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Energy Exchange and
Localization in Essentially
Nonlinear Oscillatory Systems:
Canonical Formalism
Over recent years, a lot of progress has been achieved in understanding of the relation-
ship between localization and transport of energy in essentially nonlinear oscillatory sys-
tems. In this paper, we are going to demonstrate that the structure of the resonance
manifold can be conveniently described in terms of canonical action–angle (AA) varia-
bles. Such formalism has important theoretical advantages: all resonance manifolds may
be described at the same level of complexity, appearance of additional conservation laws
on these manifolds is easily proven both in autonomous and nonautonomous settings. The
harmonic balance-based complexification approach, used in many previous studies on
the subject, is shown to be a particular case of the canonical formalism. Moreover, appli-
cation of the canonic averaging allows treatment of much broader variety of dynamical
models. As an example, energy exchanges in systems of coupled trigonometrical and
vibro-impact oscillators are considered. [DOI: 10.1115/1.4034930]

1 Introduction

Canonical action–angle (AA) variables are famous and widely
used instrument in a theory of dynamical systems [1–4]. The
AA variables were instrumental in formulation of many
prominent results and theories. Among others, one can mention
theory of adiabatic invariants [1], formulation and proof of
Kolmogorov–Arnold–Moser theorem [3,5,6], development of
canonical perturbation theory [5,6], explorations on Hamiltonian
chaos [7,8], autoresonant phenomena [9,10], etc.

The issue of energy exchange and transport in oscillatory sys-
tems recently attracted a lot of attention. Among various physical
problems, considered in this context, one finds targeted energy
transfer in essentially nonlinear systems [11–14], wave propaga-
tion and energy transport in granular media [15,16], discrete
breathers in strongly nonlinear systems, as well as vibration
absorption and mitigation provided by nonlinear energy sinks
[17,18]. Major progress in all these fields has been achieved, since
it was realized that the most efficient energy transport in the oscil-
latory systems usually occurs in conditions of resonance. This
observation allows one to treat the system in the vicinity of the
resonance manifold and to restrict the consideration by averaged
equations of motion (usually referred to as slow-flow equations).
This crucial simplification often allows reduction of dimensional-
ity and gives rise to conservation laws absent in the complete sys-
tem beyond the resonance manifold. Technically, in vast majority
of the mentioned works, the averaging has been performed with
the help of complex variables (complexification–averaging
approach, CxA) [19–21]. This approach follows back to models
with self-trapping [22] and rotating-wave approximation [23] in
the lattice dynamics. From mathematical point of view, this
approach is equivalent to classical harmonic balance with slowly
varying amplitudes [24]. However, the formalism of CxA allows
convenient handling of the slow-flow equations. Advantages of
this method were demonstrated in recent works devoted to energy
exchange in model oscillatory systems [25,26].

The goal of the current work is to present the formalism based
on the canonical AA variables that allows efficient treatment of
the energy transfer problems. Moreover, we are going to demon-
strate that the CxA is a particular case of this canonical AA for-
malism. Strictly speaking, the complex variables used in CxA
naturally arise from transition to the AA variables of the linear
oscillator. Exploration of the dynamics on the resonance manifold
in terms of the AA variables easily reveals all regularities men-
tioned above (reduction of the state space, additional conservation
laws). Besides, in terms of the AA variables, one can study the
energy transport in systems not amenable for the CxA (or har-
monic balance) treatment, such as vibro-impact oscillatory
systems.

2 Averaging on the Resonance Manifold in

Low-Dimensional Systems

In order to present the approach, we first consider the simplest
possible nontrivial settings for the energy exchange in oscillatory
systems: conservative system with two degrees-of-freedom (DOF)
and a single conservative nonlinear oscillator with external forcing.

2.1 Conservative System With Two Degrees-of-Freedom.
Let us consider the conservative system of two coupled oscilla-
tors. Generally speaking, the Hamiltonian of this system is
expressed as

H ¼ Hðp1; p2; q1; q2Þ (1)

Here, qk; k ¼ 1; 2 are generalized coordinates, and pk; k ¼ 1; 2
are conjugate momenta. It is supposed that at given energy level
system (1) occupies a finite hypersurface fragment in the state
space.

We will say that the canonical transformations to action–angle
variables are induced by single-DOF Hamiltonians H0ðp; qÞ with
sets of periodic solutions parametrized through their energy levels
H0ðp; qÞ ¼ E ¼ const [1,4]. Then, the action–angle variables are
defined by the well-known formulas [4]

I Eð Þ ¼ 1

2p

þ
p q;Eð Þdq; h ¼ @

@I

ðq

0

p q; Ið Þdq (2)
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By inverting expressions (2), one can get explicit formulas for
the canonical change of variables pðI; hÞ; qðI; hÞ. Each particular
Hamiltonian H0ðp; qÞ generically induces canonical transforma-
tion of this type. For each conjugate pair of variables in Hamilto-
nian (1), we use one of such transformations

pk ¼ pkðIk; hkÞ; qk ¼ qkðIk; hkÞ;
k ¼ 1; 2; Ik 2 ½0;1Þ; hk 2 ½0; 2pÞ

(3)

It is not required that the transformations for different k will be
induced by the same Hamiltonian and will have the same func-
tional form. As a result of the transformation, the system will be
described by the following Hamiltonian in terms of the
action–angle variables:

H ¼ HðI1; I2; h1; h2Þ (4)

Due to a 2p -periodicity of the angle variables, it is possible to
expand the Hamiltonian into Fourier series [7]

HðI1;I2;h1;h2Þ¼
X
m;n

Vm;nðI1;I2Þexpðiðmh1�nh2ÞÞ; Vm;n¼V��m;�n

(5)

Averaging procedures in Hamiltonians similar to Eq. (4) are
always based on existence of slowly varying combination of the
angle variables. Commonly, this slow phase exists due to the fact
that the actions do not deflect much from their average values [7].
It will be demonstrated below that the slow phase may appear also
due to other reasons. At this stage, we proceed formally and sup-
pose that the phase variables combine into a single slow phase
# ¼ m0h1 � n0h2;m0; n0 2 Z. Averaging the Hamiltonian over
the fast phases, one just removes from Eq. (5) all terms not pro-
portional to the slow phase, substitutes the actions by their aver-
age values, and then obtains a slow-flow Hamiltonian in the
following form:

�HðJ1; J2; #Þ ¼
X

l

Vm0l;n0lðJ1; J2Þexpðilðm0h1 � noh2ÞÞ

¼
X

l

Vm0l;n0lðJ1; J2Þexpðil#Þ

Jk ¼ hIki; k ¼ 1; 2; l 2 Z

(6)

Formally, the summation in Eq. (6) should extend over all inte-
gers. In practically interesting cases, due to fast decrease of the
Fourier coefficients, it might be sufficient to consider only small
values of l. Evolution equations for these variables will take the
following form:

_J1 ¼ � @H

@h1

� �
¼ �m0

@ �H

@#
; _J2 ¼ � @H

@h2

� �
¼ n0

@ �H

@#

_# ¼ m0

@ �H

@J1

� n0

@ �H

@J2

(7)

We take some freedom in calling expression (6) “Hamiltonian,”
since the slow variables do not form the canonically conjugate
pairs. Precisely speaking, the function introduced in Eq. (6) is an
integral of motion for the slow variables

d �H

dt
¼ @ �H

@J1

_J1 þ
@ �H

@J2

_J2 þ
@ �H

@#
_#

¼ �m0

@ �H

@#

@ �H

@J1

þ n0

@ �H

@#

@ �H

@J2

þ @
�H

@#
m0

@ �H

@J1

� n0

@ �H

@J2

� �
¼ 0

Here, the time derivatives are evaluated from system (7). It is
extremely important to note that system (7) possesses an

additional integral of motion, besides the averaged Hamiltonian
(6). Let us adopt that m0; n0 are positive. Then, this additional
integral may be written as follows:

n0J1 þ m0J2 ¼ N2 ¼ const (8)

Equation (8) gives rise to the trigonometric change of variables

J1 ¼
N2 sin2c=2

n0

; J2 ¼
N2 cos2c=2

m0

(9)

Substituting Eq. (9) into Eq. (6), one obtains the reduced
Hamiltonian

h c; #ð Þ ¼ �H
N2 sin2 c=2ð Þ

n0

;
N2 cos2 c=2ð Þ

m0

; #

 !
¼ const;

# 2 0; 2p½ Þ; c 2 0;p½ � (10)

The conservation law (10) guarantees that the dynamical sys-
tem on the sphere (c is the polar angle and # is the azimuth angle)
is completely integrable. It is important that this system is
revealed explicitly without writing down the equations of motion.
Dynamics of this system are described by the following simple
symmetric equations:

_c ¼ � 2m0n0

N2 sin c
@h

@#
; _# ¼ 2m0n0

N2 sin c
@h

@c
(11)

It is self-evident that the function hðc; #Þ is the first integral for
system (11), but the slow angle variables ðc; #Þ do not form the
canonically conjugate pair.

2.2 Single-DOF Oscillator With Periodic Forcing. Let us
consider the conservative single-DOF oscillator without damping
under periodic forcing with certain fixed frequency x. We also
suppose that this forced system is Hamiltonian; for the most popu-
lar cases of external and parametric forcing, it is the case. Of
course, this Hamiltonian will be time-dependent, and the system
will not be conservative. After the canonical transformation to the
AA variables similar to Eq. (3), this Hamiltonian will take the fol-
lowing general form:

H ¼ HðI; h; tÞ; HðtÞ ¼ Hðtþ TÞ; T ¼ 2p=x (12)

Due to the supposed periodicity of the forcing, the Hamiltonian
can be expanded into the Fourier series

HðI; h; tÞ ¼
X
m;n

Vm;nðIÞexpðiðmh� nxtÞÞ; Vm;n ¼ V��m;�n (13)

Similarly to the treatment presented in Sec. 2.1, we suggest that
there exists the slow phase variable # ¼ m0h� n0xt;m0; n0 2 Z.
Averaging over the fast variable and substituting the averaged
actions yield

�HðJ; #Þ ¼
X
l2Z

Vm0l;n0lðJÞexpðilðm0h� n0xtÞÞ (14)

The slow evolution of the action variable is described by the
following equation:

_J ¼ � @H

@h

� �
¼ �m0

@ �H

@#
(15)

The Hamiltonian (12) is time-dependent, and therefore the fol-
lowing relationships are valid [1,2]:
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dH

dt
¼ @H

@t
) d �H

dt
¼ @

�H

@t
¼ �n0x

@ �H

@#
(16)

Combining Eqs. (15) and (16), we obtain the following integral
of motion in terms of the AA variables:

m0
�HðJ; #Þ � n0xJ ¼ const (17)

Note that the averaged Hamiltonian itself does not yield the
integral of motion for the averaged system.

3 Relationship to Complexification–Averaging

Approach

The formalism of the complexification–averaging approach
may be briefly summarized as follows [19,21]: a general system
of equations that describes dynamics of a set of coupled (and,
generically, forced and damped) oscillators with N degrees-of-
freedom can be cast in the form

€uk ¼ Fkðu1; :::; uN ; _u1; :::; _uN ; tÞ (18)

Complex variables are introduced according to the formula

wk ¼ _uk þ iXuk (19)

The frequency X is selected with the help of various physical
reasons. For instance, in quasi-linear systems, it is taken to be
equal to the linear frequency, and in the forced systems it is usu-
ally equal to the forcing frequency. Sometimes, it is left unknown
(or even considered time-varying, see, e.g., Ref. [27]), and then it
is computed in the course of the treatment. From Eq. (19) (with
constant X, for simplicity), one can derive

uk ¼
�i

2X
wk�w�k
� �

; _uk ¼
1

2
wk�w�k
� �

; €uk ¼ _wk�
i

2
wkþw�k
� �

(20)

Substituting Eq. (20) into Eq. (18), one obtains

_wk ¼ Gkðw1;w
�
1:::;wN ;w

�
N ; tÞ (21)

This equation is formally equivalent to Eq. (18). However, if it
is possible to justify the fast–slow decomposition in a form
wk ¼ uk expðiXtÞ, where uk is a slow function of time, then one
can substitute this expression to Eq. (21) and average the fast vari-
able out. As a result, one obtains the simplified slow-flow
equations

_uk ¼ Qkðu1;u
�
1:::;uN ;u

�
NÞ (22)

As an example, we can consider a system of coupled Duffing
oscillators described by the following equations of motion:

€uk ¼ �uk � u3
k � eðuk � u3�kÞ; k ¼ 1; 2

Change of variables (19) with X ¼ 1 and subsequent averaging
yields

_uk ¼
3i

8
jukj2uk þ

ie
2

uk � u3�kð Þ; k ¼ 1; 2 (23)

System (23) possesses an additional integral of motion

ju1j2 þ ju2j2 ¼ P2 ¼ const. Further change of variables u1 ¼
P sinðc=2Þexpðid1Þ;u2 ¼ P cosðc=2Þexpðid2Þ leads to the follow-
ing system of equations:

_c ¼ �e sin c ¼ � 2

P2 sin c
@h1

@#
;

_# ¼ � 3

8
P2 cos c� ecotc cos# ¼ 2

P2 sin c
@h1

@c

h1 ¼ �
3

32
P4 sin2cþ e

2
P2 sin c cos#

� �
; # ¼ d1 � d2

(24)

A detailed analysis of a system equivalent to Eq. (24) is pre-
sented elsewhere [20]. For our purposes, it is enough to note that
this system is a particular case of system (11) for m0 ¼ n0 ¼ 1.

This fact has simple explanation. A linear oscillator with Ham-
iltonian H ¼ ðp2=2Þ þ ðX2q2=2Þ induces the following well-
known transformation to the action–angle variables [1]:

q ¼
ffiffiffiffiffi
2I

X

r
sin h; p ¼

ffiffiffiffiffiffiffiffi
2IX
p

cos h (25)

By identifying q ¼ uk; p ¼ _uk and combining Eqs. (19) and
(25), one obtains

wk ¼ _uk þ iXuk ¼
ffiffiffiffiffiffiffiffi
2IX
p

cos hþ i
ffiffiffiffiffiffiffiffi
2IX
p

sin h ¼
ffiffiffiffiffiffiffiffi
2IX
p

expðihÞ
(26)

A comparison of Eq. (26) with the transformation to complex var-
iables mentioned above

w1;2 ¼ u1;2 expðiXtÞ ¼ P
sinðc=2Þexpðid1Þ
cosðc=2Þexpðid2Þ

 !
expðiXtÞ (27)

reveals a similarity between the CxA and general relationships (7)
and (8). More precisely, in the case of 1:1 resonance, one obtains
explicit relationships between the AA and the CxA variables

J1;2 ¼
P2

2

sin2 c=2ð Þ
cos2 c=2ð Þ

� �
; h1;2 ¼ d1;2 þ Xt (28)

These relationships demonstrate that the CxA approach is in
fact a particular case of the transformation to action–angle varia-
bles with subsequent averaging. One can also argue that in the
particular example of the coupled Duffing oscillators mentioned
above it is easier to obtain equations similar to Eq. (11) (or to Eq.
(24), with insignificant rescaling) directly from the Hamiltonian
and without unnecessary complex transformations.

This simplification alone would be insufficient to define the
AA-based averaging as separate method for analysis of the energy
transport in essentially nonlinear systems. However, relationships
(7)–(11) demonstrate that the AA formalism is not just the
reformulation—it may be more general than the CxA approach.
The latter employs only the AA variables induced by the linear
oscillator (and thus, technically, is a variation of a harmonic bal-
ance with slowly varying amplitudes [24]). The general AA for-
malism is free from this restriction and can use transformations
induced by any single-DOF Hamiltonian. In Sec. 4, we are going
to demonstrate that with the help of transition to the AA variables
one can explore the energy transport in model systems with
extreme nonlinearity, not treatable by the CxA approach.

4 Energy Transport in Coupled Strongly Nonlinear

Oscillators

4.1 Coupled Vibro-Impact Oscillators. Let us begin with
the strongest possible nonlinearity and consider a pair of identical
impact oscillators, coupled by a linear spring of stiffness e
(see Fig. 1).

The single impactor is a particle with mass m moving in a chan-
nel of length 2d, with elastic collisions at the ends of the channel.
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For simplicity, it is supposed that the equilibrium length of the
spring corresponds to u1 � u2 ¼ 0. Here, uk denotes the displace-
ment of the impactor with respect to the middle point of the
respective channel.

In Fig. 2, we present the results of the simulation for the system
depicted in Fig. 1. Initially, both impactors are located at the mid-
dle points of the channels, i.e., u1ð0Þ ¼ u2ð0Þ ¼ 0; initial velocity
of impactor 1 is _u1ð0Þ ¼ 0:4 (this particular value is not signifi-
cant, since one can rescale the time), and the initial velocity
of impactor 2 is zero, _u2ð0Þ ¼ 0. Without restricting the general-
ity, we suppose m ¼ 1; d ¼ 1. One can observe that for a value

of coupling e ¼ 0:058 the energy remains localized at impactor 1.
A minimal increase of the coupling to e ¼ 0:059 yields a qualita-
tive change of the behavior: the impactors exchange energy. This
process can be identified as nonlinear beating in the vibro-impact
system. Figure 2(c) confirms that for e ¼ 0:059 almost complete
periodic energy exchange between the oscillators takes place.

To explain this transition from the localization to energy
exchange, we will explore the AA formalism. Each of the impac-
tors induces the following transformation to AA variables [4]:

Hk ¼
p2I2

k

8md2
; uk ¼

2d

p
arcsin sin hkð Þ; k ¼ 1; 2 (29)

The Hamiltonian of the system presented in Fig. 1 will be
expressed in terms of the AA variables as follows:

H ¼ p2 I2
1 þ I2

2

� �
8md2

þ 2ed2

p2
arcsin sin h1ð Þ � arcsin sin h2ð Þð Þ2 (30)

Fig. 2 Time series for displacements in coupled vibro-impact system (Fig. 1) with nonzero initial velocity of one
impactor: (a) e 5 0:058 and (b) e 5 0:059. Red (thin solid) line— u1ðtÞ and blue (thick points) line— u2ðtÞ. Plot (c)
presents kinetic energy of both oscillators for e 5 0:059 : green (thin solid) line—oscillator 1 and brown (thick
points)—oscillator 2.

Fig. 1 Pair of impact oscillators coupled by linear spring

011009-4 / Vol. 84, JANUARY 2017 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 11/02/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



In order to perform the averaging, it is convenient to present
the Hamiltonian (30) in the form of a Fourier series. The term
arcsinðsin hÞ represents a well-known triangular wave [28,29].
One can easily express it as sine Fourier series and obtain

H ¼ p2 I2
1 þ I2

2

� �
8md2

þ 32ed2

p4

X1
k¼0

�1ð Þk sin 2k þ 1ð Þh1ð Þ � sin 2k þ 1ð Þh2ð Þð Þ
2k þ 1ð Þ2

 !2

(31)

If we consider the fundamental 1:1 resonance, the slow variable
will be # ¼ h1 � h2. Averaging of the Hamiltonian (30) thus
yields (up to the insignificant constant)

�H ¼ p2 J2
1 þ J2

2

� �
8md2

� 32ed2

p4

X1
k¼0

cos 2k þ 1ð Þ#ð Þ
2k þ 1ð Þ4

(32)

Transformation of the action variables according to Eqs.
(7)–(9) with m0 ¼ n0 ¼ 1 further yields

h ¼ p2N4 cos4c=2þ sin4c=2
� �

8md2
� 32ed2

p4

X1
k¼0

cos 2k þ 1ð Þ#ð Þ
2k þ 1ð Þ4

¼ p2N4

8md2
1� sin2c

2

� �
� j
X1
k¼0

cos 2k þ 1ð Þ#ð Þ
2k þ 1ð Þ4

 !
ð33Þ

The averaged Hamiltonian (33) is very simple, and it is easy to
see that the structure of the phase portrait depends on a single
parameter

j ¼ 256med4

p6N4
(34)

The evolution of the phase portrait on ð#; cÞ surface for varying
values of j is presented in Fig. 3.

Initial conditions explored in the above numeric simulation
(Fig. 2) correspond to initial conditions ðc; #Þ ¼ ð0; 0Þ. This spe-
cial orbit of averaged Hamiltonian (33) describes initial complete
concentration of energy at impactor 1. To denote such orbits,
Manevitch [19,20] coined the term “limiting phase trajectory”
(LPT), which will be used further on in this paper. We see that for
small values of the parameter j the LPT (thick red line in Fig. 3)
remains in the region 0 � c < p=2, and thus the energy is local-
ized at impactor 1. For large values of j, the LPT covers all
0 � c � p, and thus energy exchange between impactors 1 and 2

(nonlinear beatings) is realized. The transition from the localiza-
tion to nonlinear beatings should take place when the LPT will
pass through the saddle point at c ¼ p=2; # ¼ p. Values of the
averaged Hamiltonian at these two points should be equal; then,
one obtains the following equation for the critical value of
coupling:

h 0; 0ð Þ ¼ h
p
2
;p

� �
) �jcr

X1
k¼0

1

2k þ 1ð Þ4

¼ � 1

2
þ jcr

X1
k¼0

1

2k þ 1ð Þ4
(35)

Taking into account the identity
P1

k¼0ð1=ð2k þ 1Þ4Þ
¼ ð15=16Þfð4Þ ¼ p4=96, one obtains

jcr ¼ 24=p4 ¼ 0:2464 (36)

This value of the effective coupling corresponds to the phase
portrait presented in Fig. 3(b). It is extremely important to note

Fig. 3 Phase portraits of the averaged system with Hamiltonian (32) for (a) j 5 0:22, (b) j 5 24=p4 5 0:2464, and (c) j 5 0:26.
The thick red line denotes the limiting phase trajectory (LPT).

Fig. 4 Phase portrait of the effective Hamiltonian (43) on the
sphere, shown in terms of color and contours in spherical coor-
dinates, for constant e 5 0:1 and growing values of N. The red
trajectory describes the transition of the LPT through saddle.
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that the most interesting dynamical feature of Hamiltonian (33),
i.e., the transition from localization to nonlinear beating, corre-
sponds to passage of the LPT through the saddle point.
This fact ensures slow evolution of the phase trajectories of
interest in the averaged system. Thus, one can justify a posteriori
the averaging procedure in Eqs. (30)–(33) despite the lack of for-
mal small parameter. This observation is generic: closeness of
the averaged phase trajectory to the saddle point can provide a
slow time scale, necessary for the validity of the ad hoc
averaging.

To compare the theoretical prediction with the numerical simu-
lations, we first relate the value of the integral of motion N to the
initial conditions. This parameter can be evaluated from expres-
sion for kinetic energy as follows:

u1 0ð Þ ¼ u2 0ð Þ ¼ 0; _u1 0ð Þ ¼ V0; _u2 0ð Þ ¼ 0;

p2I2
1 0ð Þ
8

¼ p2N4

8
¼ V2

0

2
) N4 ¼ 4V2

0

p2

(37)

Combining Eqs. (34), (36), and (37), one obtains the following
simple expression for the critical value of coupling:

ecr ¼
3V2

0

8
(38)

For V0 ¼ 0:4, one obtains ecr ¼ 0:06 for the transition between
the localization and nonlinear beatings, in excellent agreement
with numeric results presented in Fig. 2.

Fig. 5 Transition from energy exchange to localization in coupled trigonometric oscillators, described by
Hamiltonian (41), e 5 0:1. The figures correspond to different sets of initial conditions
q1ð0Þ5 A;q2ð0Þ5 p1ð0Þ5 p2ð0Þ5 0 : (a) A 5 0.1, (b) A 5 0.5, (c) A 5 0.55, and (d) A 5 0.58. q1ðtÞ —red (thin solid)
line and q2ðtÞ —black (thick point) line. Equation (45) predicts transition from the beatings to localization for
Acr 5 0:578.
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4.2 Coupled Trigonometric Oscillators. There are few
Hamiltonians that induce the transformation to AA variables in
terms of elementary functions. One of these few examples is the
oscillator with Hamiltonian, which involves trigonometric func-
tions (see Refs. [4,30,31] for detailed derivations)

H ¼ p2

2
þ 1

2
tan2q (39)

Transformation of the single oscillator to the AA variables
yields

H ¼ I þ I2

2

q ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þ 2I
p

I þ 1
sin h

� �
; p ¼ 1þ Ið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þ 2I
p

cos hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ I2 þ 2Ið Þ cos2h

p (40)

Let us consider the system of two such oscillators coupled
through a trigonometric function, with the following Hamiltonian:

H ¼ p2
1

2
þ 1

2
tan2q1 þ

p2
2

2
þ 1

2
tan2q2 þ

e
2

sin q1ð Þ � sin q2ð Þ
� �2

(41)

In terms of the action–angle variables, this Hamiltonian is writ-
ten down as follows:

H ¼ I2
1

2
þ I1 þ

I2
2

2
þ I2

þ e
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
1 þ 2I1

p
I1 þ 1

sin h1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
2 þ 2I2

p
I2 þ 1

sin h2

 !2

(42)

Fig. 6 Transition from energy exchange to localization in coupled trigonometric oscillators, described by
Hamiltonian (41), e 5 2:29. The figures correspond to different sets of initial conditions q1ð0Þ5 A;
q2ð0Þ5 p1ð0Þ5 p2ð0Þ5 0 : (a) A 5 1.2, (b) A 5 1.225, and (c) A 5 1.235. q1ðtÞ—red (thin solid) line and q2ðtÞ—black
(thick point) line. Equation (45) predicts transition from the beatings to localization for Acr 5 1:258.
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Considering 1:1 resonance, introducing slow variable
# ¼ h1 � h2, and performing averaging in accordance with
Eqs. (3)–(10), we obtain the following integral of motion:

h c; #ð Þ ¼ �N2 sin2 c
2

cos2 c
2
þ e

4
S1 þ S2 � S3ð Þ

S1 ¼
N2 sin4 c

2
þ 2 sin2 c

2

1þ N2 sin2 c
2

� �2
; S2 ¼

N2 cos4 c
2
þ 2 cos2 c

2

1þ N2 cos2
c
2

� �2

S3 ¼ 2 cos#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 sin4 c

2
þ 2 sin2 c

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 cos4

c
2
þ 2 cos2 c

2

r

1þ N2 sin2 c
2

� �
1þ N2 cos2

c
2

� �
(43)

Typical evolution of the phase portrait for constant N and grow-
ing e is presented in Fig. 4.

In this case, one also observes the transition from beating
(N¼ 0.2) to localization through pitchfork bifurcation of the local-
ized states and passage of LPT (starting from the pole
# ¼ p; c ¼ 0) through the saddle point # ¼ p; c ¼ p=2. This event
occurs for special value of N ¼ Ncr. Similarly to condition (35),
for this Ncr, the values of Hamiltonian (43) in the pole and in the
saddle should coincide

h 0;pð Þ ¼ h p=2;pð Þ ) e ¼ N2
cr N2

cr þ 1
� �2

N2
cr þ 2

� �2

3N6
cr þ 18N4

cr þ 24N2
cr þ 8

(44)

To check this prediction, we simulate the dynamics of the system
with Hamiltonian (41). To explore the transition, we first choose
e ¼ 0:1 and obtain from Eq. (44) Ncr ¼ 0:441. Initial conditions
correspond to nonzero initial displacement at the first oscillator
q1ð0Þ ¼ A with all other initial conditions zeros. According to
Eq. (40), the value of A corresponding to the transition is expressed as

Acr ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N4

cr þ 2N2
cr

p
N2

cr þ 1

 !
(45)

Now we plot a number of time series for phase trajectories of
Hamiltonian (40) for different values of A (Fig. 5).

In Fig. 5, one clearly observes the transition from the energy
exchange to localization as A increases. Equation (45) predicts the
transition for Acr ¼ 0:578, in complete agreement with numerical
simulation result.

Then, we explore an even larger value of the coupling parame-
ter e ¼ 2:29 that by no means can qualify as weak coupling. The
results of numeric simulation are presented in Fig. 6.

Despite the extremely strong damping, one observes similar
transition from the nonlinear beatings to localization. Moreover,
analytic predictions for the initial amplitude threshold for the tran-
sition (44) and (45) yield for the critical amplitude Acr ¼ 1:258.
So, even for this large coupling, the discrepancy with numeric
observations is within 2%. From Fig. 6, one can observe that the
dynamics is chaoticlike, especially in the regime of localization.
Still, qualitative modification of dynamics due to the LPT transi-
tion can be detected. This result further confirms the idea that the
averaging procedure may be justified by “slow saddle dynamics”
of the averaged trajectory even without the formal small
parameter.

5 Concluding Remarks

The findings presented above lead to the conclusion that the
averaging based on the action–angle variables offers a convenient
framework for exploration of structure and bifurcations of the
slow flow, including transitions from the localization to the energy

exchange. It turns out that the complexification–averaging proce-
dure, used previously for similar problems, constitutes a particular
case of a more general AA approach. In the case of the CxA, the
transition to the AA variables is induced by the Hamiltonian of a
linear oscillator. The AA approach is more general and allows
exploration of the slow flow in systems with extreme nonlinearity,
such as the coupled vibro-impact oscillators.

One can observe an interesting peculiarity of the explored sys-
tems. The averaging procedure may be justified a posteriori, due to
slowing down the dynamics due to passage of the phase trajectory
of interest close to the saddle point. Thus, the averaging procedure
may be justified even in the absence of the formal small parameter.
Of course, this idea has severe restrictions—such claims are valid
only for the considered slow-flow phase trajectory and not for the
complete phase portrait. For instance, Fig. 2 leaves the impression
that the global dynamics for given set of parameters and energy
level may be chaoticlike. However, even such partial information
may be of considerable value, since this phase trajectory can
describe important transformations in the global flow.

Acknowledgment

The authors are very grateful to Professor Lazar Friedland for
useful discussions. The authors are also very grateful to the Israel
Science Foundation (Grant No. 838/13) for financial support.
T.P.S. acknowledges support from the Air Force Office of Scien-
tific Research (Grant No. AFOSR YIP 16RT0548) and the Office
of Naval Research (Grant No. ONR YIP N00014-15-1-2381).

References
[1] Landau, L. D., and Lifshitz, E. M., 1976, Mechanics, 3rd ed., Elsevier,

Amsterdam, The Netherlands.
[2] Goldstein, H., Poole, C., and Safko, J., 2002, Classical Mechanics, 3rd ed.,

Pearson Education International, Upper Saddle River, NJ.
[3] Arnold, V. I., 1989, Mathematical Methods of Classical Mechanics, Springer,

Berlin.
[4] Percival, I., and Richards, D., 1987, Introduction to Dynamics, Cambridge Uni-

versity Press, Cambridge, UK.
[5] Arnold, V. I., Kozlov, V. V., and Neishtadt, A. I., 2006, Mathematical Aspects

of Classical and Celestial Mechanics, Springer, Berlin.
[6] Itin, A. P., Neishtadt, A. I., and Vasiliev, A. A., 2000, “Captures Into Resonance

and Scattering on Resonance in Dynamics of a Charged Relativistic Particle in
Magnetic Field and Electrostatic Wave,” Physica D, 141, pp. 281–296.

[7] Zaslavsky, G. M., 2007, The Physics of Chaos in Hamiltonian Systems, Imperial
College Press, London.

[8] Chirikov, B. V., 1979, “A Universal Instability of Many-Dimensional Oscillator
Systems,” Phys. Rep., 52(5), pp. 263–379.

[9] Fajans, J., and Friedland, L., 2001, “Autoresonant (Nonstationary) Excitation of
Pendulums, Plutinos, Plasmas, and Other Nonlinear Oscillators,” Am. J. Phys.,
69(10), pp. 1096–1102.

[10] Fajans, J., Gilson, E., and Friedland, L., 1999, “Autoresonant (Nonstationary)
Excitation of a Collective Nonlinear Mode,” Phys. Plasmas, 6(12),
pp. 4497–4503.

[11] Gendelman, O. V., 2001, “Transition of Energy to a Nonlinear Localized Mode
in a Highly Asymmetric System of Two Oscillators,” Nonlinear Dyn., 25,
pp. 237–253.

[12] Vakakis, A. F., and Gendelman, O. V., 2001, “Energy Pumping in Nonlinear
Mechanical Oscillators II: Resonance Capture,” ASME J. Appl. Mech., 68(1),
pp. 42–48.

[13] Vakakis, A. F., Gendelman, O. V., Kerschen, G., Bergman, L. A., McFarland, M.
D., and Lee, Y. S., 2008, Nonlinear Targeted Energy Transfer in Mechanical
and Structural Systems, Vol. I and Vol. II, Springer, Dordrecht, The Netherlands.

[14] Manevitch, L. I., Gourdon, E., and Lamarque, C. H., 2007, “Towards the
Design of an Optimal Energetic Sink in a Strongly Inhomogeneous Two-
Degree-of-Freedom System,” ASME J. Appl. Mech., 74(6), pp. 1078–1086.

[15] Starosvetsky, Y., Hasan, M. A., Vakakis, A. F., and Manevitch, L. I., 2012,
“Strongly Nonlinear Beat Phenomena and Energy Exchanges in Weakly
Coupled Granular Chains on Elastic Foundations,” SIAM J. Appl. Mech.,
72(1), pp. 337–361.

[16] Hasan, M. A., Starosvetsky, Y., Vakakis, A. F., and Manevitch, L. I., 2013,
“Nonlinear Targeted Energy Transfer and Macroscopic Analog of the Quantum
Landau-Zener Effect in Coupled Granular Chains,” Physica D, 252, pp. 46–58.

[17] Quinn, D. D., Gendelman, O. V., Kerschen, G., Sapsis, T. P., Bergman, L. A.,
and Vakakis, A. F., 2008, “Efficiency of Targeted Energy Transfers in Coupled
Nonlinear Oscillators Associated With 1:1 Resonance Captures: Part I,”
J. Sound Vib., 311, pp. 1228–1248.

[18] Starosvetsky, Y., and Gendelman, O. V., 2009, “Vibration Absorption in Sys-
tems With a Nonlinear Energy Sink: Nonlinear Damping,” J. Sound Vib., 324,
pp. 916–939.

011009-8 / Vol. 84, JANUARY 2017 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 11/02/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1007/978-1-4757-2063-1
http://dx.doi.org/10.1016/S0167-2789(00)00039-7
http://dx.doi.org/10.1142/p507
http://dx.doi.org/10.1016/0370-1573(79)90023-1
http://dx.doi.org/10.1119/1.1389278
http://dx.doi.org/10.1063/1.873737
http://dx.doi.org/10.1023/A:1012967003477
http://dx.doi.org/10.1115/1.1345525
http://dx.doi.org/10.1115/1.2711221
http://dx.doi.org/10.1137/110835128
http://dx.doi.org/10.1016/j.physd.2013.02.011
http://dx.doi.org/10.1016/j.jsv.2007.10.026
http://dx.doi.org/10.1016/j.jsv.2009.02.052


[19] Manevitch, L. I., 2007, “New Approach to Beating Phenomenon in Coupled
Nonlinear Oscillatory Chains,” Arch. Appl. Mech., 77(5), pp. 301–312.

[20] Manevitch, L. I., 2015, “A Concept of Limiting Phase Trajectories and Description of
Highly Non-Stationary Resonance Processes,” Appl. Math. Sci., 9, pp. 4269–4289.

[21] Manevitch, L. I., and Gendelman, O. V., 2011, Tractable Modes in Solid
Mechanics, Springer, Berlin.

[22] Eilbeck, J. C., Lomdahl, P. C., and Scott, A. C., 1985, “The Discrete Self-
Trapping Equation,” Physica D, 16(3), pp. 318–338.

[23] Flach, S., and Gorbach, A., 2008, “Discrete Breathers—Advances in Theory
and Applications,” Phys. Rep., 467, pp. 1–116.

[24] Hayashi, C., 2014, Nonlinear Oscillations in Physical Systems, Princeton Uni-
versity Press, Princeton, NJ.

[25] Kovaleva, A., and Manevitch, L. I., 2016, “Autoresonance Versus Localization
in Weakly Coupled Oscillators,” Physica D, 320, pp. 1–8.

[26] Manevitch, L. I., Kovaleva, A., and Sigalov, G., 2016, “Nonstationary Energy
Localization vs Conventional Stationary Localization in Weakly Coupled Non-
linear Oscillators,” Regular Chaotic Dyn., 21(2), pp. 147–159.

[27] Domany, E., and Gendelman, O. V., 2013, “Targeted Energy Transfer in Van
der Pol–Duffing Oscillator With Nonlinear Energy Sink,” J. Sound Vib.,
332(21), pp. 5489–5507.

[28] Pilipchuk, V. N., 2001, “Impact Modes in Discrete Vibrating Systems With
Rigid Barriers,” Int. J. Non-Linear Mech., 36(6), pp. 999–1012.

[29] Pilipchuk, V. N., 2002, “Some Remarks on Non-Smooth Transformations of
Space and Time for Vibrating Systems With Rigid Barriers,” J. Appl. Math.
Mech., 66(1), pp. 31–37.

[30] Kauderer, H., 1958, Nichtlineare Mechanik, Springer, Berlin.
[31] Pilipchuk, V. N., 2010, Nonlinear Dynamics: Between Linear and Impact Lim-

its, Springer, Berlin.

Journal of Applied Mechanics JANUARY 2017, Vol. 84 / 011009-9

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 11/02/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1007/s00419-006-0081-1
http://dx.doi.org/10.12988/ams.2015.55378
http://dx.doi.org/10.1016/0167-2789(85)90012-0
http://dx.doi.org/10.1016/j.physrep.2008.05.002
http://dx.doi.org/10.1016/j.physd.2016.01.001
http://dx.doi.org/10.1134/S1560354716020015
http://dx.doi.org/10.1016/j.jsv.2013.05.001
http://dx.doi.org/10.1016/S0020-7462(00)00066-4
http://dx.doi.org/10.1016/S0021-8928(02)00005-9
http://dx.doi.org/10.1016/S0021-8928(02)00005-9

	s1
	s2
	s2A
	FD1
	FD2
	aff1
	l
	FD3
	FD4
	FD5
	FD6
	FD7
	s2A
	FD8
	FD9
	FD10
	FD11
	s2B
	FD12
	FD13
	FD14
	FD15
	FD16
	FD17
	FD18
	FD19
	FD20
	FD21
	FD22
	s3
	FD23
	FD24
	FD25
	FD26
	FD27
	FD28
	s4
	s4A
	FD29
	FD30
	2
	1
	FD31
	FD32
	FD33
	FD34
	FD35
	FD36
	3
	4
	FD37
	FD38
	5
	s4B
	FD39
	FD40
	FD41
	FD42
	6
	FD43
	FD44
	FD45
	s5
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

