according to the variable
z3 in the three-dimensional phase space. The four regimes as described above can be observed.
We also present the projection of the vector field in the zz =0 plane, where the non-normal
structure can be seen as well. On the other hand, the singularity at z‘;' + z% =0 induces a severe
exponential growth when the state approaches this region. This configuration allows for the
repeated occurrence of non-normal and exponential instabilities.

We note that, due to the exponential instability close to the origin, the system undergoes
chaotic transitions between positive and negative values of z3. In figure 7b, we present a single
cycle together with a single OTD mode (orange vector) shown for different time instants, while the
time series for the state variables for one cycle is shown in figure 7c. The instantaneous growth rate
o corresponding to the computed OTD mode is shown in figure 7d. We can clearly observe that
the OTD mode initially captures the severe exponential growth and subsequently captures the
non-normal growth. On the other hand, the eigenvalues of the full linearized operator can only
capture the exponential growth, even in regimes where it is not relevant, while they completely
miss the non-normal growth.

(b) Vertical jetin cross-flow

The jet in cross-flow is an important problem in fluid mechanics with a wide range of applications
from film cooling of gas turbines to pollutant dispersal from chimneys. The interplay of the jet
and cross-flow creates coupled vortical structures whose interactions are highly unsteady and
three dimensional, often leading to turbulence and resulting in a high-dimensional dynamical
system [61]. The stability of the jet in cross-flow has been recently studied in [62], where an
unstable base flow is computed by forcing the Navier-Stokes equation to an unstable steady

6L105102 2L ¥ 705y 201 BioBusiqndiraposieforredsy


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on February 10, 2016

(a) (b) //

non-normal
rowth ¢
g e

@9y @ ————————s
—Z
15 ¢ ! 100 | exponential _
growth
10 -
b4 50 | 1
- / non-normal growth
0 0
B 5 ® 50 5 O & Q IR i~
57 o o? %“ o7 PT DT A" A7 0P AT AT AT AT T D
t t

Figure7. (a) Atrajectory of the considered dynamical system coloured according to the state variable z3. The non-normal vector
field for zz = Oiis also shown. (b) A single cycle of the trajectory is shown together with a single 0TD mode. (c) The time series
forzi(t), i =1,2,3. (d) The three eigenvalues of the linearized operator are plotted with blue dashed curves, while the growth
rate of the single OTD mode is shown with orange colour. (Online version in colour.)

solution using the selective frequency damping method [63]. The Navier-Stokes equation is
then linearized around the base flow, and the global eigenmodes of the linearized Navier-Stokes
equation are then computed.

In this section, we compute the OTD modes for the vertical jet in cross-flow in a weakly
turbulent regime. In particular, we follow the short- and long-time evolution of the OTD subspace
with the time-dependent base flow, which is obtained by performing Direct Numerical Simulation
(DNS) of the incompressible Navier-Stokes equation.

(i) Problem specification

The problem set-up is analogous to several recent studies in the literature [62,64]. A two-
dimensional schematic of a vertical jet in cross-flow is shown in figure 8, where a vertical jet
is issued into the cross-flow. The characteristic length is the displacement thickness of the cross-
flow boundary layer. The origin of the coordinate system is placed at the centre of the jet exit with
the jet diameter D = 38*. The computational domain spans from x = —9.3756* to x =556 in the
streamwise direction, from y =0 to y = 508" in the wall-normal direction and from z = —156* to
z=158" in the spanwise direction.

At the cross-flow inlet, the Blasius boundary layer profile with the displacement thickness of
5* and free-stream velocity of Uy is specified. The jet velocity profile is given by

e =R = Pesp (= (7)) (44
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Figure 8. Schematic of the vertical jet in cross-flow in the x—y plane. A snapshot of the base flow is visualized by the volume
rendering of the scalar field. (Online version in colour.)

where r is the normalized distance from the centre of the jet,

r=2vx2+22/D,

and R = V;/Ux is the ratio of the peak jet velocity to the cross-flow velocity. The Reynolds number,
based on the cross-flow velocity Uy, and the displacement thickness, is given by Reso = Usc8™ /v,
while the jet Reynolds number is given by Re;=V;D/v. We use a velocity ratio R=3, and a
Reynolds number Reo, =100 or equivalently Rej =900. At the top boundary, the free-stream
velocity Up = {Ux, 0,0} is imposed. In the spanwise direction, periodic boundary conditions are
used. At the outflow boundary, a zero-normal gradient is enforced for velocity components.

(ii) Optimally time-dependent equations for Navier—Stokes

To compute the time-dependent base flow, denoted by Uy, := Uy (x, t), we solve the incompressible
Navier—Stokes equation given by

— Uy - VU, =-V — VU 4.5
m + Uy - V)Up Po+ 2.V Ub 4.5)

and

V.Up=0, (4.6)

along with the boundary conditions described in this section. The evolution equation for the
modes is given by

3111'

——_r ) —(u;, L M

PY: Ns(u;) <u] NS(u1)>u] @7
and V-u;=0,

where £y is the linearized Navier-Stokes operator, given by
L2
Lxs() = —(Up - V)u; — (u; - V)Up + o-V7u; — Vp;.
A zero boundary condition for u;, i=1,...,r is enforced at the inflow, wall, jet exit and the top

boundaries. Periodic boundary conditions are used in the spanwise direction and at the outflow,
while zero-normal gradient is imposed on velocity components. In the above evolution equation,
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Figure 9. Instantaneous real eigenvalues and the numerical abscissa of the reduced operator (using the OTD modes), for the
jetin cross-flow at Re; = 900. (Online version in colour.)

the choice of the inner product is the second L, norm in the complex space
(u,v) =J UxVx + UyVy + UzVz, (4.8)
2

where u = (uy, uy, uz) and v = (vy, vy, v7) are the velocity vector fields. The reduced linear operator
is therefore obtained from

Lr,-j(t) = (u;, £Ns(uj))/ lr] =1,...,r (49)

(iii) Initial conditions

The initial condition for the modes is obtained by an orthonormalized space spanned by {u;(x)}_,
with u;(x) = (3v,;/3y, —dv;/9x,0), where the two-dimensional streamfunctions ; are chosen as

Vi(x, y) = sin(2r fy,x) sin(27fy, ) 1(y), (4.10)

where fy; and fy, are the wavenumbers and Z(y) is a smooth indicator function, localizing the
modes in the main body of the jet, i.e. between ys = 1.0 and y. = 6.0. More specifically, the indicator

function is given by
I(y) = tanth <(~1’;7y5)> ~ tanh ((y;iye)) , 4.11)

with § = 0.5. For the calculations that follow, we choose a four-dimensional OTD basis, i.e. ¥ =4.

(iv) Visualization

For the visualization of the base flow, we solve a passive scalar field # that is governed by the
advection—diffusion equation given by

a0 1 _,
— 4+ (Up - V)§ = ——V~9,
3t+( b-V) ReSc

where Sc is the Schmidt number and is chosen to be Sc =1. The passive scalar is set to be § =1
at the cross-flow inlet, § =0 at the jet inlet, periodic condition at spanwise boundaries and zero
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Figure 10. Initial evolution of the first mode and the trajectory of the Navier—Stokes equations, starting from t = 0.4 with the
time advancement of At = 0.4 time units. The mode is visualized by the iso-surface of the velocity magnitude equal to 0.03.
The time-dependent base flow (DNS) is visualized by smoke volume rendering of a scalar field. (Online version in colour.)

Neumann condition on all other boundaries. As such the jet body region is roughly determined
by

jet body = {x, such that 0 < 6(x, ) < 1}.
Moreover, by volume rendering only selected levels of 6, the shear layer and vortical structures
can be revealed. In figure 8, the volume rendering of 6 exposes the upper and lower shear layers
above the jet exit, and also vortical structures further downstream. For visualizing the OTD

modes, the iso-surface of the magnitude of velocity of the ranked OTD modes U;, coloured by
the scalar field, is shown.

(v) Numerical algorithm

We use a spectral /hp element method to perform DNS of the full Navier-Stokes equation and the
evolution equation for the OTD basis. The details of the spectral /hp element solver (NEKTAR) can
be found in [65]. We use an unstructured hexahedral mesh with 99792 elements with a spectral
polynomial of order 4. For time integration, we use the splitting scheme with the first-order
explicit Euler method with time increments of At=4 x 10~3. The Navier-Stokes equations are
first advanced for 200 time units, by which time the nonlinear dynamical system has reached
a statistical steady state. Due to the inherent similarities of the evolution equations of the OTD
basis to the nonlinear Navier-Stokes equation, the computational cost of solving a system of r
OTD modes is roughly equal to r times of a single DNS run. Since the base flow is also solved
along with the OTD modes, the total computational cost is (7 + 1) times of a single DNS run.

(vi) Non-normality and transient growth

In figure 9, the instantaneous real eigenvalues and the numerical abscissa of the reduced operator
are shown. The large disparity between the numerical abscissa and the largest real eigenvalue
of the reduced operator exposes a large degree of non-normality in the reduced operator L,. The
subspace experiences significant non-normal growth initially for 0 <t < 20. This observation is
qualitatively in accordance with the linear stability analysis of the jet in cross-flow in [62]. We
refer the reader to fig. 3¢ in that article, in which the initial growth rate of the perturbation is
much larger than its asymptotic behaviour.

The snapshots of the initial evolution of the first mode, i.e. the most unstable mode, are shown
in figure 10. The mode is visualized by the iso-surface of the velocity magnitude equal to 0.03. At
t = 0.4, the mode clearly captures both the lower and upper shear layers. As time advances, the
presence of the upper shear layer becomes more pronounced. This is evident in the snapshots in
the second row in figure 10. It should be remembered that the norm of each mode remains 1 for
all times and, as a result, the mode quickly vanishes outside the jet body, where the magnitude of
Ui(x, t) is significantly smaller than the values in the shear layer regions.
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Figure 11. Snapshots of the OTD modes U;(x, t) and the trajectory of the Navier—Stokes equations. Each row shows all four
modes at a given time, with the first row taken at t = 130. Time advancement from one row to the nextis At = 2 time units.
The modes are visualized by the iso-surface of the velocity magnitude equal to 0.02. The time-dependent base flow (DNS) is
visualized by smoke volume rendering of a scalar field. (Online version in colour.)

(vii) Long-time behaviour

As time progresses, the subspace exhibits bursts of growth and sudden excursions into stable
directions, as can be seen in figure 9. At each time instant at least one or more unstable directions
can be observed. These unstable directions appear either singly (real eigenvalues) or in pairs
(complex conjugate eigenvalues). The unstable directions represent persistent instabilities that are
the hallmark of shear flows.

In figure 11, the snapshots of all four modes along with the smoke volume rendering of the
Navier-Stokes equation are shown. The modes are visualized by iso-surfaces of the velocity
magnitude (equal to 0.02) and coloured by the scalar field 6. Each column tracks one mode at
different time instants, starting from the top row at t =120, with the time advancement of At =2
to the next row. The modes are sorted from the most unstable directions (mode 1) to the most
stable directions (mode 4). The first mode captures the vortex sheet in the upper shear layer of the
jet. This reaffirms the strong evidence that the jet upper shear layer is unstable, leading to the
vortex roll-up further downstream [62]. The second and the third modes show strong presence
in both the upper and lower shear layers, while the fourth mode captures the dominant vortical
structures downstream.

Gt i 05 3 o S BusiandGaposareds



http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on February 10, 2016

The shear layer, spanned by the OTD subspace, is a critical dynamical feature since it is
associated with the ‘birth place” of the instability. The strong presence of the upper and lower
shear layers in the large times exposes the important role of non-normality even in the asymptotic
dynamics of this flow. Moreover, the upper shear layer remains almost steady and as such it
has negligible turbulent kinetic energy. Therefore, in energy-based reduction techniques such
as proper orthogonal decomposition, the shear layer appears strongly in the time-averaged
fields, and only weakly with modes with which unstable directions are associated. A more
comprehensive analysis of the origin of the modes and their connection with coherent structures
is currently in progress.

5. Conclusion

We have introduced a minimization formulation for the extraction of a finite-dimensional, time-
dependent, orthonormal basis, which captures directions of the phase space associated with
transient instabilities. The central idea is to build a set of OTD modes with a rate of change that
optimally spans the vector field of the full dynamical system, in the neighbourhood of its current
state. We demonstrated how the formulated minimization principle can be used to produce
evolution equations for these time-dependent modes. These equations require a trajectory of the
system as well as the linearized operator and their solution gives a time-dependent orthonormal
basis which spans the current directions (i.e. for the current state of the system) associated with
maximum growth. For the special case of equilibrium states, we have shown that these modes
rapidly converge to the most unstable directions of the system.

We have demonstrated the capability of the approach in capturing instabilities caused by
linear dynamics such as non-normal effects as well as nonlinear exchanges of energy between
modes. In particular, we have illustrated the computation of the OTD modes in order to capture
energy growth/exchanges occurring in: (i) linear systems including the advection-diffusion
operator in a strongly non-normal regime as well as the Orr-Sommerfeld/Squire operator
and (ii) nonlinear systems including a low-dimensional system with both non-normal and
exponential growth regimes, and the vertical jet in cross-flow in an unstable regime. For the linear
systems, we demonstrated that the time-dependent subspace captures the strongly transient non-
normal energy growth (in the short-time regime), while for longer times the modes capture the
expected asymptotic behaviour of the dynamics. For the low-dimensional nonlinear system, we
demonstrated how the subspace captures the most unstable directions of the dynamics, associated
with exponential or non-normal growth, while for the fluid flow example we also explored the
connection between the shear flow, non-normal growth and persistent instabilities.

The proposed approach paves the way for (i) the formulation of efficient, reduced-order
filtering and prediction schemes for a variety of infinite dimensional problems involving strongly
transient features, such as rare events, and (ii) the formulation of low-energy control algorithms
that will be able to suppress the instability at a very early stage by applying reduced-order control
methods the moment that the instability has begun to emerge. The proposed framework should
also be important for the fundamental understanding of the dynamical processes behind transient
features, through the computation of finite-time Lyapunov exponents (a task that is not feasible
in an infinite dimensional setting) and the analysis of the associated energy transfers. Additional
conditions or constraints on the definition of the OTD modes, such as minimal or low torsion of
the modes, may be considered and this is part of future work.
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