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We develop a new robust methodology for the stochastic Navier–Stokes equations based on 
the dynamically-orthogonal (DO) and bi-orthogonal (BO) methods [1–3]. Both approaches 
are variants of a generalized Karhunen–Loève (KL) expansion in which both the stochastic 
coefficients and the spatial basis evolve according to system dynamics, hence, capturing the 
low-dimensional structure of the solution. The DO and BO formulations are mathematically 
equivalent [3], but they exhibit computationally complimentary properties. Specifically, the 
BO formulation may fail due to crossing of the eigenvalues of the covariance matrix, 
while both BO and DO become unstable when there is a high condition number of the 
covariance matrix or zero eigenvalues. To this end, we combine the two methods into a 
robust hybrid framework and in addition we employ a pseudo-inverse technique to invert 
the covariance matrix. The robustness of the proposed method stems from addressing the 
following issues in the DO/BO formulation: (i) eigenvalue crossing: we resolve the issue 
of eigenvalue crossing in the BO formulation by switching to the DO near eigenvalue 
crossing using the equivalence theorem and switching back to BO when the distance 
between eigenvalues is larger than a threshold value; (ii) ill-conditioned covariance matrix: 
we utilize a pseudo-inverse strategy to invert the covariance matrix; (iii) adaptivity: we 
utilize an adaptive strategy to add/remove modes to resolve the covariance matrix up 
to a threshold value. In particular, we introduce a soft-threshold criterion to allow the 
system to adapt to the newly added/removed mode and therefore avoid repetitive and 
unnecessary mode addition/removal. When the total variance approaches zero, we show 
that the DO/BO formulation becomes equivalent to the evolution equation of the Optimally 
Time-Dependent modes [4]. We demonstrate the capability of the proposed methodology 
with several numerical examples, namely (i) stochastic Burgers equation: we analyze the 
performance of the method in the presence of eigenvalue crossing and zero eigenvalues; 
(ii) stochastic Kovasznay flow: we examine the method in the presence of a singular 
covariance matrix; and (iii) we examine the adaptivity of the method for an incompressible 
flow over a cylinder where for large stochastic forcing thirteen DO/BO modes are active.
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1. Introduction

Recently, there has been a growing interest in quantifying parametric uncertainty in physical and engineering problems 
through the probabilistic framework. Such problems are often described by Stochastic Partial Differential Equations (SPDEs), 
and they arise in various fields such as fluid mechanics, solid mechanics, wave propagation through random media [5–7], 
random vibrations [8–10], finance [11], etc. The source of stochasticity in all the above cases includes uncertainty in physical 
parameters, initial and/or boundary conditions, random excitations, etc. All these stochastic elements may be modeled as 
random processes or random variables. Several methods have been developed to study SPDEs, including Monte Carlo (MC) 
method and its variants such as multi-level MC and Quasi-MC (QMC) [11–13] and, more recently, generalized Polynomial 
Chaos (gPC), Multi-Element generalized Polynomial Chaos (MEgPC), Probabilistic Collocation Method (PCM), Multi-Element 
Probabilistic Collocation Method (MEPCM) and many other variants (see e.g. [14–27] and references therein).

Another approach to uncertainty quantification is order-reduction schemes or Reduced-Order Models (ROMs) for the 
simplification and analysis of high-dimensional complex systems. Many methods in ROMs have been developed in the 
context of deterministic framework such as Proper Orthogonal Decomposition (POD) or Principal Component Analysis (PCA) 
with applications to many disciplines such as turbulent fluid flows [28,29], structural vibrations [30,31], image processing 
[32], signal processing and data compression to name a few. However, there have been a few research studies on ROMs in 
the context of stochastic framework. To this end, the Karhunen–Loéve decomposition turns out to be useful as it provides a 
low-dimensional representation for second-order random fields as it is optimal in the mean square sense.

A new methodology was developed in [1,33] in which a generalized KL expansion of the form

u(x, t;ω) = ū(x, t) +
N∑

i=1

√
λiφi(x, t)ηi(t;ω), ω ∈ � (1)

is considered, where N is the number of modes, ū(x, t) is the mean, λi and φi(x, t) are the eigenvalues and eigenfunctions 
of the spatial basis, respectively, and ηi(t; ω) are zero-mean stochastic processes. In [1], exact evolution equations for the 
mean, spatial basis and the stochastic coefficients are derived. In the above representation both the spatial basis φi(x, t) and 
the stochastic basis ηi(t; ω) evolve in time unlike other methods such as gPC or POD. The time redundancy in both the 
spatial basis and the stochastic coefficients is removed by imposing the so called Dynamical Orthogonality (DO) condition. The 
DO method has been applied in several application including fluid flows [34,35]. A theoretical bound for the approximation 
error of the DO solution was obtained for the case of a linear parabolic equation with random data in [36].

Recently, Cheng et al. [2] adopted the same time-dependent representation used in [1]. By imposing static constraints 
on both the spatial and the stochastic basis, the so called Bi-Orthogonal (BO) condition, an independent set of equations 
describing the evolution of all the quantities involved (BO evolution equations) was obtained. Although in both studies 
the same projections were employed (with respect to physical and stochastic space) the equations rely on different condi-
tions imposed on the same representation. Similar ideas have been proposed earlier to this work in quite different fields, 
namely chemistry and quantum mechanics for the approximation of the deterministic Schrodinger equations by the Multi 
Configuration Time Dependent Hartree (MCTDH) method [37,38], and later by Koch and Lubich [39].

In the approximation given by equation (1), the solution may need a different number of terms to represent the solu-
tion within a prescribed accuracy e.g. due to the nonlinearity of the system. In such cases, we need to adaptively add or 
remove modes to better capture the transient behavior. In [40] a set of energy-based adaptive criteria was developed for 
the evolution of the stochastic subspace dimensionality. The newly added modes must have small energy at some threshold 
value above which the covariance energy is resolved. Similarly, the mode removal occurs for modes with low energy. The 
existence of low energy modes, i.e. small eigenvalues of the covariance matrix, in both BO and DO equations renders these 
systems highly ill-conditioned, and for zero eigenvalue they become unstable. As it was observed in [41] for deterministic 
initial conditions, the covariance matrix in the DO formulation is singular and the authors suggest using a Pseudo-Inverse 
(PI) technique to invert the covariance matrix. Similarly, the issue of rank overestimation leads to ill-conditioned matrices 
in dynamical low-rank approximations. To overcome the numerical instability arising from inverting the ill-conditioned ma-
trices, in [42], a splitting scheme for matrix and linear differential operators was proposed. As we will demonstrate in this 
study, the BO formulation also suffers from an ill-conditioned covariance matrix or zero eigenvalue.

The precise mathematical relationship between the two methods was established rigorously in [3]; the methods are 
equivalent in the sense that one can be derived from the other through an invertible and linear transformation governed 
by an orthogonal matrix differential equation. Moreover, BO becomes unstable when there is an eigenvalue crossing, while 
it preserves a diagonal covariance matrix for all times. It was shown in [3] that absent of eigenvalue crossing, numerically 
BO performs better than DO. It is, therefore, advantageous to use BO as the dominant solver and switch to DO only when 
eigenvalue crossings are detected. To this end, we propose a unified hybrid framework of the two methods for SPDEs as a 
reduced-order modeling approach: (1) by utilizing an invertible and linear transformation between them where we switch 
from BO to DO when facing an eigenvalue crossing, and (2) by employing a pseudo-inverse technique for inverting the 
covariance matrix. We will refer to this hybrid approach as the robust PI BO/DO method.

The structure of the paper is as follows. In Section 2 we briefly review DO and BO representations, their corresponding 
evolution equations and the equivalence between BO and DO along with the matrix differential equation. In Section 3 we 
propose a pseudo-inverse strategy for dealing with singular and near singular covariance matrix along with a soft-threshold 



H. Babaee et al. / Journal of Computational Physics 344 (2017) 303–319 305
criterion for adaptive mode addition/removal. In Section 4 we present three problems to illustrate the proposed methodol-
ogy: (i) one-dimensional stochastic Burgers equation; (ii) stochastic Kovasznay flow, and (iii) stochastic incompressible flow 
over cylinder. We conclude the paper with a brief summary in Section 5.

2. Mathematical formulation

In this section we briefly review BO and DO formulations [1,43,3,2].

2.1. Definitions

Let (�, F , P ) be a probability space, where � is the sample space, F is the σ -algebra of subsets of �, and P is a 
probability measure. For a random field u(x, t; ω), ω ∈ �, the expectation operator of u is defined as

ū(x, t) ≡ E[u(x, t;ω)] =
∫
�

u(x, t;ω)dP (ω).

The set of all continuous and square integrable random fields, i.e., 
∫

D E[u(x, t; ω)T u(x, t; ω)]dx < ∞, where u(x, t; ω)T is the 
transpose of u, for all t ∈ T and the bi-linear form of the covariance operator

Cu(·,t;ω)v(·,s;ω)(x, y) = E[(u(x, t;ω) − ū(x, t))T (v(x, s;ω) − v̄(x, s))], x, y ∈ D,

form a Hilbert space that will be denoted by H [5,44]. For u(x, t; ω), v(x, t; ω) ∈H, the spatial inner product is defined as

< u(·, t;ω), v(·, t;ω) >=
∫
D

u(x, t;ω)T v(x, t;ω)dx.

We define the projection operator �S of a random field u(x, t; ω), x ∈ D to an m-dimensional linear subspace S spanned by 
the orthonormal basis S = {wi(x, t; ω)}m

i=1, x ∈ D as follows:

�S [u(x, t;ω)] =
m∑

i=1

< wi(·, t;ω), u(·, t;ω) > wi(x, t;ω)

Next, we consider the covariance operator when it acts on an element u(x, t; ω), ω ∈ � for s = t:

Cu(·,t;ω)v(·,t;ω)(x, y) = E[(u(x, t;ω) − ū(x, t))T (v(x, t;ω) − v̄(x, t))], x, y ∈ D,

and the integral operator, based on the covariance operator C at time t , defined by

KC φ =
∫
D

Cu(·,t)u(·,t)(x, y)φ(x, t)dx, φ ∈ L2 (2)

is a compact, self-adjoint, and positive operator in the Hilbert space of continuous and square integrable fields L2 equipped 
with inner product < ·, · >. Then the KL expansion [45] implies that every random field u(x, t; ω) ∈ H at a given time t can 
be written in the form given by equation (1), where the eigenvalues and the eigenfunctions are obtained from the following 
eigenvalue problem:

∫
D

Cu(·,t)u(·,t)(x, y)φi(x, t)dx = λiφi(y, t), y ∈ D, (3)

where φi are orthonormalized so that < φi, φ j >= δi j and η(t; ω) are zero mean, unit variance, and mutually uncorrelated, 
i.e. E[ηiη j] = δi j . The eigenvalues λi are non-negative and can be arranged in a decreasing order. Then, every random field 
u(x, t; ω) ∈H can be approximated by a finite series expansion with N terms of the expansion given in equation (1). Indeed, 
it is known that the KL decomposition is optimal in the mean square sense. In the context of numerical method to SPDEs, 
constraints are required to derive how the components in the above KL decomposition evolve in time; the components 
(λi, φi, ηi)

N
i=1 are time-dependent. In the next subsections we review the two methods which have different assumptions on 

the constraints.



306 H. Babaee et al. / Journal of Computational Physics 344 (2017) 303–319
Table 1
The BO and DO conditions. IN is the N × N identity 
matrix and O N the N × N zero matrix.

BO DO

〈
UT U

〉 = 
, E[YT Y] = IN

〈
∂UT

∂t
U
〉
= O N

2.2. Model problem

We consider the following stochastic partial differential equation

∂u

∂t
= F (u(t, x;ω)), x ∈ D,ω ∈ �, (4a)

u(t0, x;ω) = u0(x;ω), x ∈ D,ω ∈ �, (4b)

B[u(t, x;ω)] = h(t, x;ω), x ∈ ∂ D,ω ∈ �, (4c)

where F is a differential operator and B is a linear differential operator, D is a bounded domain in Rd where d = 1, 2, or 3. 
We assume that the problem is well-posed such that the set of solution u(x, t; ω) forms a Hilbert space H ≡ L2(D × �) for 
every t . The randomness may come from different sources including parameters, initial conditions, and boundary conditions.

2.3. The BO and DO evolution equations

In both the BO and DO decompositions the following representation of the solution is considered:

u(x, t;ω) = ū(x, t) +
N∑

i=1

ui(x, t)Yi(t;ω) = ū(x, t) + U(x, t)YT (t;ω), (5)

where ui(x, t) are the spatial basis and Yi(t; ω) the stochastic basis. We use the vector notation for simplicity: U(x, t) =
(u1(x, t), u2(x, t), ..., uN(x, t)) and Y(t; ω) = (Y1(t; ω), Y2(t; ω), ..., Y N (t; ω)), and ignore the arguments x, t, ω when there is 
no ambiguity for simplicity. In the DO formulation a dynamic constraints is imposed on the spatial basis, i.e., the evolution of 
the spatial basis U(x, t) be normal to the space V S spanned by the spatial basis U(x, t). This condition is referred to as the 
dynamically orthogonal condition. Note that the DO condition implies that the spatial basis preserves orthonormality in time. 
In contrast, BO imposes static constraints on both the spatial and stochastic basis; the spatial basis is orthogonal while the 
stochastic basis is orthonormal at every time. The dynamically orthogonal condition and the static constraints are shown in 
Table 1.

Before presenting the evolution equations for BO and DO we define the following matrices and vectors to simplify the 
notation:

h =
〈
F̃ [u],U

〉
(6a)

p = E[F [u]Y] (6b)


 = diag(λ1, ..., λN ) (6c)

C = E[YT Y] (6d)

G =
〈
UT E[F [u]Y]

〉
(6e)

M = E

[
YT dY

dt

]
(6f)

S =
〈
UT ∂U

∂t

〉
. (6g)

Note that λi, i = 1, ..., N are the eigenvalues of the covariance matrix. For the BO formulation the covariance matrix is 
the inner product of the spatial basis, i.e. 
 =< UT U >, while for the DO formulation the covariance matrix is C = E[YT Y].

Remark 1. Deriving closed formulas for M and S is the key to derive the evolution equations for BO and DO as they contain 
the information of how the spatial and stochastic bases evolve in time. It has been shown in [1–3] that there exist unique 
and closed formulas for M and S for BO and DO based on the BO and DO condition. For the DO formulation

S = O N , M = G T , (7)

where O N is the N-by-N zero matrix. For the BO formulation deriving S and M is more involved but utilizing the BO 
condition yields the following closed formula [3]:
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Table 2
The BO and DO evolution equations. UD O and YD O are the DO components of the spatial and 
stochastic basis, respectively, and UB O and YB O are the BO components.

DO BO

Mean
∂ūD O

∂t
= E[F (u)] ∂ūB O

∂t
= E[F (u)]

Spatial basis
∂UD O

∂t
= (p − UD O G)C−1 ∂UB O

∂t
= UB O M + p

Stochastic basis
dYD O

dt
= h

dYB O

dt
= (−YB O S T + h)
−1

Mij =
{ Gij+G ji

−λi+λ j
, if i �= j

0, if i = j
(8a)

Sij =
{

Gij + λi Mij, if i �= j

Gii, if i = j.
(8b)

Note that M is skew-symmetric while S is almost skew-symmetric meaning that the diagonal entries are non-zero.

The BO and DO evolution equations are shown in Table 2. They consist of one deterministic PDE for the mean, N deter-
ministic PDEs for the spatial basis, and N stochastic ODEs for the stochastic basis.

2.4. Equivalence of BO and DO

Let Ǔ = (ǔ1, ̌u2, ..., ̌uN), Û = (û1, ̂u2, ..., ̂uN), Y̌ = (Y̌1, Y̌2, ..., Y̌ N ) and Ŷ = (Ŷ1, Ŷ2, ..., Ŷ N ) be the BO and DO components, 
respectively. We consider the linear transformation between the DO and BO components:

Y̌ = Ŷ P
− 1
2 , (9a)

Ǔ = Û P

1
2 , (9b)

where P satisfies the matrix differential equation

dP

dt
= P
− 1

2 �
− 1
2 , (10)

P (0) = IN ,

where IN is the N × N identity matrix, and � is the skew-symmetric part of the matrix S in equation (6g), i.e. �i j = Sij for 
i �= j and �ii = 0 for i = 1, ..., N . This leads to the following theorem:

Theorem 1. [3] Suppose that Ǔ and Y̌ satisfy the BO equations. Assume that the eigenvalues λi, i = 1, ..., N of the covariance operator 
in equation (3) are discrete at any time. Then the linear transformation (9a)–(9b) defines a new set of stochastic coefficients and basis 
elements for which (i) Y̌ T Ǔ = Ŷ T Û the total solution remains invariant, and (ii) Û satisfies the DO condition. Hence, (Û , Ŷ ) is a 
solution of the DO equations. The invertibility of the transformation allows for the application of the Theorem in the inverse direction.

3. Robust adaptive algorithm

The BO formulation, by construction, preserves the orthogonality of both stochastic and spatial bases. The orthogonality 
results in a diagonal covariance matrix 
 whose inverse can be cheaply computed. However, the BO evolution equations 
assume that there is no eigenvalue crossing. In practice, when two eigenvalues are close to each other, the numerical insta-
bility can occur due to the singularity (see equation (8a)). On the contrary, the DO evolution equations involve the inverse of 
the covariance matrix C for the stochastic basis. Both methods, however, become unstable for a singular covariance matrix.

We employ Theorem 1 to switch from BO to DO and vice versa in order to exploit the bi-orthogonality structure of BO 
and switch to DO when the difference between the eigenvalues is smaller than a threshold value. We refer to this approach 
as hybrid BO/DO and we provide more details in Section 3.1. Moreover, the BO/DO expansion, expressed by equation (5), may 
not have a fixed number of modes to represent the solution within a prescribed accuracy, e.g. due to the nonlinearity of the 
system, and in such cases we need to adaptively add modes when the smallest eigenvalue is larger than a certain threshold 
value or remove modes when the smallest eigenvalue is smaller than a certain threshold value. As we will demonstrate 
in this paper, the hybrid formulation can facilitate this adaptation more readily in a robust manner. Since the mode re-
moval/addition occurs at small threshold energy levels, the issue of near-singular covariance must be dealt with. To address 
this problem we use the pseudo-inverse of the covariance matrix as it will be explained in Section 3.3.
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3.1. Hybrid BO/DO algorithm

In order to avoid the issue of eigenvalue crossing in the BO formulation, when at time tc the difference between two 
eigenvalues is less than a threshold value εc , i.e. |λi(tc) − λ j(tc)| < εc , we switch from the BO to the DO via the transforma-
tion given by equations (9a)–(9b), which is obtained from solving the matrix differential equation (10). Once the difference 
between the two closest eigenvalues surpasses the threshold value, i.e. |λi(tc) − λ j(tc)| ≥ εc , we switch back from DO to BO 
via the transformation given by equations (9a)–(9b).

3.2. Soft threshold: adding and removing modes

The eigenvalues determine the energy (variance) of the system and they are easily computed; for BO they are the 
diagonal entries of the covariance matrix of the spatial basis < Ǔ T , Ǔ >, while for DO they are the eigenvalues of the 
covariance matrix of the stochastic basis E[Ŷ T Ŷ ]. The objective of an adaptive strategy is to resolve the energy of the system 
up to some threshold value denoted by σth . Let us assume that there are N modes and eigenvalues are sorted in a decreasing 
order, i.e. (λ1, λ2, ..., λN ) where λ1 ≥ λ2 ≥ · · · ≥ λN . In principle, the last mode must be removed if its energy λN falls below 
the threshold value, i.e. λN < σth . On the other hand, a mode must be added if the energy of the last mode exceeds the 
threshold value, i.e. λN > σth . We refer to this condition as hard-threshold criterion. However, in cases where the energy of 
the newly added mode decreases, the hard-threshold criterion may trigger unnecessary repetitive mode addition/removal — 
an undesirable outcome. We, instead, propose a soft-threshold criterion. In this approach, a neighborhood centered around 
the threshold value σth is considered. The neighborhood is set in the log scale and it is specified by | log λ − logσth| < d, 
where d > 0 is the radius of the neighborhood in the log scale. Therefore, the upper and lower bounds of the neighborhood
are given by σ+

th = 10dσth and σ−
th = 10−dσth , respectively. In this strategy a new mode with the energy of σth is added if 

the energy of the last mode is above the upper bound of the neighborhood, i.e. λN > σ+
th . Correspondingly, the last mode is 

removed if its energy falls below the lower bound of the neighborhood, i.e. λN < σ−
th . The soft-threshold criterion effectively 

creates a buffer zone in which the newly added or removed mode is allowed to adjust to system dynamics. The relaxation 
of the threshold criterion prevents repetitive mode addition/removal that may occur in the hard-threshold strategy.

The newly added mode to the BO/DO decomposition 
{

Yi(t; ω), ui(x, t)
}N

i=1 is chosen from the orthogonal complement of 
the space spanned by the N active modes, i.e. Y N+1(t; ω) ⊥ span

{
Yi(t; ω)

}N
i=1 and uN+1(x, t) ⊥ span

{
ui(x, t)

}N
i=1. Other than 

choosing the new mode from the orthogonal complement of active BO/DO modes, the direction of the newly added mode 
is chosen arbitrarily. As stated in reference [46], the optimal state of the new mode is in the direction of fastest growing 
perturbation in the complement subspace 

{
Yi(t; ω), ui(x, t)

}∞
i=N+1 when the energy of the new mode approaches zero in 

the limit. However, since the new mode is usually added with small and finite energy, the direction of the newly added 
mode is naturally corrected as the new mode evolves.

3.3. Pseudo-inverse: singular covariance matrix

Inherently, the energy threshold σth has a small magnitude and this will render the covariance matrix near-singular. To 
resolve this issue, we use a pseudo-inverse technique to compute the inverse of the covariance matrix. In the following, we 
explain the pseudo-inverse strategy for the DO, however the procedure is identical in the case of the BO formulation. To 
this end, we compute the singular value decomposition of the covariance matrix:

C = U�U T , (11)

where � = diag(σ1, σ2, . . . , σN). Since C is a symmetric positive definite matrix, σi ’s are identical to the eigenvalues of C , 
and U to the eigenvectors, and moreover, U T U = I . Therefore, C−1 is:

C−1 = U�−1U T . (12)

We denote by �′ = diag(σ ′
1, σ

′
2, . . . , σ

′
N ) a diagonal matrix whose entries are:

σ ′
i = max{σi,σth}, i = 1,2, . . . , N. (13)

Therefore, the pseudo-inverse of C , denoted by C+ is obtained by:

C+ = U�′ −1U T . (14)

The above strategy replaces the directions with lower energy than the threshold value with σth for the purpose of computing 
the inverse of C . For the BO, the covariance matrix is diagonal and therefore, � ≡ 
, and the above procedure amounts to 
replacing the diagonal elements of 
 that are smaller than σth with σth , when computing 
−1. We note that the choice of 
the threshold value for computing the pseudo-inverse could be different from that of the mode addition/removal threshold. 
The adaptive hybrid approach is shown in Algorithm 1.
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Algorithm 1: Switching between the BO and DO.

t = 0; is BO = true;
repeat

if |λi − λ j | < εc and is BO == true then
is BO = false; (switch to DO)

else
is BO = true;

end
if σi < σth then

σi = σth; (use pseudo inverse)
end
if is BO then

Integrate BO evolution equations.
else

Integrate DO evolution equations.
end

until t < t f ;

4. Numerical examples

In the following subsections, we first study the one-dimensional stochastic Burgers equation to illustrate the hybrid 
BO-DO method. Then we consider the Kavoasznay with the exact solution. Subsequently, we solve stochastic incompressible 
flow over cylinder, where we employ the adaptive algorithm to add or remove modes.

4.1. Burgers equation

We consider the following Burgers equation

ut + uux = νuxx + f (x, t;ω), x ∈ [0,2π ], (15)

with periodic boundary conditions at the two ends. We use the third-order Adams–Bashforth (AB3) as a time-integrator. For 
space discretization, we use spectral Fourier method with N f = 128 modes. The stochastic ODE that governs the evolution 
of dY/dt , is solved using MEPCM with Ne = 8 elements and q = 32 quadrature points in each element.

4.1.1. Hybrid BO/DO
We assume that we know the random solution and the stochastic forcing f (x, t; ω) term is given accordingly. We con-

sider the following solution:

u(x, t;ω) = ū(x, t) +
2∑

i=1

yi(t;ω)ui(x, t) (16)

where:

ū(x, t) = sin(x − t),

y1(t;ω) = √
2λ1(t) sin(πξ1(ω) − t), y2(t;ω) = √

2λ2(t) cos(πξ2(ω) − t),

u1(x, t) = 1√
π

cos(x − t), u2(x, t) = 1√
π

cos(2x − 3t),

and ξ1(ω) and ξ2(ω) are independent uniform random variables on [−1, 1]. Therefore we observe that: E[yi y j] = λiδi j , and 
< ui, u j >= δi j, i, j = 1, 2, where λi(t) are the eigenvalues of the covariance operator. The corresponding exact mean and 
DO and BO components for the above solution are given in Table 3. The eigenvalues of the solution are given as follows:

λ1(t) = sin2(t)

λ2(t) = cos2(3t).

We choose λ1(t) and λ2(t) such that they have eigenvalue crossing as well as zero eigenvalues, which makes a suitable 
benchmark problem to test the algorithm. Fig. 1 shows the eigenvalues of the covariance matrix, where 5 zero eigenvalues 
and 6 eigenvalue-crossings can be observed. We consider N = 2 DO/BO modes that match the number of active modes 
in the exact solution. For the time advancement, we use the time interval of �t = π

1200 that will ensure that all of the 
eigenvalue crossings and zero eigenvalues belong to the set of the discrete times tn+1 = tn + n�t , n = 0, 1, 2, . . . , N . This 
will ensure that the discrete time will hit all the singularities. We will investigate the effect of time interval in this section. 
For the hybrid DO/BO method, we use εc = 10−3. The above choice of eigenvalues has a singularity at t = 0, since λ1(0) = 0. 
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Table 3
Burgers equation: the exact BO and DO components.

DO BO

Mean sin(x − t) sin(x − t)

Spatial basis u1(x, t) = 1√
π

cos(x − t) u1(x, t) = √
λ1(t) cos(x − t)

u2(x, t) = 1√
π

cos(2x − 3t) u2(x, t) = √
λ2(t) cos(2x − 3t)

Stochastic basis Y1(t;ω) = √
2λ1(t) sin(πξ1 − t) Y1(t;ω) = √

2 sin(πξ1 − t)
Y2(t;ω) = √

2λ2(t) cos(πξ2 − t) Y2(t;ω) = √
2 cos(πξ2 − t)

Fig. 1. Exact eigenvalues of the covariance matrix for the stochastic Burgers equation. The eigenvalue crossings and zero eigenvalues are shown by symbols.

To avoid perfect singularity (division by zero) at t = 0, which leads to NAN values, the evolution of the stochastic system 
is initialized at t = 10−14 from the exact solution. This way we preserve the numerical singularity in our stochastic system 
while avoiding NAN values.

In Fig. 2, the L2 error curves for the mean and variance of the stochastic Burgers equation for five methods are shown. 
These methods are: (i) DO, (ii) BO, (iii) DO/BO, (iv) PI DO, and (v) PI DO/BO, where PI implies using the pseudo-inverse 
technique to compute the covariance matrix. The methods tagged with an upright arrow diverge during their evolution. The 
eigenvalue crossing does not create numerical instability for DO, and therefore, as it can be seen in Fig. 2, the DO mean and 
variance errors do not increase at the first eigenvalue crossing at t = π/8. However, DO diverges at the zero eigenvalue at 
t = π/6 where the covariance matrix becomes singular. The BO method diverges at the first eigenvalue crossing at t = π/6
where matrix M given by equation (8a) becomes singular. To avoid the zero eigenvalue crossing, the hybrid DO/BO method 
switches from BO to DO before the eigenvalue crossing at t = π/8, and then it switches back to BO after the eigenvalue 
crossing. We note that for 0 < t < π/8, BO is on in the DO/BO method, and as a result, in this time interval both mean and 
variance errors of these two methods coincide. The hybrid DO/BO diverges at zero eigenvalue, since at zero eigenvalue the 
active method is BO and BO is unstable at zero eigenvalue.

Now we use the pseudo-inverse technique to invert the covariance matrix with the threshold of σth = 10−7. Using the 
pseudo inverse stabilizes both DO and hybrid DO/BO methods at zero eigenvalues as it can be seen in Fig. 2. We note 
that the variance errors of PI methods show jumps at zero eigenvalues. This behavior is to be expected in pseudo-inverse 
methods where the variance of the zero-energy mode is replaced with the finite value of σth . Among all the methods 
investigated, PI DO/BO consistently shows smaller values of both mean and variance error than PI DO for all times.

Among the five different methods that we investigated in Fig. 2(a), only the two methods augmented with the pseudo-
inverse technique do not diverge, namely: PI DO and PI DO/BO. Now, we investigate the effect of the threshold value 
σth for these two methods. In Fig. 3, the L2 error variations of the mean versus time for four different values of 
σth = 10−3, 10−5, 10−7, and 10−9 are shown. For the threshold value of σth = 10−3, both methods are stable but show 
large errors. Similar to the error of BO and DO without using pseudo-inverse, in all cases BO shows less error than DO in 
the time interval before the first eigenvalue crossing. Note that at t = 0 the covariance is singular, and the relatively larger 
error for these two cases is triggered at t = 0. As a result of this error, the eigenvalues of the DO or BO formulation may 
not cross and become zero at the discrete times tn+1 = tn + n�t , n = 0, 1, 2, . . . , N and this may result in a stable solution. 
This behavior is observed for σth = 10−3 where the error does not increase at the subsequent singularities after t = 0. As 
the threshold decreases to σth = 10−5, the induced error at t = 0 decreases. The PI DO system shows increase of error after 
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Fig. 2. The L2 mean (top) and variance (bottom) errors for the stochastic Burgers equation as described in Table 3 for different methods. The upright arrow 
in the plot legend implies divergence of the method. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

each singularity at later times. The PI DO/BO system, on the other hand, shows smaller error compared to the PI DO. For 
σth = 10−7, the PI DO shows significant increase in error after t = π/6 and it eventually diverges at t = 4π/8 — the third 
singularity. The PI DO/BO, however, remains stable and shows the smallest error in all the cases considered in Fig. 3. At the 
smallest threshold σth = 10−9, PI DO diverges at the second singularity at t = π/6, while the PI DO/BO shows small error 
until at t = 5π/6, where a noticeable increase in the error is observed.

The observations made here imply that there exists an optimal threshold value. At large threshold values the energy of 
the singular or near-singular mode increases excessively by the pseudo-inverse technique, to the point that it itself induces 
error in the system. For very small values of the threshold the system approaches to the singular behavior, which in turns 
causes the instability in the numerical algorithm. Clearly, as σth → 0 the original DO or BO systems are retrieved, in which 
singularity can lead to the blow-up of the solution as it was demonstrated in the discussion of Fig. 2(a). We also observe that 
the PI DO/BO method consistently shows smaller error, which is indicative of the robustness gained by PI DO/BO method.

As it was explained above the eigenvalues of PI DO and PI DO/BO may not cross or become zero at the discrete times 
tn+1 = tn + n�t , n = 0, 1, 2, . . . , N . To demonstrate the effect of �t , we compare the results obtained from two different 
�t values: (i) �t = π

1200 which results in an exact matching between the discrete times and the times of all singularities, 
i.e. eigenvalue crossings and zero eigenvalues, and (ii) �t′ = π+ε

1200 with ε = 0.01, that results in discrete times that will not 
include the times of the singularities.

In Fig. 4, the L2 error of the mean for DO, BO, DO/BO and PI DO/BO with the two values of �t = π
1200 and �t′ = π+ε

1200
are shown. The pseudo-inverse threshold value of σth = 10−7 is considered for the PI DO/BO formulation. For the case with 
�t = π

1200 , both DO and DO/BO methods diverge at t = π/6, and BO diverges at the first eigenvalue crossing at t = π/8. 
However, for �t′ = π+ε , small deviation in the time advancement interval averts the numerical instability for DO, BO and 
1200
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Fig. 3. Stochastic Burgers equation — effect of the threshold value: the L2 mean error for the stochastic Burgers equation as described in Table 3 for the 
DO and hybrid DO/BO with pseudo-inverse thresholds σth . (For interpretation of the colors in this figure, the reader is referred to the web version of this 
article.)

Fig. 4. Stochastic Burgers equation — effect of �t on the performance of different methods for the Burger equation. In the above �t = π
1200 will result 

in exact matching of discrete time advancement tn+1 = tn + �t with the time of all the eigenvalue crossings and zero eigenvalues. The �t′ = π+ε
1200 with 

ε = 0.01 will avoid hitting the eigenvalue crossings and zero eigenvalues. In cases where the pseudo-inverse technique is used, the threshold value is 
σth = 10−7. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

DO/BO methods for the first few singularities, but the error still increases near singularities and the BO method eventually 
diverges at the eigenvalue crossing at t = 6π/8. The PI DO/BO method, on the other hand, shows stable results for both 
�t values with small errors. This demonstrates the robustness gained from the pseudo-inverse technique. This robustness is 
useful in practical problems, where clearly the exact times of the singularities are not known a priori.

4.2. Kovasznay flow

We consider the Kovasznay flow whose deterministic solution is a steady, laminar incompressible flow behind a two-
dimensional grid

∂V

∂t
+ (V · ∇)V = −∇p + ν
V + F (18a)

∇ · V = 0, (18b)

where V = (u, v) is the velocity vector field, p is the pressure, ν is the kinematic viscosity and F is the forcing term. The 
spatial domain is (x, y) ∈ [−0.5, 1.5] × [−0.5, 1.5]. Periodic boundary conditions in both x and y directions are enforced for 
mean and DO/BO modes.
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Table 4
Exact BO and DO components for the stochastic Kovasznay problem with two modes, i.e. m = 1, 2.

DO BO

Mean

(
u(x, t)
v(x, t)

)
=

(
1 − eλx cos(2π y)

λ
2π eλx sin(2π y)

) (
u(x, t)
v(x, t)

)
=

(
1 − eλx cos(2π y)

λ
2π eλx sin(2π y)

)

Spatial basis

(
um(x, t)
vm(x, t)

)
= 1√

2

(
cos(mπ y) sin(mπx)

− sin(mπ y) cos(mπx)

) (
um(x, t)
vm(x, t)

)
= am(t)

(
cos(mπ y) sin(mπx)

− sin(mπ y) cos(mπx)

)

Stochastic basis Y1(t;ω) = 2a1(t) sin(πξ1 − t) Y1(t;ω) = √
2 sin(πξ1 − t)

Y2(t;ω) = 2a2(t) cos(πξ2 − t) Y2(t;ω) = √
2 cos(πξ2 − t)

For time advancement of the DO/BO modes we use an analogous splitting scheme that is used for our deterministic
solver. More specifically, we use the splitting scheme that was introduced in [47]. In this fashion, in the first step of the 
DO/BO splitting scheme, the orthogonal projection of the explicitly evaluated nonlinear terms are added. In the second step, 
the pressure-Poisson is solved to project the DO/BO modes onto divergence-free space. In the last step, the viscous terms 
are added.

We add time-dependent random modes to the steady deterministic solution such that the solution has the form of

u = 1 − eλx cos(2π y) +
N∑

m=1

um(x, t)Ym(t;ω) (19)

v = λ

2π
eλx sin(2π y) −

N∑
m=1

vm(x, t)Ym(t;ω). (20)

In the above equations, the Reynolds number is set to be Re = 1/ν = 40, and λ = 1

2ν
− ( 1

4ν2
+ 4π2

)1/2
. We consider N = 2

and the spatial basis and stochastic basis are as follows:

(u1(x, y, t), u2(x, y, t)) = 1√
2
(cos(π y) sin(πx), cos(2π y) sin(2πx))

(v1(x, y, t), v2(x, y, t)) = 1√
2
(− sin(π y) cos(πx),− sin(2π y) cos(2πx))

(Y1(t;ω), Y2(t;ω)) = 2(a1(t) sin(πξ1 − t),a2(t) cos(πξ2 − t))

where ξ1(ω) and ξ2(ω) are independent uniform random variables on [−1, 1]. Then, the modes V i = (ui, vi), i = 1, 2 satisfy 
the divergence-free and orthogonality conditions. The forcing term F (x, y, ω) is determined accordingly so that the above 
solution satisfies the Navier–Stokes equations (18). We can compute the exact components for BO and DO as shown in 
Table 4.

The eigenvalues of the solution are determined by ai(t) as follows:

λ1(t) = 2a2
1(t), λ2(t) = 2a2

2(t). (21)

We choose a1(t) and a2(t) such that they have eigenvalue crossing as well as a persistent zero eigenvalue. Specifically, we 
consider the following functions:

a1(t) = α1, a2(t) = α2 exp (−100t2) (22)

where α1 = √
1.6 × 10−2 and α2 = 0.2. Fig. 5(a) shows the eigenvalues in time. The eigenvalues crossing, shown by a cross 

symbol, occurs at t = 0.068, and for large times λ2(t) vanishes — rendering the covariance matrix singular.
For space discretization 16 elements in a quadrilateral mesh are used in the prescribed domain (x, y) ∈ [−0.5, 1.5] ×

[−0.5, 1.5]. The polynomial order for the spectral element method in physical space is set to 10 and third-order Adams–
Bashforth time integration is used. We use MEPCM to solve the stochastic ODE for Yi coefficients with Ne = 32 elements in 
each random direction and q = 4 quadrature points in each element, resulting in 4096 collocation points in total.

We use the PI DO/BO method to solve the stochastic Kovaszany flow with N = 2 modes. The pseudo-inverse threshold 
is set to be σth = 10−6, and the eigenvalue crossing threshold is set to be εc = 10−3. Near the eigenvalue crossing, i.e. 
|λ1 − λ2| < εc , the PI DO/BO method switches from BO to DO and when the distance between the eigenvalues exceeds εc , 
PI DO/BO switches from DO back to BO. When the value of λ2(t) falls below σth , the pseudo-inverse technique is used to 
invert the covariance matrix. As it can be seen in Fig. 5(a), when the pseudo-inverse technique is activated, the value of 
λ2(t) is forbidden to fall below the threshold value. In the remaining of the evolution of the stochastic system, the value of 
λ2(t) stays above the threshold value, hence, the covariance matrix is inverted without using the pseudo-inverse technique. 
In Fig. 5(b) the L2 error of the mean versus time is shown. It is clear that when the pseudo-inverse technique is employed, 
the error increases, but the error eventually stabilizes and it does not grow in time.
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Fig. 5. Stochastic Kovasznay flow (a) Eigenvalues of the covariance matrix for the stochastic Kovasznay flow. Exact eigenvalues are shown by black solid 
lines and the numerical eigenvalues are shown by circles. (b) The L2 error of the mean.

4.3. Stochastic flow over cylinder at Re = 150

As the last example we apply the PI DO/BO methodology to solve stochastic flow over cylinder at Re = 150. In particular, 
we focus on the adaptivity of the method by adding and removing modes to resolve the flow up to a specified threshold 
value. The schematic of the problem is shown in Fig. 6. We consider the flow over cylinder under stochastic forcing:

∂V

∂t
+ (V · ∇)V = −∇p + 1

Re
∇2 V + f s (23)

∇ · V = 0,

where the stochastic forcing is prescribed by:

f s(x;ω) =
N∑

i=1

σiai(t)ξi(ω)�i(x),

where �i(x) are the POD modes obtained from a deterministic DNS of the flow over cylinder at Re = 150. The modes are 
ranked such that E1 > E2 > · · · > E N , where Ei are the energy associated with each POD mode, and ξi are i.i.d. uniform 
random numbers ξi ∈ U [−1, 1], i = 1, . . . , N with unit variance.

We consider two cases of steady and time-dependent stochastic forcing with N = 2. We use the MEPCM to solve the 
stochastic ODE for Yi coefficients with Ne = 64 elements in each random direction. We use one collocation point within 
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Fig. 6. Schematic of flow over cylinder at Re = 150 with stochastic forcing.

Fig. 7. The evolution of the eigenvalues of the covariance operator E[Yi Y j ] for the steady stochastic forcing for flow over cylinder at Re = 150. The shaded 
region shows the buffer zone around the energy threshold σth = 1 × 10−10. The eigenvalue crossings are marked by cross symbols. (For interpretation of 
the colors in this figure, the reader is referred to the web version of this article.)

each element (piece-wise constant). Therefore, in total we have Nc = 642 = 4096 collocation points. For space discretization, 
we use the spectral/hp element method with 4946 quadrilateral elements and polynomial order four within each element. 
For time discretization we use the third-order Adams–Bashforth method.

4.4. Steady stochastic forcing

First we choose a steady stochastic forcing with a1(t) = a2(t) = 1, and the standard deviation of σ1 = σ2 = 0.02. We 
start our simulation with N = 2 BO/DO modes and we then add/remove modes adaptively. The energy threshold for mode 
addition/removal is set to be σth = 1 × 10−10. In this example, we consider the soft-threshold criterion that, as explained 
in Section 3.2, in the log scale spans symmetrically around the logσth threshold with one decade energy depth, i.e. d = 1. 
Hence, if the energy of the last mode exceeds σ+

th = 1 × 10−9, a new mode is added, and if the energy of the last mode 
falls below σ−

th = 1 × 10−11, that mode is removed. This strategy prevents repetitive mode addition/removal as we explain 
below. The evolution of the eigenvalues of the covariance operator is shown in Fig. 7. At t = 0, we initialize two DO modes 
with the first two POD modes with small initial energy of E[Y 2

1 ] = E[Y 2
2 ] = 1 × 10−10. Note that the POD modes satisfy the 

orthonormality condition required for the DO modes. Since the two modes are initiated with the same amount of energy, 
i.e. the same eigenvalues, the active method in PI DO/BO is DO. The energy of the first two modes increases quickly and it 
leaves the buffer zone. This prompts the addition of the third mode in the initial stage of the evolution. As time evolves 
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Fig. 8. The evolution of the eigenvalues of the covariance operator E[Yi Y j ] for the time-dependent stochastic forcing for flow over cylinder at Re = 150. 
The shaded region shows the buffer zone around the energy threshold σth = 1 × 10−10. The eigenvalue crossings are marked by cross symbols. (For 
interpretation of the colors in this figure, the reader is referred to the web version of this article.)

three more modes, i.e. λ4, λ5 and λ6, are added. The energy of the last added mode λ6 remains below the σth threshold, 
until it is eventually removed. Before the final departure at t � 36.4, the value of λ6 falls below σ−

th at two earlier instants. 
However, since λ5 > σ+

th , λ6 is immediately added with the energy of λ6 = σth . If we do not use the buffer-zone strategy, λ6
would cross the σth threshold repetitively, resulting in significant memory allocation/de-allocation overhead.

The energy of the first two modes remains very close for 0 < t < 2, during which time DO is used to evolve the stochastic 
system. As the evolution of the stochastic flow is followed, the energy of the first two modes crosses at two other instants 
as marked by cross symbol in Fig. 7. In the vicinity of all these instants, the evolution of the modes is switched from BO 
to DO. We use the threshold value of εc = 10−3 for the eigenvalue crossing. Overall, the first two modes capture more than 
99.99% of the total variance of the stochastic system, and the energy of all other modes combined remains negligible. This 
demonstrates how the PI DO/BO methodology effectively captures the two “active” modes present in the flow. As we show 
in the next example, increasing the variance of the stochastic forcing demands a larger number of DO/BO modes to resolve 
the system within the same energy threshold.

4.5. Time-dependent stochastic forcing

In this section, we use a time-dependent stochastic forcing with a1(t) = √
2 sin(πt/2) and a2(t) =

√
2 cos(πt/2), and 

σ1 = σ2 = 0.1. Hence, the energy of the stochastic forcing is fives times larger than that of used with the steady forcing 
in the previous subsection. Similar to the steady force, we start the simulation with N = 2 BO/DO modes and adaptively 
add/remove modes as the stochastic solution evolves. We use the same threshold for the eigenvalue crossing and the same 
energy threshold and bounds for the buffer zone that are chosen for the steady forcing described in the previous section. 
The time history of the eigenvalues of the covariance operator is shown in Fig. 8. Initially, the eigenvalues of the first two 
modes are within the threshold of the eigenvalue crossing, i.e. |λ1(t) − λ2(t)| < εc , and therefore, the active method in PI 
DO/BO is DO. The larger energy of the stochastic forcing has two clear effects on the stochastic Navier–Stokes equations. 
First, significant nonlinear energy transfer between the modes is observed. The nonlinear energy transfer is manifested by 
the large number of eigenvalue crossings – demanding a large number of switches between BO and DO methods. Note that 
this behavior was not observed for the small stochastic forcing described in Fig. 7. The most energetic mode considered 
in the large stochastic forcing considered in Fig. 8, i.e. λ1(t), has two order of magnitudes higher values compared to its 
counterpart in Fig. 7. Second, a larger number of modes are active to resolve the stochastic system up to σth threshold 
compared to the case with small steady forcing. As it can be seen in Fig. 8, up to time t = 35, twelve modes are active, 
and the thirteenth mode is in the buffer region. This demonstrates that for stochastic Navier–Stokes equations the number 
of modes to resolve the system up to a threshold value may not be known a priori, and an adaptive strategy is required to 
add/remove modes on the fly according to the system dynamics. As we demonstrated here, the PI DO/BO formulation can 
readily accommodate such an adaptive strategy.

5. Summary

In this paper, we presented an adaptive numerical method to solve stochastic Navier–Stokes equations that combines the 
favorable properties of the DO and BO decompositions. The hybrid method benefits from the built-in bi-orthogonality of BO 
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which results in diagonal mass matrices for both the system of stochastic coefficients and the spatial basis. The method only 
switches to DO when facing eigenvalue crossing by using an exact transformation obtained by solving a matrix differential 
equation. The hybrid DO/BO method is augmented with a pseudo-inverse technique to invert an ill-conditioned or a singular 
covariance matrix. This technique enables adaptive DO/BO representation where modes with small energy (eigenvalue) are 
added or removed to resolve the stochastic system up to a desired resolution. In Appendix A we show in the case of zero 
covariance matrix, i.e. all eigenvalues being zero, — for example a system with deterministic initial condition at t = 0 — 
the evolution of the DO spatial modes becomes equivalent to the evolution of the Optimally Time Dependent (OTD) modes, 
introduced in reference [4].

The DO/BO representation captures the low-dimensional structure of the SDPE, and by evolving according to the system 
dynamics, the DO/BO modes instantaneously follow the active subspace of the dynamical system. We have demonstrated the 
capabilities of the method with several examples from stochastic Burgers equation to stochastic flow over a cylinder. The 
robustness, demonstrated in these examples, is essential for solving stochastic Navier–Stokes equations, where nonlinear 
energy exchange between the modes necessitates an adaptive mode addition/removal strategy to efficiently resolve the 
propagation of stochasticity on a wide range of temporal and spatial scales.
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Appendix A

In the following we show that the evolution equation of the DO spatial basis becomes equivalent to the evolution 
equation of the OTD modes [4] when the stochasticity approaches zero, i.e. all of the eigenvalues of the covariance operator 
approach zero. First, we introduce the evolution equation for the OTD modes. The readers are referred to reference [4] for 
more details.

Definition 1. Consider the deterministic differential equation given by

du

dt
= F (u(x, t)), x ∈ D, (A.1)

where u ∈ R
n and F (u(x, t)) ∈ R

n , and let L ∈ R
n×n denote the Jacobian of F (u(t, x)), i.e. L = ∇u F (u, t), then the Optimally 

Time-Dependent (OTD) modes denoted by UO T D ∈R
n×r , where r is the number of OTD modes, are obtained by solving the 

system of coupled partial differential equations given by

dUO T D

dt
= LUO T D − UO T D 〈

UO T D , LUO T D 〉
, x ∈ D (A.2)

where UO T D(x, t) = {uO T D
1 (x, t), uO T D

2 (x, t), . . . , uO T D
N (x, t)}, and 

〈
, 

〉
denote the Euclidean inner product. We refer to equa-

tion (A.2) as the OTD equation.

Remark 2. The OTD modes evolved by equation (A.2) remain orthonormal for all times, i.e.
〈
uO T D

i (x, t), uO T D
j (x, t)

〉 = δi j , for 
i, j = 1, 2, . . . , r.

See reference [4] for the proof.

Remark 3. The OTD modes UO T D(x, t) converge asymptotically to the least stable subspace of the differential equation (A.1).

See reference [4] for the proof.

Theorem 2. For a differential equation with quadratic nonlinearity and zero stochastic forcing, as the covariance matrix goes to zero,
i.e. E[Y 2

i ] → 0 for i = 1, 2, . . . , r, the DO equation for the spatial modes reduces to the OTD equation.

Proof. For a differential equation

du = F (u(x, t;ω)), x ∈ D (A.3)

dt
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with quadratic nonlinearity, we define F (u(x, t; ω)) to be:

F = L f u + q f (u, u), (A.4)

where L f and q f are linear and quadratic operators, respectively. Therefore the DO equations for the mean is given by

dū

dt
= L f ū + q f (ū, ū) + E[Yi Y j]q f (ui, u j), i, j = 1,2, . . . , r, (A.5)

and for the spatial modes is given by

dUD O

dt
C = FUD O − UD O 〈

UD O ,FUD O

〉
, (A.6)

where:

FUD O = LUD O C + E[Yi Y j Yk]q f (uD O
j , uD O

k ) i, j,k = 1,2, . . . , r,

where L is the Jacobian operator given by: L(.) = L f (.) + q f (ū, .) + q f (., ̄u), and C = E[YT Y]. Multiplying both sides of 
equation (A.6) by C−1 from right results in:

dUD O

dt
= FUD O C−1 − UD O 〈

UD O ,FUD O C−1〉, (A.7)

where:

FUD O C−1 = LUD O + E[Yi Y j Yk]q f (uD O
j , uD O

k )C−1.

In the limit of zeros stochastic energy the mean equation (A.5) approaches to the deterministic differential equation:

dū

dt
= L f ū + q f (ū, ū), when E[Y 2

i ] → 0, i = 1,2, . . . r, (A.8)

Therefore

lim
E[Y 2

i ]→0
ū(x, t) = u(x, t), (A.9)

where u(x, t) is the solution of the deterministic differential equation (A.1). Moreover,

lim
E[Y 2

i ]→0
FUD O C−1 = LUD O . (A.10)

In the above limit, the term E[Yi Y j Yk]q f (uD O
j , uD O

k )C−1 vanishes, since E[Yi Y j Yk] ∼ O(Y 3) and C ∼ O(Y 2). Therefore, the 
DO equation for the spatial modes becomes:

dUD O

dt
= LUD O − UD O 〈

UD O , LUD O 〉
, when E[Y 2

i ] → 0, i = 1,2, . . . N. (A.11)

The above equation is the OTD equation for the differential equation (A.3). This completes the proof. �
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