
Journal of Computational Physics 340 (2017) 418–434
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Reduced-order prediction of rogue waves in two-dimensional 
deep-water waves

Mohammad Farazmand, Themistoklis P. Sapsis ∗

Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 October 2016
Received in revised form 31 January 2017
Accepted 27 March 2017
Available online 31 March 2017

Keywords:
Prediction of rogue waves
Extreme rare events
Modulation instability and focusing
Random waves
Reduced-order stochastic prediction

We consider the problem of large wave prediction in two-dimensional water waves. Such 
waves form due to the synergistic effect of dispersive mixing of smaller wave groups 
and the action of localized nonlinear wave interactions that leads to focusing. Instead 
of a direct simulation approach, we rely on the decomposition of the wave field into a 
discrete set of localized wave groups with optimal length scales and amplitudes. Due to 
the short-term character of the prediction, these wave groups do not interact and therefore 
their dynamics can be characterized individually. Using direct numerical simulations of 
the governing envelope equations we precompute the expected maximum elevation for 
each of those wave groups. The combination of the wave field decomposition algorithm, 
which provides information about the statistics of the system, and the precomputed map 
for the expected wave group elevation, which encodes dynamical information, allows 
(i) for understanding of how the probability of occurrence of rogue waves changes as 
the spectrum parameters vary, (ii) the computation of a critical length scale characterizing 
wave groups with high probability of evolving to rogue waves, and (iii) the formulation 
of a robust and parsimonious reduced-order prediction scheme for large waves. We assess 
the validity of this scheme in several cases of ocean wave spectra.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Rogue waves refer to extremely large oceanic surface waves. As a result of their devastating impact on marine systems, 
such as ships and offshore platforms, rogue waves have been the subject of numerous theoretical, experimental and numer-
ical studies [6,14,32]. Most studies concern the frequency and statistics of rogue wave occurrence for a given sea state (see, 
e.g., [20,25,26,40,47]). It is, however, often desirable to know, for a given ocean area, if, when and where a rogue wave may 
occur in the future.

These questions can in principle be addressed by numerically solving the appropriate hydrodynamic equations [7,13,27]. 
Apart from its high computational cost, this direct approach requires a well-resolved state of the fluid velocity field and 
its free surface elevation as initial conditions. Thanks to recent developments, real-time and reliable measurement of sea 
surface elevation is feasible (see e.g. [22,28,29,39,41]). But the well-resolved measurement of fluid velocity field remains out 
of reach.

An alternative approach for short-term prediction of the wave field is based on numerically solving the so-called en-
velope equations, which approximate the evolution of the wave envelope to a reasonable accuracy [15,42,48]. While less 
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Fig. 1. Schematic view of an elementary wave group (EWG) with a Gaussian profile.

expensive than the full hydrodynamic equations, solving the envelope equations is still computationally formidable for real-
time forecast of extreme waves.

As a result, several attempts have been made to devise reliable, reduced-order methods for short-time forecast of water 
wave evolution. Adcock et al. [1], for instance, approximate nonlinear evolution of localized wave groups with an exact 
breather-like solution of the linear Schrödinger equation. To account for the nonlinear effects, they allow the parameters 
of the breather-like solution to vary in time such that particular invariants (energy and the Hamiltonian) of the nonlinear 
Schrödinger equation (NLS) are preserved over time. Ruban [36] takes a similar approach by substituting a Gaussian ansatz 
into the Lagrangian functional associated with the NLS equation. The time evolution of the parameters are determined such 
that the solution satisfies a least-action principle (also see [35]).

The resulting wave groups from Adcock et al. [1] and Ruban [35] do not necessarily satisfy the underlying envelope 
equation (i.e., the NLS equation). Furthermore, the reduced-order method of Ruban [35] relies heavily on the Lagrangian 
formulation of the NLS equation. As such, it is not immediately applicable to the more realistic, higher-order envelope 
equations, such as the modified NLS (MNLS) equation of Dysthe [15], whose Lagrangian formulation is unavailable (see [23]
and [12] for the Hamiltonian formulation of the MNLS equation).

To avoid these drawbacks, Cousins and Sapsis [8,10] take an intermediate approach. They also consider the evolution of 
parametric wave groups but allow the wave group to evolve under the full nonlinear evolution equation by imposing energy 
conservation [9]. The analysis resulted in a reduced-order set of nonlinear equations that captures the nonlinear dynamics 
of wave groups and most critically their transition from defocussing to focusing. This reduced-order model which represents 
information for the dynamics of the wave groups is combined with a probabilistic analysis of the possible wave groups that 
can form stochastically for a given wave spectrum [10]. Note that stochasticity is inevitably introduced due to the ‘mixing’ 
between harmonics that propagate with different speeds due to dispersion. The resulted schemes provide a parsimonious 
and robust prediction scheme for unidirectional water waves.

The main purpose of the present paper is to extend the framework of Cousins and Sapsis [10] from their unidirectional 
context to multidirectional water waves. Several new challenges arise in this context that are absent in the unidirectional 
case. In the following section we review these challenges, summarize our framework and state the assumptions under which 
this reduced-order framework is applicable.

1.1. Summary of the framework

We seek to approximate the future spatiotemporal maximum wave height of a measured wave field by decomposing the 
field as the superposition of wave groups with simple shapes. The evolution of the simple wave groups are precomputed and 
stored, so that the prediction reduces essentially to an interpolation from an existing data set. This reduced-order approach 
can be divided into the following steps:

I. Evolution of elementary wave groups.
II. Decomposition of random wave fields.

III. Prediction of amplitude growth.

Step I. We consider spatially localized simple wave groups that can be expressed analytically and refer to them as 
elementary wave groups (EWG). In this paper we will use EWG with a Gaussian profile. One can alternatively use other 
shapes such as the secant hyperbolic used in [10]. The key requirement is that the EWG must be completely determined 
with only a few parameters. A Gaussian wave group, for instance, is determined by its amplitude (A0), its longitudinal and 
transverse widths (Lx and L y ) and its orientation (θ ) with respect to a global reference frame (see Fig. 1). Working with the 
Gaussian is also convenient since its derivatives with respect to parameters and variables take a simple form.

For a realistic range of these parameters, we evolve the corresponding elementary wave groups for T time units by 
numerically solving an appropriate wave envelope equation (see Section 2). We record the spatiotemporal maximum am-
plitude Amax that each EWG reaches over the time interval [0, T ]. This step is computationally expensive but is carried out 
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only once. The resulting maximal amplitude is stored as a function of the parameters, i.e., Amax(A0, Lx, L y, θ). This step is 
carried out in Section 3.

Step II. Given a measured wave field, we approximate its envelope as a superposition of the elementary wave groups. 
To this end, the initially unknown positions, amplitudes and length scales of the elementary wave groups need to be 
determined such that their superposition provides a reasonable approximation of the measured wave field. In Section 4, we 
devise a dynamical systems-based method that determines the unknown parameters at a reasonable computational cost.

Step III. Once the measured wave field is decomposed into EWGs, its maximal future amplitude can be approximated by 
simply evaluating the precomputed function Amax(A0, Lx, L y, θ) for each set of EWG parameters (A0, Lx, L y, θ).

The above approach implicitly assumes that rogue waves form from individual wave groups through modulation insta-
bility [2]; a mechanism that has been observed in numerical simulations and in experiments [5,45]. It is known from linear 
random wave theory that rogue waves can also form due to the constructive interference of small-amplitude wave pack-
ets [26], especially for the case of short crested waves where modulation instability is not very pronounced. The probability 
of a rogue wave occurring through this linear mechanism, however, is orders of magnitude smaller than the ones gener-
ated through modulation instability [31,38,47]. We therefore neglect the rogue waves formed from superposition of smaller 
waves, and focus on the modulation instability of individual wave groups.

Also implicit in our approach is the assumption that the wave groups constructing a wave field have negligible interac-
tions over the time interval [0, T ]. This is of course not the case for large T . Cousins and Sapsis [10] find, however, that for 
intermediate time scales (10-40 wave periods) and for unidirectional waves this assumption is reasonable. We come to a 
similar conclusion for the two-dimensional surface waves considered here (see Section 5).

2. Envelope equation

To the first order, the modulations of a wave train with characteristic wave vector k0 and frequency ω0 = ω(k0) can be 
written as ζ(x, t) = 1

2 u(x, t) exp[i(k0 · x − ω0t)] + c.c., where u is the complex valued envelope for the modulation of the 
wave and c.c. is shorthand for complex conjugate terms. Assuming that the modulations are slowly varying (compared to 
the carrier wave), one can derive an equation for the envelope u of the free surface height ζ .

As shown by Trulsen et al. [43], for deep water, the most general form of the envelope equation can be written as

ut + 1

4π2

∫
i(ω(k + k0) − ω0)eik·(x−ξ)u(ξ , t)dξ dk + N(u) = 0, (1)

where N(u) denotes the nonlinear terms to be discussed shortly. The integral term is the exact form of the linear dispersion. 
The frequency ω(k + k0) can be expanded in Taylor series around wavenumber k0. Truncating the series, and accordingly 
the nonlinear term N(u), one obtains various approximate equations for the envelope u.

For instance, truncating the series at the second order and keeping the simplest cubic nonlinearity, one obtains the 
nonlinear Schrödinger (NLS) equation [48]. The NLS equation is only valid for wave spectra with a narrow bandwidth. To 
relax this limitation, Dysthe [15] derived the modified nonlinear Schrödinger (MNLS) equation by including higher-order 
terms in the truncation of (1). Rotating the spatial coordinate system x = (x, y) such that k0 = (k0, 0)� , and normalizing the 
space and time variables as t �→ ω0t and x �→ k0x, the MNLS equation reads

ut + 1
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ux + i

8
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uxyy
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|u|2ux + 1

4
u2u∗

x + iuφx|z=0 = 0, (2)

where the last term involving the velocity potential is defined, using the Fourier transform F , as

φx|z=0 = −1

2
F−1

[
k2

x

|k|F(|u|2)
]

,

with k = (kx, ky) being the wave vector.
The narrow bandwidth constraint can be further improved by including even more linear and nonlinear terms from 

equation (1) to obtain the broad-band MNLS (BMNLS) equation [42]. For the time scales considered here, however, the 
MNLS equation (2) provides an adequate model of gravity waves in deep ocean [44,46].

We numerically integrate the MNLS equation (2) on a finite two-dimensional domain (x, y) ∈ [0, �x] × [0, �y] with pe-
riodic boundary conditions (see Fig. 2). We set the domain size 2�x = �y = 200π (100 characteristic wavelength). As is 
discussed in Section 3, wave groups which are elongated transverse to the propagation direction have a better chance to 
give rise to rogue waves. The rectangular computational domain with a larger transverse dimension (�y = 2�x) is considered 
here in order to allow for several of these wave packets to fit in the domain.

The right-hand side of the MNLS equation is evaluated using a standard pseudo-spectral method, where the derivatives 
are computed in the Fourier domain and the nonlinear terms are computed in the physical domain. The temporal integration 
of the equations are carried out by a fourth-order Runge–Kutta exponential time differencing (ETD4RK) scheme [11]. This 
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Fig. 2. Schematic view of the computational domain.

Fig. 3. Initial Gaussian wave group with Lx = 20, L y = 20 and A0 = 0.1 (top row) and with Lx = 20, L y = 50 and A0 = 0.1 (bottom row). The color marks 
the wave height. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

method treats the linear part of the MNLS equation exactly, and uses the Runge–Kutta scheme for the evolution of the 
nonlinear terms. In the following computations, we use 29 × 28 Fourier modes to approximate the envelope u(x, t). The 
time-step size for the ETD4RK scheme is �t = 0.025.

3. Evolution of elementary wave groups

We consider elementary wave groups with the Gaussian profile

u0(x, y) = A0 exp

[
− x2

L2
x

− y2

L2
y

]
, (3)

where the parameters Lx (controlling the width of the group in the longitudinal direction x), L y (controlling the width of 
the group in the transverse direction y) and A0 (controlling the amplitude of the group) determine the group completely. 
Note that, for simplicity, we set the orientation angle of the group θ to zero (see Fig. 1). This is motivated by the fact that 
wave groups tend to align with the propagation direction of the underlying wave train.

Using the MNLS equation, we evolve the initially Gaussian elementary wave groups (3) for a wide range of parameters 
(Lx, L y, A0). Fig. 3 shows two examples of the EWGs with the transverse widths L y = 20 and L y = 50. Both groups have the 
same longitudinal width Lx = 20 and amplitude A0 = 0.1. Over time, the amplitude of the wave group with L y = 20 decays 
monotonically and its lateral width grows slightly. The broader wave group with L y = 50, however, undergoes focusing, 
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Fig. 4. (a) The hypersurface dividing the region between no amplitude growth (r = 1) from the region with amplitude growth (r > 1), where r is the 
amplitude ratio r = Amax/A0. (b) Iso-surfaces of Amax = maxx,y,t |u(x, y, t)| corresponding to Amax = 0.05 (blue), Amax = 0.15 (orange), Amax = 0.25 (green) 
and Amax = 0.35 (red). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

whereby its amplitude increases and its longitudinal width decreases slightly. At later times t > 450, the amplitude of this 
wave group decays eventually.

If instead of the initial amplitude A0 = 0.1, we choose a smaller amplitude (say A0 = 0.05), the Gaussian EWG with Lx =
20 and L y = 50 would not undergo amplitude growth either. These observations indicate that the focusing (or defocussing) 
of Gaussian EWGs depends nontrivially on all three parameters (Lx, L y, A0). Cousins and Sapsis [10] observe the same 
phenomena in the case of unidirectional waves, although in that case the parameter L y is absent.

In order to analyze this parametric dependence systematically, we evolve the wave groups (3) for a range of parameters 
(Lx, L y, A0). The integration time here is T = 1500 (approximately 240 wave periods). For each parameter set, we record 
the maximum wave amplitude attained by the wave group,

Amax := max
x,y,t

|u(x, y, t)|, (4)

where the maximum is taken over x ∈ [0, �x], y ∈ [0, �y] and t ∈ [0, T ]. Note that the maximal amplitude Amax is a function 
of the parameters (Lx, L y, A0). We also define the amplitude ratio r = Amax/A0 between the maximal amplitude Amax and 
the initial amplitude A0. It is clear from definition (4) that r ≥ 1. The values r > 1 indicate a focusing wave group, that is 
the amplitude of the EWG has increased over the time interval [0, T ].

Fig. 4(a) shows the hypersurface that forms the boundary between r = 1 and r > 1 as a function of the parameters 
(Lx, L y, A0). The elementary wave groups corresponding to the points below this surface do not undergo amplitude growth, 
while the points above the surface do. In other words, the displayed hypersurface forms the instability boundary for the 
EWGs in the parameter space (Lx, L y, A0).

Fig. 4(a) shows that the amplitudes of the EWGs with very small width in x or in y do not increase. More precisely, 
if Lx < 2 or L y < 10, the EWG’s amplitude decays, irrespective of the initial amplitude A0. As it has been shown for 
unidirectional waves [9], this is a direct consequence of the scale-invariance breaking due to the additional terms of MNLS 
(compared with NLS). Here we observe the corresponding result for two-dimensional waves. For larger values of Lx and L y , 
the amplitude growth (or lack thereof) depends on the initial amplitude. If the initial amplitude is too small (i.e., A0 ≤ 0.05), 
the wave amplitude will not grow at later times, irrespective of Lx and L y . But if the initial amplitude exceeds a threshold 
(depending on Lx and L y) we observe an amplitude growth.

This is further demonstrated in Fig. 4(b), showing a few iso-surfaces of the maximum amplitude Amax as a function of 
the parameters (Lx, L y, A0). We observe that the iso-surface Amax = 0.05 coincides with the surface A0 = 0.05. This indicates 
that, regardless of the initial withs Lx and L y , the amplitudes of the EWGs decay if the initial amplitude is small enough.

Iso-surfaces corresponding to larger values of Amax exhibit curved manifolds that correspond to the required combination 
of parameters (Lx, L y, A0) for the Gaussian EWG to reach the amplitude Amax at some time in the interval [0, T ].

For a finite Lx as the width L y tends to infinity, we approach the unidirectional waves. Fig. 5 shows the instability 
boundary as one approaches this unidirectional limit. The solid curve (red color) corresponding to L y = 120 is in agreement 
with available unidirectional results (cf. Fig. 2(b) from [10] and Fig. 3 of [9]).

In Section 5, we use the computed maximal amplitude Amax(Lx, L y, A0) to estimate the amplitude growth of a given 
random wave field. To this end, we first need to approximate the random wave fields as a superposition of Gaussian EWGs 
(see section 4 below).

We point out that one can further generalize the choice of the EWG (3) by introducing a phase parameter, e.g. u0(x, y) =
A0 exp[−x2/L2

x − y2/L2
y] exp[iπkp x] where kp 	 k0 determines the phase of the modulating wave envelope. The elementary 

wave group (3) corresponds to kp = 0 which simplifies the decomposition of the random wave fields into EWGs by reducing 
the number of free parameters. The effect of this choice (kp = 0) on the resulting maximal amplitude Amax is insignificant 
(see Fig. 6(a)). However, the time when this amplitude is reached depends significantly on the phase (see Fig. 6(b)). As a 
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Fig. 5. The instability boundaries of Gaussian wave groups for various L y . Each curve corresponds to a L y = constant slice of Fig. 4(a). Below each curve we 
have r = 1 (no focusing) while above the curve we have r > 1 (focusing). The curves correspond to L y = 15 (dashed, black), L y = 30 (dotted, blue), L y = 60
(dash-dotted, green) and L y = 120 (solid, red). (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

Fig. 6. The evolution of phase-dependent EWG u0(x, y) = A0 exp(−x2/L2
x ) exp(−y2/L2

y) exp(iπkp x) with A0 = 0.09, Lx = 30, L y = 75 and 0 ≤ kp ≤ 0.1. 
(a) The maximum amplitude Amax over the time interval [0, T ] with T = 1500. (b) The time Tmax when the maximum amplitude Amax is reached. Here, 
T0 = 2π is the wave period.

result, our reduced-order prediction, which ignores the phase dependence, predicts the occurrence of a rogue wave over the 
future time window [0, T ] but not the exact time of its occurrence.

4. Decomposition of random wave fields

To apply the results of the wave group evolution we need to design a robust algorithm for the decomposition of any 
arbitrary wave field. Given such measured wave field, we approximate its envelope |u0| as a superposition of N Gaussian 
functions,

G(x, y) =
N∑

n=1

gn(x, y), (5)

where gn is the n-th Gaussian elementary wave group,

gn(x, y) = an exp

[
− (x − xc

n)
2

(Lx
n)

2

]
exp

[
− (y − yc

n)
2

(L y
n )2

]
. (6)

The functions gn are identical to the Gaussian EWGs (3), modulo a shift in the location of their peaks (xc
n, yc

n). The unknown 
parameters to be determined are

a = (a1, · · · ,aN),

xc = (xc , · · · , xc ), yc = (yc , · · · , yc ),
1 N 1 N
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Lx = (Lx
1, · · · , Lx

N), L y = (L y
1 , · · · , L y

N).

We first determine the location (xc
n, yc

n) of each Gaussian group from the local maxima of the envelope |u0|. The local 
maxima can be readily located by a peak detection algorithm as detailed in Section 4.1. The corresponding amplitude an of 
each Gaussian wave group is determined by the amplitude of the envelope at the point (xc

n, yc
n), i.e., an = |u0(xc

n, yc
n)|.

Once the centers (xc, yc), and hence the amplitudes a, are found, it remains to determine the width parameters (Lx, L y)

of the Gaussian profiles. To this end, we use the following optimization step. Given the envelope |u0|, we define the function

J (Lx, L y) := 1

2

�y∫
0

�x∫
0

(
G(x, y) − |u0(x, y)|)2

dxdy, (7)

where G is the superposition of Gaussian wave groups (5) to be determined. The global minimizer of the function J :
R

N ×R
N →R returns the best Gaussian approximation to the envelope |u0|.

Minimizing the functional J is a standard optimization problem. Here, we evaluate the minimizers by devising an ap-
propriate fictitious-time differential equation as described in Section 4.2. This differential equation is the continuous limit 
of the gradient descent method and its trajectories are guaranteed to converge to stationary points of the functional J (see, 
e.g., section 6-6b of [33] or [17]). Before discussing the optimization method, however, we need to locate the peaks (xc

n, yc
n).

4.1. Detection of the peaks

There are several methods for detection of local maxima of a two-dimensional surface [34]. Here, we approximate the 
local maxima of the envelope |u0| by simply comparing the nearest neighbors on the given computational grid. On a 
rectangular grid, we declare a grid point a local maximum if the value of the envelope is larger than its eight immediate 
neighbors. For our purposes this rudimentary method returns satisfactory results and avoids the computational cost of more 
high-end peak detection algorithms.

Before applying this peak detection algorithm, however, we apply a low-pass filter to the measured envelope |u0|. This 
filter is not an ad hoc smoothing; it is rather motivated by the observations made in Section 3. Recall that wave groups with 
lengths scales Lx < 2 or L y < 10 decay regardless of their initial amplitude A0. Since our purpose is to predict the growth of 
wave groups, we can safely neglect such small scale wave groups. Given this observation, therefore, we discard harmonics 
whose wavenumbers (kx, ky) satisfy

1

2

�x

2π
< kx or

1

10

�y

2π
< ky . (8)

Note that, given the domain size �x × �y , these wavenumbers correspond to decaying wave groups with Lx < 2 or L y < 10.
This physically-motivated smoothing has two advantages. First, it speeds up the computations by removing many ir-

relevant, small-scale peaks from the envelope. Second, as we further discuss in Section 4.3, it makes our group detection 
method robust to measurement noise.

4.2. Detection of the length scales

Once the peaks are detected, it remains to find the optimal set of length scales (Lx, L y) that minimizes the function 
J : RN × R

N → R defined in (7). Here, we devise a dynamical systems-based method that can efficiently find these mini-
mizers. The idea is to evolve Lx(τ ) and L y(τ ) along the fictitious time τ such that the functional J (Lx(τ ), L y(τ )) decreases 
monotonically as τ increases. Differentiating with respect to the fictitious time τ , we obtain

d J

dτ
=

N∑
m=1

∫∫ (
G(x, y) − |u0(x, y)|

)(
∂G

∂Lx
m

dLx
m

dτ
+ ∂G

∂L y
m

dL y
m

dτ

)
dxdy, (9)

where

∂G

∂Lx
m

= 2am
(x − xc

m)2

(Lx
m)3

e−(x−xc
m)2/(Lx

m)2
e−(y−yc

m)2/(L y
m)2

, (10a)

∂G

∂L y
m

= 2am
(y − yc

m)2

(L y
m)3

e−(x−xc
m)2/(Lx

m)2
e−(y−yc

m)2/(L y
m)2

. (10b)

We choose the fictitious-time derivatives dLx
m/dτ and dL y

m/dτ such that J (τ ) := J (Lx(τ ), L y(τ )) is monotonically de-
creasing. A trivial choice achieving this goal is
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Fig. 7. Schematic geometry of the function (7) (color surface) and a trajectory of the ODE (11a), (11b) (red curve). Note that Lx, L y ∈ R
N and that J :

R
2N → R is a multivariable function. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

dLx
m

dτ
= −

∫∫ (
G(x, y) − |u0(x, y)|

) ∂G

∂Lx
m

dxdy, (11a)

dL y
m

dτ
= −

∫∫ (
G(x, y) − |u0(x, y)|

) ∂G

∂L y
m

dxdy, (11b)

for m = 1, 2, · · · , N .
The schematic Fig. 7 shows the geometry of the function J and a trajectory of the ODE (11a), (11b). In reality, the graph 

of J is much more complex with several local minima as opposed to one global minimum depicted here. If the ODE is 
solved from an initial condition (Lx(0), L y(0)) far from the global minimum, the trajectory will most likely converge to a 
local minimum of the function J which could potentially result in an unsatisfactory approximation of the wave envelope. 
Therefore, it is important that the initial conditions (Lx(0), L y(0)) are chosen carefully. Here, we choose these initial condi-
tions such that the second-order partial derivative of the Gaussian wave group gn(x, y) evaluated at the corresponding peak 
(xc

n, yc
n) coincides with the second-order partial derivative of the measured envelope |u0| at that peak. More precisely, we 

choose (Lx
n(0), L y

n (0)) such that

∂2
x gn(xc

n, yc
n) = ∂2

x |u0|(xc
n, yc

n), (12a)

∂2
y gn(xc

n, yc
n) = ∂2

y |u0|(xc
n, yc

n). (12b)

The derivatives of the measured envelope u0 are approximated numerically by finite differences while the derivative of gn
are known analytically. Note that the value of the Gaussian gn at the peak (xc

n, yc
n) is independent of the length scales 

(Lx
n, L y

n ). Similarly, the first-order partial derivatives of gn vanish at the peaks and therefore are independent of the length 
scales (Lx

n, L y
n ). The lowest-order derivatives that depend on the length scales are the second-order derivatives. That is our 

motivation for using these derivatives to obtain good initial conditions (Lx
n(0), L y

n (0)).
This choice of the initial conditions results in a reasonable approximation of the wave envelope |u0| such that all the 

envelopes reported in Section 5 below are reconstructed with relative error,

er = J
1
2

∫∫ |u0(x, y)|2dxdy
, (13)

smaller than 10%.
In order to evolve the ODE (11a), (11b), we use adaptive time stepping where the time step δτ is adjusted adaptively 

to ensure that the relative error er decreases after each time step. We elaborate this adaptive time stepping in Algorithm 1
where our wave group detection is summarized.

The accurate evaluation of the integrals in equation (11a), (11b) requires the wave envelope u0 to be measured on a suf-
ficiently dense spatial grid. The available wave gauges are capable of such high-resolution measurements [4,39]. However, if 
the wave measurements are only available on a sparse staggered grid, the parameters in the series (5) need to be estimated 
by an alternative method such as the statistical techniques of model inference (see Chapter 2 of [3] and Chapter 8 of [21]
for a survey of these statistical methods). Here, we assume that a high-resolution measurement of the wave envelope is 
available so that the right-hand sides of differential equations (11a), (11b) can be evaluated accurately.

4.3. Sensitivity to measurement noise

In practice, the initial wave envelope u0 is measured through a wave gauge with the ability to record the spatial surface 
elevation (see, e.g., [4,19,39]). Such measurements are inevitably contaminated with some degree of noise. It is therefore 
important to verify whether our wave group decomposition is robust with respect to such measurement noise.
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Algorithm 1: Wave group detection algorithm. The variables e(1)
r and e(2)

r are relative errors which are evaluated ac-
cording to equation (13). The inputs are the measured wave envelope |u0|, an initial time step size δτ0, tolerance Tol
and the maximum number of iterations MaxIter. ODEstep(Lx(0), L y(0), δτ ) denotes an explicit ODE time-stepping 
schema for (11a), (11b) with initial conditions (Lx(0), L y(0)) and time step size δτ . Here, the computations are carried 
out with δτ0 = 2, Tol= 0.1, MaxIter= 105 and the fourth-order Runge–Kutta for ODEstep.

Input: |u0|, δτ0, Tol, MaxIter;
Detect peaks (xc , yc , a) (see Section 4.1);
Determine (Lx(0), L y(0)) according to (12a), (12b);

Evaluate e(1)
r with J = J (Lx(0), L y(0));

i = 0;

while e(1)
r > Tol and i ≤ MaxIter do

δτ ←− δτ0;

e(2)
r ←− e(1)

r ;

while e(2)
r ≥ e(1)

r do
δτ ←− δτ/2;
(Lx, L y) ←− ODEstep(Lx(0), L y(0), δτ );

Evaluate e(2)
r with J = J (Lx, L y);

end
(Lx(0), L y(0)) ←− (Lx, L y);

e(1)
r ←− e(2)

r ;
i ←− i + 1;

end

Output: xc , yc , a, Lx , L y , e(1)
r

To this end, we consider a noise-free envelope uG consisting of the superposition of 50 Gaussian wave groups whose 
amplitudes, locations and length scales are chosen randomly. We add some artificial noise to this envelope to obtain the 
noisy envelope u0 = uG + unoise . The noise unoise , which is correlated in space, is obtained from a slowly decaying Gaussian 
spectrum with random phase. We use the ratio of the r.m.s. of |unoise | to the r.m.s. of |uG | as the noise to signal ratio to 
quantify the strength of the noise. Fig. 8(a) shows an example of such a wave filed with 10% noise. Panel (b) shows the 
wave field after applying the low pass filter discussed in Section 4.1 (cf. equation (8)). Panel (c) shows the reconstructed 
wave field from the Gaussian wave field approximation (5). The relative error er of this approximation is about 5.6%.

Fig. 8(d) shows the relative error er (see equation (13)) of the reconstructed wave fields for several levels of signal to 
noise ratio. The reconstructed wave fields have relative errors lower than 8% which is quite satisfactory given the fact that 
the wave gauges measure the surface elevation within 10% error to begin with [39].

The robustness of our wave field decomposition can be attributed to two features of the method. Firstly, the low pass 
filter discussed in section 4.1 results in a relatively smooth surface by removing the small scale fluctuations in the wave 
field (see Fig. 8(b)). As observed in Section 3 (cf. Fig. 4), whether these small scale fluctuations are attributed to noise or are 
genuine features of the wave field, they will not develop into rogue waves and they will not influence larger wave groups 
on their future evolution. Therefore, in the context of rogue wave detection, this low pass filter is justified.

The second reason for the robustness of our method is the spatial average taken in the cost function (7). As a result, 
the right-hand side of the ODEs (11a), (11b) involves an integral over space with an exponential kernel. This averaging adds 
an extra level of smoothing to our method. As opposed to the low pass filter, this smoothing is not applied directly to the 
measured wave field u0; it is instead embedded in the minimization method itself.

5. Results and discussion

In this section, we examine the forecast skill of our method. To this end, we generate a large number of random wave 
fields that follow prescribed spectra. Then we decompose each field into Gaussian elementary wave groups using the method 
developed in Section 4. The future maximal amplitude of the random wave field is then estimated by interpolating the 
precomputed data Amax(Lx, L y, A0) from Section 3.

5.1. Wave spectra

For the wave field, we consider envelopes of the form

û0(k) = 2π√
�x�y

ψ(k)exp[iφ(k)], (14)

where û0(k) denotes the Fourier coefficient of the envelope corresponding to the wave vector k = (kx, ky) ∈ Z
2. The phase 

φ(k) is a random variable uniformly distributed over the interval [0, 2π ]. The spectrum of the waves generated from (14)
coincide with |ψ(k)|2.
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Fig. 8. (a) A wave field with 10% noise added to it. (b) The wave field after low-pass filtering. (c) Reconstructed wave group with Gaussian wave group 
approximation (5). (d) The relative error er of the reconstructed wave fields as a function of the noise to signal ratio.

Table 1
List of parameters for the five sets of simulations considered here. For the Gaussian spectra we have σx = 0.035 and σy = 0.015. For the JONSWAP spectra 
we set γ = 3.3, α = 0.04. The remaining parameters are listed in the table.

G1 G2 J1 J2 J3

Spectrum Gaussian Gaussian Jonswap Jonswap Jonswap
Parameter ε = 0.035 ε = 0.053 θ0 = 40◦ θ0 = 60◦ θ0 = 80◦

We will consider two types of wave spectra: a Gaussian spectrum and the Joint North Sea Wave Observation Project 
(JONSWAP) spectrum. Following Dysthe et al. [16], the Gaussian spectrum is defined as

ψ(k) = ε√
2πσxσy

exp

[
− (qxkx)

2

4σ 2
x

− (qyky)
2

4σ 2
y

]
, (15)

where qx = 2π/�x and qy = 2π/�y . For the JONSWAP spectrum we have

ψ(k) = α1/2

k2
exp

[
−5

8

(
k0

k

)2
]

γ r/2
√

D(θ), r = exp

[
− (

√
k − √

k0)
2

2σ 2k0

]
. (16)

The directional spreading D(θ) is given by

D(θ) =
{

2
θ0

cos2
(

πθ
θ0

)
, |θ | ≤ θ0

2

0, |θ | > θ0
2

, (17)

where θ is the propagation direction and the parameter θ0 is the directional spreading angle of the wave.
We consider five sets of experiments, two with the Gaussian spectrum and three with the JONSWAP spectrum as listed 

in Table 1. For the Gaussian spectrum we set σx = 0.035, σy = 0.015 and consider two sets of values for the remaining 
parameter, ε = 0.035 (G1) and ε = 0.053 (G2). The standard deviations σx and σy are chosen such that several wave 
groups fit in the computational domain. We choose σy < σx since the waves tend to elongate orthogonal to the propagation 
direction of the wave train (the x-axis here). We also consider conservative values for the steepness ε to ensure the validity 
of the envelope equations (2).
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Fig. 9. Joint PDF of the detected Gaussian wave groups with length scales (Lx, L y) and the wave amplitude A0. Each PDF is extracted from 10, 000 realiza-
tions of random waves with Gaussian spectrum (15): (a) G1, (b) G2. The figures shows 5 isosurfaces of the PDFs, equispaced between 5% and 95% of the 
maximum PDF value.

Table 2
Statistics of the wave groups, rogue waves and their prediction. Here the wave period is T0 = 2π and the characteristic wave length is λ0 = 2π .

G1 G2 J1 J2 J3

〈A0〉 0.050 0.075 0.054 0.053 0.052
〈Lx〉 30.0 30.2 19.1 18.9 18.9
〈L y〉 67.7 68.2 53.8 36.4 28.3

Ac
0 0.087 0.087 0.092 0.097 –

Lc
x 32 31 20 21 –

Lc
y 76 76 63 47 –

rogue waves 11.7% 25.6% 2.2% 1.4% 0%
false negatives 4.9% 13.7% 1.4% 1.1% –
false positives 3.9% 5.6% 0.2% 0.1% 0%
average warning time 78T0 40T0 68T0 72T0 –
average relative error 3.0% 9.2% 5.6% 5.0% 4.9%

For the JONSWAP spectrum, following Xiao et al. [47], we set σ = 0.07 for k ≤ k0 and σ = 0.09 for k > k0. The peak 
enhancement factor is set to γ = 3.3 to conform to experimentally measured spectra [24]. The amplitude is set to α = 0.04; 
this value is chosen so that the resulting average wave height is around 0.05, comparable to experiment G1. We investigate 
the effect of the spreading angle since this is the parameter that was absent in the unidirectional context considered 
previously by Cousins and Sapsis [10] and Farazmand and Sapsis [18]. As listed in Table 1, we consider two values of 
the spreading angle, θ0 = 40◦ and 60◦ (experiments J1 and J2, respectively). For completeness we also consider a third 
spectrum with spreading angle θ0 = 80◦ (experiment J3). In this latter case, however, we have no rogue waves occurring 
due to modulation instability, but nevertheless we will include J3 in our results to demonstrate the trends as the spreading 
angle increases.

5.2. Group detection and predictions

For each experiment G1-G2 and J1–J3, we generate 10, 000 wave fields (note that the phases φ in (14) are random). 
Using the group detection algorithm of Section 4, each wave field is decomposed into EWGs and the length scales Lx , L y

and amplitude A0 of the wave groups are recorded.
The resulting parameters (Lx, L y, A0) span a wide range of values that depends on the shape of the spectrum. Fig. 9, for 

instance, shows the joint probability distribution function (PDF) of the wave group parameters (Lx, L y, A0) resulting from 
the simulations G1 and G2. As reported in Table 2, the average peak height of the detected wave groups for experiments G1 
and G2 are 〈A0〉 = 0.05 and 〈A0〉 = 0.075, respectively. The larger average peak height in G2 (compared to G1) is expected 
as the parameter ε controls the average height of the resulting waves.

We observe that the mean length scales 〈Lx〉 and 〈L y〉 are very similar for the two experiments G1 and G2 (see Table 2). 
This is also expected as the standard deviations σx and σy are identical for the two spectra. The standard deviation of the 
length scales Lx and L y are significantly larger for the run G2 compared to G1. This is visibly appreciable from Fig. 9 that 
shows a broader joint PDF for the run G2, spanning a larger range of length scales, which is a direct consequence of the 
larger energy content of the spectrum in this case.

Next we examine the predictive power of the EWG decomposition. To this end, we generate 1, 000 random wave field 
envelopes u0 for each parameter set G1 and G2. Each envelope is evolved, using the MNLS equation (2), for T = 1500 time 
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Fig. 10. A wave field generated from spectrum G2 at the initial time (a) and 175 wave periods later (b). The red curve marks the focusing wave group 
(identified at the initial time) that develops into a rogue wave. See the Supplementary Material for a movie.

Fig. 11. Predicted maximal amplitude maxx,y,t |u(x, y, t)| from Gaussian group detection versus the true amplitude from direct numerical simulation of 
MNLS. (a) G1 (b) G2. The blue dashed lines indicate the magnitude of a rogue wave. (For interpretation of the references to color in this figure, the reader 
is referred to the web version of this article.)

units and the maximum spatiotemporal amplitude of the field maxx,y,t |u(x, y, t)| is recorded. We refer to maxx,y,t |u(x, y, t)|
as the true amplitude of the wave.

We predict the maximal amplitude of each wave field by decomposing it into EWGs and interpolating the function Amax

that is precomputed from Section 3. We refer to the maximal resulting amplitude as the predicted amplitude of the wave. 
An example of such prediction is shown in Fig. 10. The accuracy of the scheme is demonstrated in Fig. 11 that shows the 
true amplitudes versus the predicted amplitudes for the experiments G1 and G2. The figures for the JONSWAP experiments 
J1–J3 are similar (not presented here). As reported in Table 2, on average, the relative errors of the predictions are between 
3% and 9.2%. The relative prediction error is defined here as the ratio of the difference between the true amplitude and the 
predicted amplitude divided by the true amplitude:

relative prediction error =
∣∣true amplitude − predicted amplitude

∣∣
true amplitude

. (18)

Given the approximations and assumptions underlying our reduced-order prediction, the resulting relative prediction errors 
of less than 9.2% are quite satisfactory.
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Fig. 12. Joint PDF of the detected Gaussian wave groups with length scales (Lx, L y) and the wave amplitude A0. Each PDF is extracted from 10, 000
realizations of random waves with JONSWAP spectrum with the spreading angle θ0 = 40◦ (a), θ0 = 60◦ (b) and θ0 = 80◦ (c). The figures shows 5 isosurfaces 
of the PDFs, equispaced between 5% and 95% of the maximum PDF value. The gray (dark) surface shows the instability boundary above which focusing 
instabilities form.

Fig. 13. PDF of the detected length scales Lx and L y from JONSWAP simulations J1 (blue, circles), J2 (red, stars) and J3 (black, square). (For interpretation of 
the references to color in this figure, the reader is referred to the web version of this article.)

Now we consider the prediction of rogue waves using the reduced order method. Following the convention, we defined 
an extreme (or rogue) wave as one whose height H = 2|u| exceeds twice the significant wave height Hs , where the signif-
icant wave height is defined as four times the standard deviation of the surface elevation: Hs = 4

√〈ζ 2〉. The dashed blue 
lines in Fig. 11 mark the resulting rogue waves threshold, i.e., |u| = Hs . First, we observe that, compared to G1, a higher 
percentage of wave field from experiment G2 produce rogue waves (see Table 2). This is to be expected as the spectral am-
plitude ε is larger in G2. As a result, the amplitude of individual wave groups tend to be larger for G2. Another contributing 
factor to this higher probability is the fact that the wave groups in G2 are more likely to have larger transverse length scales 
L y (cf. Fig. 9).

We now turn to the experiments J1–J3 with the JONSWAP spectrum (16). Here, we focus on the directionality of the 
spectra controlled by the spreading angle θ0, keeping all the other parameters fixed. Fig. 12 shows the PDF of the length 
scales of the detected EWGs obtained from 10, 000 randomly generated wave fields. The average wave amplitudes 〈A0〉 and 
lengths scales 〈Lx〉 and 〈L y〉 are reported in Table 2. We first observe that the average wave amplitudes 〈A0〉 ≈ 0.05 are 
similar for the three experiments J1–J3. In spite of this similarity, the frequency of rogue wave occurrence decreases as the 
spreading angle θ0 increases. For the largest angle θ0 = 80, for instance, no rogue waves were produced from the 1000 wave 
fields considered. This is a well-known effect reported previously in several numerical and experimental studies (see, e.g., 
[30,47]).

The reason for this decreasing probability is clear from our wave group analysis presented in Fig. 12. As the spreading 
angle θ0 increases the entire PDF shifts towards lower values of L y , i.e. the average transversal length scale 〈L y〉 decreases. 
This is better seen in the one-dimensional marginal PDFs shown in Fig. 13. Recall from Section 3 that the wave groups with 
smaller L y require larger initial amplitude A0 in order to focus (cf. Fig. 4). The wave fields with larger spreading angle tend 
to have wave groups with smaller transversal length scales L y , while having similar wave amplitudes A0. As a result, they 
are less likely to produce rogue waves. We point out that the distribution of the longitudinal length scales Lx are quite 
insensitive to the spreading angle θ0 (see Fig. 13(a)).



M. Farazmand, T.P. Sapsis / Journal of Computational Physics 340 (2017) 418–434 431
We point out that the computational time required by the reduced-order prediction is significantly shorter than the time 
required for evolving the wave field under the envelope equation. For instance, evolving the wave fields under the MNLS 
equation for 100 wave periods (using the ETD4RK scheme with the time-step size �t = 0.025 and 29 × 28 grid points) takes 
approximately 1800 seconds (= 30 minutes). Decomposing the same wave fields into the Gaussian EWGs, on the other hand, 
takes between 10 and 40 seconds. The variation in the decomposition time is due to the variations in the number of wave 
groups N (cf. Eq. (5)) that are present in different randomly generated wave fields.

5.3. Critical length scales and amplitudes

Recall from Section 3 that particular combinations of the length scales (Lx, L y) and the amplitude A0 are required for 
the wave group to evolve into a rogue wave. Then the natural question is: Given a particular wave spectrum, what critical 
combination (Lx, L y, A0) is most likely to produce rogue waves? The EWG evolution (Fig. 4) together with the PDFs of the 
detected groups (Figs. 9 and 12) are sufficient to answer this question.

For a given wave spectrum, let Aext denote the amplitude threshold for a rogue wave. That is a wave with amplitude 
|u| > Aext constitutes a rogue wave. Following the conventional definition of a rogue wave (waves with height greater than 
twice the significant wave height Hs), we have Aext = Hs . Considering the maximum amplitude function Amax shown in 
Fig. 4, the rogue waves lie above the critical surface

Amax(Lx, L y, A0) = Aext . (19)

Since this critical surface is a graph over (Lx, L y) variables, the implicit function theorem [37] guarantees that there is a 
function Ac

0 : R ×R →R such that

Amax
(
Lx, L y, Ac

0(Lx, L y)
) = Aext, (20)

for all Lx and L y . The quantity Ac
0(Lx, L y) is the minimal initial amplitude required for an EWG with length scales (Lx, L y)

to develop into a rogue wave at some point in the future.
On the other hand, for a given wave spectrum, the probability distribution function p(Lx, L y, A0) is computed in Sec-

tion 5.2 (Figs. 9 and 12). Using this three-dimensional PDF, we define the conditional probability of a rogue wave with the 
given length scales Lx and L y as

Pext(Lx, L y) =
∞∫

Ac
0(Lx,L y)

p(Lx, L y, A0)dA0, (21)

where Ac
0 is the critical amplitude defined in equation (20).

Fig. 14 shows the probability Pext for the energy spectra listed in Table 1. Each probability function has a distinct peak at 
some length scales (Lc

x, Lc
y) reported in Table 2. We denote the associated critical amplitude Ac

0(Lc
x, Lc

y) by Ac
0 for simplicity. 

The physical interpretation of the triplet (Lc
x, Lc

y, Ac
0) is the following. For a given spectrum, rogue waves most likely develop 

from wave groups whose length scales are (Lc
x, Lc

y) and their amplitudes are larger than or equal to Ac
0. Roughly speaking, 

this means that the wave groups with length scales (Lc
x, Lc

y) and amplitudes larger than Ac
0 are the ‘most dangerous’ both 

in terms of dynamics (i.e. they tend to evolve to rogue waves) and also in terms of probability of occurrence.
The critical values (Lc

x, Lc
y, Ac

0) are listed in Table 2 for each wave spectrum. Focusing on the spectra G1 and G2, we 
observe that the critical length scale Lc

x � 31 is quite close to the average longitudinal lengths 〈Lx〉 � 30. In contrast, the 
critical length Lc

y � 76 is significantly larger than the typical transverse length scale 〈L y〉 � 68. The critical amplitude Ac
0 �

0.087 is also similar for the two spectra. The crucial difference is however the fact that the average amplitude of the wave 
groups for G2 (〈A0〉 = 0.075) is significantly larger than G1 (〈A0〉 = 0.05). As a result, the wave groups from G2 are more 
likely to achieve the critical amplitude for rogue wave formation. This explains the high rate of rogue wave formation 
(25.6%) observed for G2. Similar observations can be made about the spectra J1 and J2.

6. Summary and conclusion

Large waves form as a result of the dispersive mixing of smaller wave groups and the subsequent focusing due to 
nonlinear effects. Here we provide a method to quantify this mechanism in a reduced-order fashion. Specifically, we first 
develop a wave field decomposition algorithm that robustly and efficiently represents a wave field as a discrete set of 
elementary wave groups (EWGs) with Gaussian profiles. We then utilize the governing envelope equations to quantify the 
evolution of each of those elementary wave groups.

The combination of the wave field decomposition algorithm, which provides information about the statistics of the sys-
tem (caused by the dispersive mixing of harmonics), and the precomputed map for the expected wave group elevation, 
which encodes dynamical information for focusing phenomena, allows for (i) the understanding of how the probability of 
occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical lengthscale character-
izing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious 
reduced-order prediction scheme for large waves.
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Fig. 14. The probability of rogue wave formation Pext (21) as a function of the length scales Lx and L y for the experiments G1–G2 and J1–J2. The probability 
for J3 is negligible and hence is not shown. The peak of Pext marks the critical length scales (Lc

x, Lc
y).

Specifically, the EWG decomposition combined with the precomputed map provides information that complements the 
usual spectral analysis of the wave field, when it comes to large waves. For instance, it has been reported that the frequency 
of rogue wave occurrence is decreasing as the spreading angle increases. Our EWG analysis reveals that larger spreading 
angles lead to wave groups whose width in the transverse direction, L y , tends to be smaller. This has a direct interpretation 
in terms of the probability of occurrence of rogue waves.

Through the same analysis we also identified a critical lengths scale for each direction (Lc
x, Lc

y) and a critical amplitude 
Ac

0 associated with rogue waves. For each wave spectrum these are the most likely combination of scales and amplitudes 
that will eventually grow into a rogue wave. We found that the conditional probability of the critical length scales (Lc

x, Lc
y)

is directly related to the frequency of rogue wave occurrence.
Regarding the prediction scheme, we showed, through extensive direct numerical simulations of the modified nonlinear 

Schrödinger (MNLS) equation, that the proposed reduced-order method is capable of predicting the future wave height 
with less than 10% relative error and a rogue-wave-prediction time window between 40 and 78 wave periods. The scheme 
is orders of magnitude less expensive compared with direct simulation methods and it is very robust with respect to 
measurement noise, which is inevitable in any realistic setting.

Our work can be extended in several directions. An important direction is the case of crossing seas where wave groups 
can carry more than one dominant wavenumber. Other scenarios where our analysis can be extended in a straightforward 
manner is the case of wave-current interaction and finite bathymetry. For such cases we expect that the stability and 
response surfaces will be modified in order to take into account the additional effect. In such cases, envelope equations 
may not be the best approach to characterize the dynamics of EWGs and more direct methods should be utilized. Clearly 
an important step forward is the experimental validation of the proposed scheme and we currently work towards this 
direction. The proposed approach provides an important paradigm of how the combination of dynamics and statistics can 
lead to better understanding of the system properties. In addition, it paves the way for the design of practical and robust 
prediction systems for large waves in the ocean.
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