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A B S T R A C T

We develop an efficient numerical method for the probabilistic quantification of the response statistics of
nonlinear multi-degree-of-freedom structural systems under extreme forcing events, emphasizing accurate
heavy-tail statistics. The response is decomposed to a statistically stationary part and an intermittent
component. The stationary part is quantified using a statistical linearization method while the intermittent
part, associated with extreme transient responses, is quantified through i) either a few carefully selected
simulations or ii) through the use of effective measures (effective stiffness and damping). The developed
approach is able to accurately capture the extreme response statistics orders of magnitude faster compared with
direct methods. The scheme is applied to the design and optimization of small attachments that can mitigate
and suppress extreme forcing events delivered to a primary structural system. Specifically, we consider the
problem of suppression of extreme responses in two prototype ocean engineering systems. First, we consider
linear and cubic springs and perform parametric optimization by minimizing the forth-order moments of the
response. We then consider a more generic, possibly asymmetric, piecewise linear spring and optimize its
nonlinear characteristics. The resulting asymmetric spring design far outperforms the optimal cubic energy sink
and the linear tuned mass dampers.

1. Introduction

For a plethora of structural systems it is essential to specify their
reliability under uncertain environmental loading conditions and most
importantly provide design guidelines using knowledge of their re-
sponse characteristics. This involves accurate estimation of the struc-
tural systems probabilistic response. Environmental loads are typically
random by nature and are likely to include intermittently occurring
components of an extreme magnitude, representing abnormal environ-
mental events or conditions. Although extreme loadings occur with
lower probability than typical conditions, their impact is significant and
cannot be neglected since these events determine the systems behavior
away from the average operating conditions, which are precisely the
conditions that are important to quantify for safe assessment and
design. Important examples include mechanical and ocean engineering
systems. High speed crafts in rough seas (Riley et al., 2011; Riley and
Coats, 2012), wave impacts on fixed or floating offshore platforms and
ship capsize events (Mohamad et al., October et al., 2016; Belenky and
Sevastianov, 2007; Muller et al., 2005; Liu, 2007; Kreuzer and
Sichermann, 2006), vibrations of buildings or bridge structures due
to earthquakes or strong wind excitations (Lin, 1963; Branstetter et al.,

1988; Lin, 1996; Spence and Gioffrè, 2012) are just a few examples
where extreme responses occur infrequently but are critical in deter-
mining the overall systems reliability.

Numerous research endeavors have been dedicated on the effective
suppression and rapid dissipation of the energy associated with
extreme impacts on structures. Many of these schemes rely on linear
configurations, known as tuned mass damper (TMD) and result in a
halving of the resonance frequency. Although the mitigation perfor-
mance is highly effective when most of the energy is concentrated at the
characteristic frequency of the system, their effectiveness drastically
drops if there is a mistuning in frequency. Moreover, it is not clear how
these configurations perform in the presence of rare impulsive loads.
Many of these limitations can be overcome by utilizing small attach-
ments coupled with the primary system through nonlinear springs, also
known as nonlinear energy sinks (NES). If carefully chosen these
nonlinear attachments can lead to robust, irreversible energy transfer
from the primary structure to the attachment and dissipation there
Vakakis (2001), Vakakis et al. (2008). The key mechanism behind the
efficient energy dissipation in this case is the targeted energy transfer
phenomenon which is an essentially nonlinear mechanism and relies
primarily on the energy level of the system, rather then the resonant
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frequency (Vakakis et al., 2003; Kerschen et al., 2005). Such config-
urations have been proven to be successful on the mitigation of
deterministic impulsive loads on large structures (AL-Shudeifat et al.,
2015, 2013; Luo et al., 2014) and their performance has been
measured through effective nonlinear measures such as effective
damping and stiffness (Sapsis et al., 2012; Quinn et al., 2012).

Despite their success, nonlinear configurations have been primarily
developed for deterministic impulsive loads. To quantify and optimize
their performance in the realistic settings mentioned previously it is
essential to understand their effects on the statistics of the response
and in particular in the heavy tails of the probability distribution
function (PDF). However, quantifying the PDF of nonlinear structures
under random forcing containing impulsive type extreme events, poses
many challenges for traditional methods. Well established approaches
for determining the statistics of nonlinear dynamical systems include
the Fokker-Planck equation (Soong and Grigoriu, 1993; Sobczyk,
2001), the joint response-excitation method (Sapsis and
Athanassoulis, 2008; Venturi et al., 2012; Joo and Sapsis, 2016;
Athanassoulis et al., 2016), Gaussian closure schemes, moment
equation or cumulant closure methods (Beran, 1968; Wu and Lin,
1984), the Polynomial-Chaos approach (Xiu and Karniadakis, 2002),
and stochastic averaging methods (Zhu, 1988). For systems associated
with heavy tails, however, these methods either cannot capture the
statistics of rare and extreme type events due to inherent limitations
(Majda and Branicki, 2012) or are far too computationally expensive in
practice, even for low-dimensional systems (Masud and Bergman,
2005; Di Matteo et al., 2014). Alternatively, one can study the statistics
of the extreme events alone (by ignoring the background ‘non-extreme’
forcing fluctuations) through a Poisson process representation and
then analyze the response using the generalized Fokker-Planck or
Kolmogorov-Feller equations (Sobczyk, 2001), which governs the
evolution of the corresponding PDF, or by applying the path integral
formalism (Köylüoglu et al., 1995; Iwankiewicz and Nielsen, 2000), or
even through special stochastic averaging techniques (Zeng and Zhu,
2011). While attractive, these ideas lead, in general, to analytical
results for a very limited number of special cases. Besides, it is still an
important aspect to account for the background random fluctuations in
the forcing term in order to fully characterize the systems overall
probabilistic properties (e.g. this is important in order to fully
determine all the moments of the response). Moreover, even though
the background forcing component does not directly correspond to
extreme events, the background term may have important conse-
quences for the initiation of intermittent type extreme responses
(Mohamad et al., 2016).

In this work we consider the problem of nonlinear structural
systems under general time-correlated stochastic forcing that includes
extreme, impulsive type random events. We address two important
challenges related to this problem. The first is the development of a fast
and accurate estimation method for the response statistics, expressed
through the PDF, with emphasis on the accurate estimation of the tail
form (events far away from the mean). The second is the design and
parameter optimization of small attachments that can mitigate or
suppress the effects of the extreme forcing events on the system
response while they also improve the system behavior during the
regular regime. The two problems are connected since extreme event
suppression is directly reliant upon a fast and accurate estimation
method for the response pdf under different designs or parameters.
Indeed, without a fast and reliable method to evaluate response
statistics, in particular tail statistics, optimization cannot be performed
because of the inherent computational cost associated with typical
quantification methods such as Monte-Carlo. This aspect highlights the
practical utility of the proposed fast PDF estimation scheme. We will
illustrate the pdf estimation method and shock mitigation design
analysis throughout the manuscript with a practical motivating proto-
type system related to high speed vehicle motion in rough seas,
however we emphasize the proposed method broad applicability.

The probabilistic quantification scheme formulated here is based on
the most general probabilistic decomposition-synthesis framework
(Mohamad et al., 2016; M.A. Mohamad and Sapsis, 2015), that has
recently been applied in linear systems subjected to stochastic forcing
containing extreme events (Joo et al., 2016) and can be used to
efficiently estimate the PDF for the response displacement, velocity,
and acceleration. We begin by formulating the response pdf quantifica-
tion method (developed for linear multi-degree-of-freedom (MDOF)
systems in (Joo et al., 2016)) for the case of nonlinear MDOF systems.
This is achieved by combining the probabilistic decomposition-synth-
esis framework (Mohamad et al., 2016; Mohamad and Sapsis, 2015)
with the statistical linearization method (Roberts and Spanos, 2003).
The scheme circumvents the rare-event problem and enables rapid
design and optimization in the presence of extreme events. We
emphasize the statistical accuracy of the derived scheme, which we
have validated through extensive comparisons with direct Monte-Carlo
simulations. Next, we consider two prototype ocean engineering
systems and perform a quantitative comparison of the performance
of TMD and NES, evaluating their effectiveness at shock suppression
under stochastic excitation containing extreme events. Finally, we
perform optimization on a very generic, possibly asymmetric family
of piecewise linear springs. Previous endeavors in the context of single-
sided vibro-impact NES have shown that asymmetries in the NES can
improve the shock mitigation properties (see AL-Shudeifat et al.,
2013). In agreement with these results, our optimization scheme leads
to the derivation of a new asymmetric NES which significantly
improves the shock mitigation properties of the system in the realistic
setting of stochastic excitation.

The paper is structured as follows. In Section 2 we describe the
prototype models for high speed craft motion that we utilize through-
out the paper as practically relevant example. Next, in Section 3 we
provide a brief review of the probabilistic decomposition-synthesis
(PDS) framework for the response pdf quantification of a linear single-
degree-of-freedom system subject to a random forcing term containing
extreme impulse type events. Section 4 describes the proposed general
semi-analytical PDF estimation method for nonlinear MDOF structures
and also includes a section on quantifying the conditionally rare
response via the effective stiffness and damping framework. In
Section 5 we present the mitigation of extreme events analysis on the
prototype high speed craft designs for both TMD and cubic NES
attachments. Next, in Section 6 we propose a new piecewise linear and
asymmetric NES design that we optimize for extreme event mitigation.
Finally in Section Section 7 we offer concluding remarks.

2. Prototype models for high speed vehicle motion in rough
seas

Here we describe the prototype models that we apply the quanti-
fication method for extreme event analysis and optimization.
Specifically, we model the motion of a high-speed craft in random seas
through two prototype systems: one being a two-degree-of-freedom
system consisting of a suspended seat attached to the hull and the
second being a three-degree-of-freedom system where the seat is
attached to a suspended deck, which is attached on the hull; both
prototypes contain a small linear or nonlinear energy sink (NES)
vibration absorber.

2.1. 2DOF suspended seat system

In Fig. 1 we illustrate the first model consisting of a linear primary
structure under base excitation that is attached to a small oscillator
connected through a nonlinear spring (with cubic nonlineariry). This is
a prototype system modeling the suspended seat of a high speed craft
(Olausson and Garme, 2015; Coe et al., 2009). The vibration absorber
is attached to the seat with the aim to minimize ocean wave impacts on
the operator of the vehicle and naturally we require that the attachment
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mass is much lower than the seat mass (i.e. m m< 0.1a s). The equation
of motion for this two-degree-of-freedom system is given by:

m x λ x k x λ x v k x v c x v m ξ t¨ + ˙ + + ( ˙ − ˙) + ( − ) + ( − ) = − ¨ ( ),s s s a a a s
3 (1)

m v λ v x k v x c v x m ξ t¨ + ( ˙ − ˙) + ( − ) + ( − ) = − ¨ ( ),a a a a a
3

where x v, are the relative displacements of the seat response and
attachment response, respectively, with reference to the base motion
ξ t( ) (that is, x x ξ= − and v v ξ= − ).

2.2. 3DOF suspended deck-seat system

The second prototype system is a suspended deck design for a high
speed craft (Townsend et al., 2012; Ranieri et al., 2004; Kim et al.,
1996) and is illustrated in Fig. 2. In this case, the vibration absorber is
attached to the suspended deck. The attachment mass is comparable to
the seat mass and both are considerably smaller than the deck (i.e.
m m m≃ < 0.1a s h). The governing equations for this three-degree-of-
freedom system are given by:

m y λ y k y λ y x k y x λ y v k y v

c y v m ξ t

¨ + ˙ + + (˙ − ˙) + ( − ) + (˙ − ˙) + ( − )

+ ( − ) = − ¨ ( )
h h h s s a a

a h
3 (2)

m x λ x y k x y m ξ t

m v λ v y k v y c v y m ξ t

¨ + ( ˙ − ˙) + ( − ) = − ¨ ( )

¨ + ( ˙ − ˙) + ( − ) + ( − ) = − ¨ ( ),
s s s s

a a a a a
3

where, again, x y v, , are the relative displacements of the seat response,
the deck response and the attachment response, respectively, with
reference to the base motion ξ t( ).

In both prototypes the aim of the vibration mitigating attachment is
to minimize extreme impacts on the seat attachment as this represents
an operator on the vehicle. We first examine the case of tuned-mass
damper vibration absorber k c≠ 0, = 0a a and the essentially nonlinear
energy sink absorber k c= 0, ≠ 0a a , that has been studied extensively in
the context of shock mitigation (Vakakis et al., 2008). In the last section
we will examine the performance of an asymmetric, piecewise linear,
spring.

2.3. The structure of the intermittently extreme stochastic forcing

Motivated by the ocean engineering systems in Section 2, we
consider base motion of the form,

∑ξ t h t α δ t τ t T¨ ( ) = ¨ ( ) + ( − ), 0 < ≤ ,
i

N t

i i
=1

( )

(3)

In the expression above, h(t) denotes a zero-mean smooth motion
characterized by a Pierson-Moskowitz spectrum,

⎛
⎝⎜

⎞
⎠⎟S ω q

ω ω
( ) = 1 exp − 1 ,hh 5 4 (4)

where q controls the magnitude of the motion. The second term in Eq.
(3) describes rare and extreme impulses in terms of a random impulse
train (δ (·) is a unit impulse), occurring due to slamming events. For
this component, N(t) is a Poisson counting process that represents the
number of impulses that arrive in the time interval t T0 < ≤ , α is the
impulse magnitude, which we assume is normally distributed with
mean μα and variance σα

2, and the constant arrival rate is given by νr.
We take the impulse magnitude as being β-times larger than the
standard deviation of the excitation velocity h t˙ ( ): μ β σ=α ḣ, with
β > 1.

Note that both the Gaussian characteristics of the impact as well as
their statistical independence from the background excitation is a
simplification. In a more realistic setup one has to either perform
experiments or run CFD simulations to determine the exact character-
istics of the impulse load and its correlation with the background.
These can be different from what we assume here. However, the
computational method is not limited by the Gaussian assumption for
the impulsive load and the assumed statistical independence of the two
types of loads; this point is explained in more detail in Section Section
3.2.

3. Review of the probabilistic decomposition-synthesis
(PDS) method

We first provide a brief review of the semi-analytical response
quantification method for a linear single-degree-of-freedom system
(Joo et al., 2016) subjected to stochastic excitation containing rare
events. The purpose of this section is to provide a self-contained review
of the core ideas, since the scheme for nonlinear structural systems that
is described in the following section depends upon these concepts.

Consider the following linear system

x λx kx ξ t¨ + ˙ + = ¨ ( ), (5)

k is the stiffness, λ is the damping, and ζ λ k= /2 is the damping ratio.
Despite the simplicity of this system, the structure of the statistical
response may be significantly complex and posses heavy-tails.

The framework to estimate the response PDF of Eq. (5) is the
probabilistic decomposition-synthesis (PDS) method (Mohamad et al.,
2016). The basic idea is to decouple the rare events regime from the
background fluctuations and then quantify the statistics of the two
components separately. The results are then synthesized to obtain the
full response PDF by using the total probability law:

 r r r( ) = ( ) (1 − ) + ( ) ,p p r p rx xb xr (6)

where r( )pxr
is the conditional PDF due to the smooth motion of the

base, r( )pxr
is the conditional PDF due to the extreme impacts and r is

the overall probability that the system operates in the extreme events
regime.

3.1. Background response PDF

We first obtain the statistical response of the system under the
condition that only the background (smooth) forcing component is
acting. We have,

x λx kx h t¨ + ˙ + = ¨ ( ).b b b (7)

In this case the analysis is particularly simple since the system is linear

Fig. 1. [Suspended seat] Mechanical model for the suspended seat problem with a small
attachment (vibration absorber).

Fig. 2. [Suspended deck-seat] Mechanical model for the suspended deck-seat problem
with a small attachment (vibration absorber).
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and time-invariant and the response PDF, pxb, is a zero-mean Gaussian.
The spectral density of the response displacement and the variance are
given by:

∫S ω ω S ω
k ω λω

σ S ω dω( ) = ( )
( − ) + ( )

, = ( ) .x x
hh

x x x
4

2 2 2
2

0

∞

b b b b b (8)

The computations for the response velocity and acceleration can be
similarly obtained.

3.2. Numerical histogram for rare events

The next step is to compute the rare event distribution pxr and the
rare event probability r. Specifically, the rare event distribution can be
written as,

∫p r p r n p n dn( ) = ( ∣ ) ( ) ,x x η ηr r (9)

where p n( )η is the distribution of the impulse magnitude, and px ηr is the
conditional PDF of the response for an impact of magnitude η.

It is important to note that once an impulse of magnitude α hits the
system, the momentum of the system right after the impact would be
x α˙ +b , since the momentum of the system right before the impact is ẋb.
As these two variables are both Gaussian distributed and independent,
their sum is also Gaussian distributed and is given by,

η x α μ sigma σ≡ ˙ + ∼ ( , + ).b α x α˙
2 2
b (10)

We estimate the conditional PDF p r n( )x ηr by the numerically com-
puted histogram:

p r n x t n t τ( ) = Hist{ ( )}, ∈ [0, ],x η r η er (11)

where τe is the typical duration of the rare event (see next subsection)
and the conditional response xr η is given by,

x t n n
ω

( ∣ ) =
2

(e − e ).r η
o

ζω ω t ζω ω t
∣

−( − ) −( + )n o n o
(12)

The conditionally extreme event distribution for velocity and accelera-
tion are derived in a similar fashion.

We emphasize that for the case of more realistic loads both the
distribution of the system state at the moment of impact as well as the
shape/form/statistics of the load would be different. In this case one
would need to solve the equation of motion for numerous realizations
of the impulsive load. For these simulations the initial velocity will have
to be chosen so that it reflects that statistical correlation of the
background excitation with the impulsive load (which may be present
in a more realistic setup). The pdf of the system velocity at the moment
of impact can be found using only the background statistics and
conditioning those at the time of the impact which will have a random
value but nevertheless could be correlated with ẋb.

3.3. Numerical estimation of the rare event probability

In order to compute the histogram of a rare impulse event, the
duration of a rare response needs to be obtained numerically. We
define the typical duration of a rare response by

x τ ρ x( ) = max{| |},r e c r (13)

where ρ = 0.1c , or in other words, the histogram is taken over the time
it takes for the system response to decay to 10% of its maximum value.
The absolute value of the maximum of the response needs to be
estimated numerically.

Once this rare event duration has been specified, we can also obtain
the probability of a rare event by

 ν τ τ T= = / .r α e e α (14)

Note that the extreme event duration for the displacement τe
x, velocity

τe
ẋ, and acceleration τe

ẍ are in generally different.

3.4. Semi-analytical response probability distributions

With the description above, we obtain the response PDF using the
total probability law. The resulting response PDF takes the form,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∫p r

ν τ
σ π

r
σ

ν τ z t n p n dn( ) = 1 −
2

exp −
2

+ Hist{ ( )} ( ) ,z
α e

z

z z
α e

z
r η η

2

2 0

∞

b b (15)

where the argument z is either x, ẋ, or ẍ. The validity of this
approximation has been thoroughly verified in Joo et al. (2016).

4. PDF quantification method for nonlinear MDOF systems

Here we formulate the probabilistic-decomposition method for
multi-degree-of-freedom, nonlinear mechanical systems. There are
some important differences with respect to the case of linear systems
studied in Joo et al. (2016). Firstly, for the background component the
system nonlinearities can be important and to this end we must utilize
an appropriate statistical quantification method. Here we employ the
statistical linearization approach (Roberts and Spanos, 2003).
Secondly, to characterize the statistics in the rare event regime it is
even more crucial to take into account the nonlinear properties of the
system, since these control the shock mitigation capabilities of the
attachment.

To achieve this we use two alternative approaches. The first one is
based on the direct simulation of the system for a range of initial
conditions corresponding to all possible impact magnitudes. The
second is based on the notion of effective stiffness and damping
(Sapsis et al., 2012), which are measures that characterize the system
response under various excitation magnitudes taking into account the
presence of the nonlinear attachment. We provide comparisons with
direct Monte-Carlo simulations to demonstrate the accuracy of both
approaches. We first present the analysis for the background compo-
nent

4.1. Quantification of the response pdf for the background component

For the background regime, we must account for nonlinearities and
their interaction with the background part of the excitation. We use the
statistical linearization method, since we are only interested in resol-
ving the low-order statistics of the background response of the system
(the rare events component defines the tails of the PDF).

Consider the response of the suspended seat problem, Eq. (1),
under the excitation term h t¨ ( ):

m x λ x k x λ x v k x v c x v m h t¨ + ˙ + + ( ˙ − ˙) + ( − ) + ( − ) = − ¨ ( ),s s s a a a s
3 (16)

m v λ v x k v x c v x m h t¨ + ( ˙ − ˙) + ( − ) + ( − ) = − ¨ ( ).a a a a a
3 (17)

We first multiply the above two equations by x(s), v(s), h(s) at different
time instant s t≠ , and take ensemble averages to write the resulting
equations in terms of covariance functions.

m C λ C k C λ C C k C C

c x t v t x s m C

″ + ′ + + ( ′ − ′ ) + ( − )

+ ( ( ) − ( )) ( ) = − ″ ,
s xx s xx s xx a xx vx a xx vx

a s hx
3 (18)

m C λ C k C λ C C k C C

c x t v t v s m C

″ + ′ + + ( ′ − ′ ) + ( − )

+ ( ( ) − ( )) ( ) = − ″ ,
s xv s xv s xv a xv vv a xv vv

a s hv
3 (19)

m C λ C k C λ C C k C C

c x t v t h s m C

″ + ′ + + ( ′ − ′ ) + ( − )

+ ( ( ) − ( )) ( ) = − ″ ,
s xh s xh s xh a xh vh a xh vh

a s hh
3 (20)

m C λ C C k C C c v t x t x s

m C

″ + ( ′ − ′ ) + ( − ) + ( ( ) − ( )) ( )

= − ″ ,
a vx a vx xx a vx xx a

a hx

3

(21)

m C λ C C k C C c v t x t v s

m C

″ + ( ′ − ′ ) + ( − ) + ( ( ) − ( )) ( )

= − ″ ,
a vv a vv xv a vv xv a

a hv

3

(22)
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m C λ C C k C C c v t x t h s

m C

″ + ( ′ − ′ ) + ( − ) + ( ( ) − ( )) ( )

= − ″ .
a vh a vh xh a vh xh a

a hh

3

(23)

Here ' indicates the partial differentiation with respect to the time
difference τ t s= − . We then apply Isserlis' theorem based on the
Gaussian process approximation for response to express the fourth-
order moments in terms of second-order moments (Isserlis, 1918).

x t v t x s σ σ σ C σ σ σ C( ( ) − ( )) ( ) = (3 − 6 + 3 ) − (3 − 6 + 3 ) ,x xv v xx x xv v vx
3 2 2 2 2

(24)

x t v t v s σ σ σ C σ σ σ C( ( ) − ( )) ( ) = (3 − 6 + 3 ) − (3 − 6 + 3 ) ,x xv v xv x xv v vv
3 2 2 2 2

(25)

x t v t h s σ σ σ C σ σ σ C( ( ) − ( )) ( ) = (3 − 6 + 3 ) − (3 − 6 + 3 ) .x xv v xh x xv v vh
3 2 2 2 2

(26)

This leads to a set of linear equations in terms of the covariance
functions. Thus, the Wiener-Khinchin theorem can be applied to write
the equations in terms of the power spectrum, giving

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

S ω σ σ σ
m m m m ω

ω ω
S ω( ; , , ) =

+ +

( ) − (− ) −
( ),xx x xv v

s a
ω
ω s a

ω
ω

ω
ω

ω
ω

hh
2 2

( )
( )

(− )
(− )

4

( )
( )

(− )
(− )

2 2

(27)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

S ω σ σ σ
m m m m ω

ω ω
S ω( ; , , ) =

+ +

− ( ) − (− )
( ),vv x xv v

s a
ω
ω s a

ω
ω

ω ω
ω

ω ω
ω

hh
2 2

( )
( )

(− )
(− )

4

( ) ( )
( )

(− ) (− )
(− )

(28)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

S ω σ σ σ
m m m m ω

ω ω
S ω( ; , , ) =

+ +

( ) − − (− )
( ),xv x xv v

s a
ω
ω s a

ω
ω

ω
ω

ω ω
ω

hh
2 2

( )
( )

(− )
(− )

4

( )
( )

(− ) (− )
(− )

2

(29)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

S ω σ σ σ
m m ω

ω
S ω( ; , , ) =

+

( ) −
( ),xh x xv v

s a
ω
ω

ω
ω

hh
2 2

( )
( )

2

( )
( )

2

(30)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

S ω σ σ σ
m m ω

ω
S ω( ; , , ) =

+

− ( )
( ),vh x xv v

s a
ω
ω
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where,

ω σ σ σ m ω λ λ jω k k

c σ σ σ

( ; , , ) = − + ( + )( ) + +

+ (3 − 6 + 3 ),
x xv v s s a s a

a x xv v

2 2 2

2 2 (32)

ω σ σ σ λ jω k c σ σ σ( ; , , ) = ( ) + + (3 − 6 + 3 ),x xv v a a a x xv v
2 2 2 2 (33)

ω σ σ σ m ω λ jω k c σ σ σ( ; , , ) = − + ( ) + + (3 − 6 + 3 ).x xv v a a a a x xv v
2 2 2 2 2 (34)

At this point σx
2, σv

2, and σxv are still unknown, but can be determined by
integrating both sides of Eqs. (27)–(29) and forming the following
system of equations:

∫ ∫
∫

σ S ω σ σ σ dω σ S ω σ σ σ dω

σ S ω σ σ σ dω

= ( ; , , ) , = ( ; , , ) ,

= ( ; , , ) .

x xx x xv v xv xv x xv v

v vv x xv v

2
0

∞
2 2

0

∞
2 2

2
0

∞
2 2

(35)

By solving the above we find σ ,x
2 σ ,v

2 and σxv. This procedure determines
the Gaussian PDF approximation for the background regime response.
Further details regarding the special case of a linear attachment and
the analysis for the suspended deck-seat problem can be found in

Section Appendix A.

4.2. Quantification of the response pdf for the extreme event
component

We are going to utilize two alternative methods for the quantifica-
tion of the statistics in the extreme event regime. The first approach is
to obtain the conditional statistics based on direct simulations of the
system response. The second method is utilizing effective measures
(Sapsis et al., 2012) that also characterize the system nonlinear
response in the presence of attachments.

4.2.1. Rare response PDF using direct simulations of the system
under impulsive excitation

To compute the conditionally extreme distribution pxr and the prob-
ability of rare events r we follow the steps described in Algorithm 1, which
provides a high-level description for a single mode. The procedure is
repeated for each degree of freedom of interest (in this case it is more
efficient to simply store all the impulse realizations and then run the
procedure for each degree of freedom of interest). We emphasize that the
numerical simulation of impulse response for nonlinear systems is efficient,
since the integrations are necessarily short due the impulsive nature of the
forcing and the condition on the rare event end time in Eq. (13). Moreover,
throughout these simulations we do not take into account the background
excitation since this is negligible compared with the effect of the initial
conditions induced by the impact.

Algorithm 1. Calculation of r and ∫p r p r n p n dn( ) = ( ) ( )x x η ηr r .

1: discretize p n( )η

2: for all n values over the discretization pη do

3: solve ODE system for x t( )n under impulse n, neglecting ḧ
4: τ t ρ x t x t← { max | ( )| = ( )}e

n
e c t

n n
e //we set ρ = 0.1c

5: p x t t τ← Hist{ ( ) ∈ [0, ]}x η
n n

e
n

r

6: end for
7: ∫p p p←x x η

n
η

n
r r

8: ∫τ τ p←e e
n

η
n

9:  ν τ←r α e

10: output:  p,r xr

Comparison with Monte-Carlo simulations
The full response PDF is composed using the total probability law,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∫p r

ν τ
σ π

r
σ

ν τ z t n p n dn( ) =
1 −

2
exp −

2
+ Hist{ ( )} ( ) ,z

α e
z

z z
α e

z
r η η

,dis 2

2 ,dis
0

∞

b b

(36)

where z is either the displacement, velocity or acceleration of the seat/
attachment response. We utilize a shifted Pierson-Moskowitz spectrum
S ω( − 1)hh for the background forcing term in order to avoid system
resonance. Details regarding the Monte-Carlo simulations are provided
in Section Appendix B.

In Fig. 3 we show comparisons for the suspended seat problem with
parameters and relevant statistical quantities given in Table 1. In Fig. 4
we also show comparisons for the suspended deck-seat problem with
parameters and relevant statistical quantities in Table 2. For both cases
the adopted quantification scheme is able to compute the distributions
for the quantities of interest extremely fast (less than a minute on a
laptop), while the corresponding Monte-Carlo simulations take order of
hours to complete.

Note that our method is able to capture the complex heavy tail
structure many standard deviations away from the mean (dashed
vertical line denotes 1 standard deviation). We emphasize that similar
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accuracy is observed for a variety of system parameters that satisfy the
assumptions on the forcing. The close agreement validates that the
proposed scheme is applicable and can be accurately used for system
optimization and design .

4.3. Rare response PDF using effective measures

Here we describe an alternative technique to quantify the rare event
PDF component using the effective stiffness and damping framework
described in Sapsis et al. (2012). These effective measures express any
degree-of-freedom of the coupled nonlinear system, for a given initial
energy level, as an equivalent linear single-degree-of-freedom system.
Specifically, these effective measures correspond to the values of
damping and stiffness for a linear system that has (for the same initial
conditions) a response that is as close as possible to that of the original
system, in the mean square sense .

We focus on the suspended seat problem to illustrate this strategy.
It should be pointed out that the accuracy and applicability of this
approach has some limitations:

• The accurate estimation of the PDF requires the knowledge of the
effective measures over a sufficiently large range of initial impulses.

• The motion of the system should have an oscillatory character so
that it can be captured by effective measures.

• The statistics of the attachment motion cannot be obtained directly
from the effective measures.

To derive the PDF in the rare event regime we reduce the system to
an effective linear system for the degree-of-freedome of interest.
Consider the suspended seat system under an impulse,

m x λ x k x λ x v k x v c x v¨ + ˙ + + ( ˙ − ˙) + ( − ) + ( − ) = 0s s s a a a
3 (37)

m v λ v x k v x c v x¨ + ( ˙ − ˙) + ( − ) + ( − ) = 0a a a a
3

with initial conditions, at an arbitrary time say t = 00 ,

x x n v v= 0, ˙ = , = 0, ˙ = 0. (38)

To determine the effective linear system for this system, we follow the
strategy in Sapsis et al. (2012) and compute the effective stiffness and
damping:

k t n

m x

x
λ t n

d
dt

m x

x
( ; ) =

2 1
2

˙
, ( ; ) = −

2 ˙

˙
,

s
t

t

s t

t
eff

2

2 eff

1
2

2

2 (39)

where · denotes spline interpolation of the local maxima of the time
series. We can then compute the weighted-average effective stiffness
and damping:

∫
∫

∫

∫
k n

m x ds

x ds
λ n

d
ds

m x ds

x ds
( ) =

2 ˙
, ( ) = −2

˙

˙
.

s s

s

s s

s
eff

0

∞ 1
2

2

0

∞ 2 eff
0

∞ 1
2

2

0

∞ 2
(40)

With the weighted-average effective measures we rewrite the original
two-degree-of-freedom system during rare events into an equivalent
linear single-degree-of-freedom system with coefficients that depend
on the initial impact (or the initial energy level of the system):

x λ n x k n x¨ + ( ) ˙ + ( ) = 0eff eff (41)

Using the effective system in Eq. (41) we can obtain the conditionally
rare PDF using the analysis for the linear system in Section 3.1. The
damping ratio and natural frequency now become functions of the
initial impact, n:

Fig. 3. Suspended seat with a NES attached; Comparison between PDS method and Monte-Carlo simulations, with parameters given in Table 1. Top row: seat response. Bottom row:
NES response.

Table 1
Parameters and relevant statistical quantities for the suspended seat system.

ms 1 ma 0.05

λs 0.01 λa 0.021
ks 1 ka 0
— — ca 3.461
Tα 5000 ση 0.0227

μ σ= 7 ×α ḣ 0.1 q 1.582 × 10−4

σ σ=α ḣ 0.0141 σh 0.0063

r
x 0.0214 r

v 0.0107

r
ẋ 0.0210 r

v̇ 0.0100

r
ẍ 0.0212 r

v̈ 0.0096
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ω n k n ζ n λ n
k n

ω n ω n ζ n( ) = ( ) , ( ) = ( )
2 ( )

, ( ) = ( ) ( ) − 1 .n o neff
eff

eff

2

(42)

Subsequently, the PDF is obtained by taking a histogram of

( )x t n n
ω n

( ∣ ) =
2 ( )

e − e .r η
o

ζ n ω n ω n t ζ n ω n ω n t−( ( ) ( )− ( )) −( ( ) ( )+ ( ))n o n o
(43)

In Fig. 5 (top) we present the suppression of the probability for large
motions of the primary structure due to the presence of the NES
(parameters given in Table 1). This suppression is fully expressed in
terms of the effective damping measure shown in the lower plot. Note
that the suppression of the tail begins when the effective damping
attains values larger than one.

Fig. 4. Suspended deck-seat with an NES attached; Comparison between the PDS method and Monte-Carlo simulations, with parameters given in Table 2. Top row: seat response.
Middle row: deck response. Bottom row: NES response.

Table 2
Parameters and relevant statistical quantities for the suspended deck-seat system.

mh 1 ms 0.05 ma 0.05

λh 0.01 λs 0.1 λa 0.035
kh 1 ks 1 ka 0
— — — — ca 5.860
Tα 5000 μ σ= 7 ×α ḣ 0.1 q 1.582 × 10−4

ση 0.0232 σ σ=α ḣ 0.0141 σh 0.0063

r
y 0.0245 r

x 0.0247 r
v 0.0162

r
ẏ 0.0234 r

ẋ 0.0202 r
v̇ 0.0161

r
ÿ 0.0238 r

ẍ 0.0081 r
v̈ 0.0146

Table 3
Suspended seat system parameters.

ms 1 ma 0.05
λs 0.01 ks 1
Tα 5000 – –

μ σ= 7 ×α ḣ 0.1 q 1.582 × 10−4

σ σ=α ḣ 0.0141 σh 0.0063

Table 4
Suspended deck-seat system parameters.

mh 1 ms 0.05
ma 0.05 λh 0.01
kh 1 λs 0.1
ks 1 Tα 5000
μ σ= 7 ×α ḣ 0.1 q 1.582 × 10−4

σ σ=α ḣ 0.0141 σh 0.0063
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We emphasize that in the context of effective measures the motion
of the system is assumed oscillatory. Motions with radically different
characteristics will not be captured accurately from the last representa-
tion and the resulted histograms will not lead to an accurate repre-
sentation of the tail. This problem is, in general, circumvented if we
employ the first approach for the computation of the conditional PDF
during extreme impacts. On the other hand, the advantage of the
second approach is that we can interpret the form of the tail in the
various regimes with respect to the properties of the effective measures
(Fig. 5). This link between dynamics (effective measures) and statistics
(heavy tail form) is important for the design process of the NES.

Comparison with Monte-Carlo simulations
Here we compare the PDS method combined with the effective

measures with direct Monte-Carlo simulations. In Fig. 6 we show the
response PDF for the primary structure for parameters given in
Table 1. Details regarding the Monte-Carlo computations are provided
in Section 4.2.1. We observe that the PDS method utilizing effective
measures performs satisfactorily over a wide range similarly with the
first general scheme, based on individual trajectories computation.

4.4. Quantification of the absolute response pdf

The developed PDF quantification schemes provide statistical descrip-
tion for relative quantities (with respect to the base), that is x x ξ= − ,
y y ξ= − and v v ξ= − . However, for the prototype systems that we
consider we are more interested for the suppression of absolute quantities,
instead of relative ones. As we illustrate below, the absolute response PDF
can be derived from the relative response PDF in a straightforward manner.

Background component
For the background regime, we the absolute motion is expressed as:

x x h= + .b b (44)

As the relative motion and base motion h(t) are both Gaussian
distributed (but not independent), their sum is also Gaussian distrib-
uted and it is given by,

μ σ σ σ σ( , ) = (0, + + 2 ).x x x h xh
2 2 2 (45)

In the previous section we have derived both σx
2 and σh

2, and what
remains is the covariance term σxh whose spectral density function is
given in Eq. (29). This is given by:

∫σ S ω σ σ σ dω= ( ; , , ) .xh xh x xv v
0

∞
2 2

(46)

Extreme event component
For the extreme event component the motion of the motion is

assumed very small (compared with the magnitude of the impact), in
which case we have:

x x= .r r (47)

The estimation of the conditional PDF for xr has already been described
in Section 4.2.

Comparison with Monte-Carlo simulations
The full absolute response PDF is expressed using eq. (36), where z

is either relative or absolute displacement, velocity or acceleration of
the seat/attachment response. We compare the PDS method with
direct Monte-Carlo simulations for the case of absolute motions. In
Fig. 7 we show the absolute response PDF for the primary structure for
parameters given in Table 1. Details regarding the Monte-Carlo
computations are provided in Section 4.2.1.

5. System optimization for extreme event mitigation

We now consider the problem of optimization in the presence of
stochastic excitation containing extreme events. The developed method
provides a rapid and accurate semi-analytic estimation scheme for the
statistical response of the nonlinear structural system. In particular, we
can efficiently obtain the response statistics of the primary structure
(the seat) for any given shock mitigating attachment and accurately
capture the heavy-tailed structure of the distribution. This allows us to
explore rare event mitigation performance characteristics of different
attachment parameters and perform optimization. Such analysis is not
practically feasible via a direct Monte-Carlo approach since a single
parameter set takes on the order of hours to compute the resulting
response PDF with converged tail statistics.

We consider the prototype systems described in Section 2 with the
aim to suppress the large energy delivered to the passenger (i.e. the

Fig. 5. (Top) Suspended seat problem without and with a NES attached; (Bottom)
Normalized weighted-averaged effective damping λ n λ( )/ seff as a function of impulse

magnitudes η.

Fig. 6. Suspended seat problem with an NES attached; Comparison between PDS estimate using effective measures and Monte-Carlo simulations. System parameters are given in
Table 1.
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seat). In all cases we optimize the attachment parameters, while the
parameters of the primary structure are assumed to be fixed.

5.1. Optimization objective

We adopt the forth-order moment as our measure to reflect the
severity of extreme events on the seat:

∫z z p r dr= ( ) ,z
4 4

(48)

where the argument z can be either absolute displacement of the seat
or absolute velocity depending on the optimization objective. The goal
here is to minimize this measure and analyze the performance
characteristics of the attachment when its parameters are varied.

We illustrate the results of the optimization using the following
normalized measure:

γ z z= /a o
4 4 (49)

where za is either x or ẋ , and zo is the corresponding quantity without
any attachment. Values of this measure which are less than 1 (γ < 1)
denote effective extreme event suppression.

5.2. Optimization of NES and TMD parameters

Results are shown for the suspended seat problem with an attachment
massma = 0.05. For a NES attachment (ka = 0) we optimize over ca and λa,
while for a TMD (ca=0) we vary ka and λa (Fig. 8). The resulted response
PDF that minimize the displacement moments are illustrated in Fig. 9. The
same analysis is performed for the suspended deck-seat problem with the
same attachment mass ma = 0.05 for both systems (Fig. 10). The resulted
response PDF are illustrated in Fig. 11.

In both cases of systems we observe that the TMD and the optimal
cubic NES can improve significantly the behavior of the primary
structure in terms of reducing the displacement during impacts, with
a reduction of 66–68% of the fourth-order moment. We also observe
that the NES design is more robust to variations in the attachment
parameters over the TMD design, which requires more stringent
attachment parameter values for best performance with respect to γ.
This is in line with the fact that the NES attachment performs better
over a broader excitation spectrum than the TMD configuration, which
requires carefully tuning. Note that for the case of the deck-seat
problem (Fig. 10) we can achieve much larger mitigation of the
absolute velocity at the order of 32–34% compared with the simpler
system of the seat attached to the hull directly (Fig. 8), where the
suppression is much smaller, 2–4%.

We performed the grid search for demonstration purposes to
illustrate the performance characteristics as the stiffness and damping
are varied; clearly, if we are only interested in the optimal attachment
the use of an appropriate global optimizer (such a particle swarm
optimizer) would be more appropriate. All the results shown where

computed using the proposed PDF estimation method. As a further
check and validation, we benchmarked the semi-analytical PDF
estimates and compare them with Monte-Carlo results for the extre-
mity measure γ over a coarse grid of the attachment parameters.

6. Design and optimization of a piecewise linear NES

To further improve the shock mitigation properties of the attach-
ment, we utilize a more generic form of NES consisting of a possibly
asymmetric, piecewise linear spring. Similarly with the cubic NES and
TMD attachments, we perform parameter optimization on the NES
spring restoring characteristics and obtain a new optimal design that
outperforms the TMD and cubic NES for the considered problems.

Here, we focus on suppressing large displacements of the seat,
although velocity or acceleration would also be appropriate depending
on the desired objectives. The general form of the considered spring
consists of a linear regime with slope equal to that of the optimal TMD
within a range of 4 standard deviations of the expected seat motion
(e.g. when the TMD is employed). For motions (displacements) outside
this range the spring has also a linear structure but with different
slopes, α−1 for negative displacements (beyond 4 standard deviations)
and α1 for positive displacements (beyond 4 standard deviations).
Therefore, the optimal linear stiffness operates for small to moderate
displacement values and outside this regime, when the response is very
large, we allow the stiffness characteristics to vary. The objective is to
determine the optimal values for the curve in the extreme motion
regime with respect to optimization criterion.

Therefore, the analytical form of the piecewise linear spring is given by:

⎧
⎨⎪
⎩⎪

f x
α x β x σ
k x σ x σ
α x β x σ

( ) =
+ , ≥ 4 ,

, − 4 ≤ ≤ 4 ,
+ , ≤ −4 ,

ζ

o ζ ζ

ζ

1 1

−1 −1 (50)

where, σζ is the standard deviation of the relative displacement ζ x v= −
between the primary structure (the seat) and the attachment for the case of
a TMD attachment. The parameters, α ≥ 01 and α ≥ 0−1 define the slopes in
the positive and negative extreme response regimes, which we seek to
optimize. Moreover, the values for β1 and β−1 are obtained by enforcing
continuity:

β k α σ= 4( − ) ,o ζ1 1 (51)

β k α σ= −4( − ) .o ζ−1 −1 (52)

The value of the stiffness in the center regime, ko, is chosen using the
optimal TMD attachment.

6.1. Application to the suspended seat and deck-seat problem and
comparisons

We illustrate the optimization using the fourth-order moment of the
seat response, employing the following measure:

Fig. 7. Suspended seat problem with an NES attached; Comparison between PDS method and Monte-Carlo simulations. System parameters are given in Table 1.
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γ z z′ = /n t
4 4 (53)

where zt is the system response with the optimal TMD attachment
(from the previous parametric grid search optimization) and zn is the
response of the system with the piecewise linear NES attachment.
Parameters corresponding to values less than 1 (γ′ < 1) denote addi-
tional extreme event suppression, compared with the utilization of
optimal TMD.

The result of the optimization for minimum fourth-order moment
for the displacement, on the suspended seat problem, is shown in
Fig. 12 while the corresponding PDF for the displacement, velocity and
acceleration are shown in Fig. 13. We note the strongly asymmetric
character of the derived piecewise linear spring. This is directly related

with the asymmetric character of the impulsive excitation, which is in
general positive. The performance of the optimized piecewise linear
spring is radically improved compared with the optimal cubic NES and
TMD as it is shown in the PDF comparisons. Specifically, for rare
events (probability of 1%) we observe a reduction of the motion
amplitude by 50%, while for the velocity the reduction is smaller. A
representative time series illustrating the performance of the optimal
design for the suspended seat problem is shown in Fig. 14. The PDF for
the acceleration for this set of parameters is not changing significantly.
Our results are in agreement with previous studies involving single-
sided vibro-impact NES that have been shown to improve shock
mitigation properties in deterministic setups (AL-Shudeifat et al.,
2013).

Fig. 8. [Suspended seat] The result of the parametric grid search optimization of the suspended seat attached with (a) TMD (ca=0) and (b) NES (ka = 0). Optimization has been
performed with respect to the stiffness (linear/nonlinear) and damping coefficients of the attachment, and the optimal solutions are marked by a red cross ( ) along with the numeric

value of the optimal measure γ. Optimization of the response displacement (left subplots) and velocity (right subplots) are presented. Parameters without attachment are shown in
Table 3.

Fig. 9. [Suspended seat] Comparison of the response PDF for optimization of the displacement fourth-order moment. Red curve: without any attachment; Green curve: TMD
λ k( = 0.018, = 0.036)a a ; Blue curve: optimal NES λ c( = 0.018, = 3.121)a a .
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The result of the optimization for the suspended deck-seat problem
is shown in Fig. 15 and the corresponding PDF are shown in Fig. 16.
Similarly with the previous problem, the optimization in this case as
well leads to a strongly asymmetric piecewise linear spring. The
reduction on the amplitude of the displacement during extreme events
is radical (with an additional reduction of 32%) while the correspond-
ing effects for the velocity and acceleration are negligible. This small
improvement for the velocity is attributed to the fact that we have
focused on minimizing the fourth-order moments for the displacement.

7. Summary and conclusions

We have formulated a parsimonious and accurate quantification
method for the heavy-tailed response statistics of nonlinear multi-

degree-of-freedom systems under extreme forcing events. The compu-
tational core of our approach is the probabilistic decomposition-
synthesis method which is formulated for nonlinear MDOF systems
under stochastic excitations containing extreme events. Specifically, the
excitation is modeled as a superposition of a Poisson distributed
impulse train (with extreme magnitude and large inter-arrival times)
and a background (smooth) component, modeled by a correlated
stochastic excitation with broadband spectral density. This algorithm
takes the form of a semi-analytical formula for the response PDF,
allowing us to evaluate response statistics (having complex tail
structure) on the order of seconds for the nonlinear dynamical
structures considered.

Based on this computational statistical framework, we proceed with
the design and optimization of small attachments that can optimally

Fig. 10. [Suspended deck-seat] The result of parametric grid search optimization of the suspended deck-seat attached with (a) TMD (ca = 0) and (b) NES (ka = 0). Optimization has been
performed with respect to the stiffness (linear/nonlinear) and damping coefficients of the attachment and the optimal solutions are marked by a red cross ( ) along with the numeric
value of the optimal measure γ. Optimization of the response displacement (left figures) and velocity (right figures) are presented. Parameters without attachment are shown in Table 4.

Fig. 11. [Suspended deck-seat] Comparison of the response PDF for optimization of the displacement fourth-order moment. Red curve: without any attachment; Green curve: TMD
λ k( = 0.069, = 0.069)a a ; Blue curve: optimal NES λ c( = 0.021, = 3.484)a a .
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mitigate and suppress the extreme forcing events delivered to the
primary system. We performed the suppression of extreme responses
on prototype ocean engineering dynamical structures, the suspended
seat and the suspended deck-seat of high speed crafts, via optimal TMD
and cubic NES attachments through parametric optimization. As an
optimization criterion we selected the forth-order moments of the
response displacement, which is a measure of the severity of large
deviations from the mean. Quantitative comparisons of TMD and cubic
NES were presented, evaluating the effectiveness and robustness in
terms of extreme event suppression. We then proposed a new piecewise
linear NES with asymmetries, for extreme event mitigation. The
optimization of the new design led to a strongly asymmetric spring
that far outperforms the optimal cubic NES and TMD for the
considered problem. The results presented involved the idealized setup
of Gaussian distributed impulsive loads which are not correlated with
the background statistics. Further investigations should be performed
involving more realistic loads (obtained through CFD or experiments)
in order to refine the proposed design and assess/validate its favorable
properties. Such a study is beyond the scope of this paper and will be
performed elsewhere.

We emphasize the statistical accuracy of the PDF estimation
schemes, which we demonstrated through comparisons with direct
Monte-Carlo simulations. The presented schemes are generic, easy to
implement, and can profitably be applied to a variety of different
problems in structural engineering where similar characteristics are

present, i.e. structures excited by extreme forcing events represented
by impulsive-like terms that emerge from an otherwise random
excitation background of moderate magnitude.

Fig. 12. [Suspended seat] Left: fourth-order measure γ′ for the seat absolute displacement as a function of the design variables α−1 and α1. Right: corresponding optimal restoring curve

(α α= 0.035, = 0.6341 −1 ).

Fig. 13. [Suspended seat] Comparison of the response PDF when the system is tuned for optimal displacement of the seat. Black curve: no attachment. Green curve: optimal TMD
design (λ k= 0.018, = 0.036a a ). Red curve: proposed optimal piecewise linear NES design.

Fig. 14. Representative time series segment for the absolute displacement and velocity
for the suspended seat problem. Black curve: without attachment. Red curve: with
optimal piece-wise linear NES. This is the result of design optimization performed in
Fig. 12, with response PDF shown in Fig. 13.
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Appendix A. Statistical linearization of the background regime

Suspended seat system with a linear attachment

For the special case of a linear attachment, c = 0,a the operators for the suspended seat problem, , , and in Eqs. (32)–(34) reduce to

ω m ω λ λ jω k k( ) = − + ( + )( ) + + ,s s a s a
2 (54)

ω λ jω k( ) = ( ) + ,a a (55)

ω m ω λ jω k( ) = − + ( ) + .a a a
2 (56)

In this case, we can directly integrate Eqs. (27)–(29) to obtain the second order response statistics.

Suspended deck-seat system

For the suspended deck-seat design the background response is governed by the following system

m y λ y k y λ y x k y x λ y v k y v c y v m h t¨ + ˙ + + (˙ − ˙) + ( − ) + (˙ − ˙) + ( − ) + ( − ) = − ¨ ( ),h h h s s a a a h
3 (57)

m x λ x y k x y m h t¨ + ( ˙ − ˙) + ( − ) = − ¨ ( ),s s s s (58)

Fig. 15. [Suspended deck-seat] Left: fourth-order measure γ′ for the seat absolute displacement as a function of the design variables α−1 and α1. Right: corresponding optimal restoring

curve (α α= 0, = 4.6051 −1 ).

Fig. 16. [Suspended deck-seat] Comparison of the response PDF when the system is tuned for optimal displacement of the seat. Black curve: no attachment. Green curve: optimal TMD
design (λ k= 0.069, = 0.069a a ). Red curve: proposed optimal piecewise linear NES design.

H.K. Joo et al. Ocean Engineering 142 (2017) 145–160

157



m v λ v y k v y c v y m h t¨ + ( ˙ − ˙) + ( − ) + ( − ) = − ¨ ( ).a a a a a
3 (59)

As before we first multiply the above two equations by y(s), x(s), v(s), h(s) at different time instant s t≠ , and take ensemble averages to write the
resulting equations in terms of covariance functions.

m C λ C k C λ C C k C C

λ C C k C C c y t v t η s m C

″ + ′ + + ( ′ − ′ ) + ( − )

+ ( ′ − ′ ) + ( − ) + ( ( ) − ( )) ( ) = − ″ ,
h yη h yη h yη s yη xη s yη xη

a yη vη a yη vη a h hη
3 (60)

m C λ C C k C C m C″ + ( ′ − ′ ) + ( − ) = − ″ ,s xη s xη yη s xη yη s hη (61)

m C λ C C k C C c v t y t η s m C″ + ( ′ − ′ ) + ( − ) + ( ( ) − ( )) ( ) = − ″ ,a vη a vη yη a vη yη a a hη
3 (62)

where η can be either y, x, v, or h, and ' indicates the partial differentiation with respect to the time difference τ t s= − . We then apply Isserlis’
theorem based on the Gaussian process approximation for response to express the fourth-order moments in terms of second-order moments
(Isserlis, 1918).

y t v t η s σ σ σ C σ σ σ C( ( ) − ( )) ( ) = (3 − 6 + 3 ) − (3 − 6 + 3 ) .y yv v yη y yv v vη
3 2 2 2 2

(63)

This leads to a set of linear equations in terms of covariance functions and thus the Wiener-Khinchin theorem can be applied to write the equations
in terms of the power spectrum. The spectral equations in this case are given by
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where

ω σ σ σ m ω λ λ λ jω k k k c σ σ σ( ; , , ) = − + ( + + )( ) + + + + (3 − 6 + 3 ),y yv v h h s a h s a a y yv v
2 2 2 2 2

(74)

ω σ σ σ λ jω k c σ σ σ( ; , , ) = ( ) + + (3 − 6 + 3 ),y yv v a a a y yv v
2 2 2 2

(75)

ω σ σ σ m ω λ jω k c σ σ σ( ; , , ) = − + ( ) + + (3 − 6 + 3 ),y yv v a a a a y yv v
2 2 2 2 2

(76)

ω λ jω k( ) = ( ) + ,s s (77)

ω m ω λ jω k( ) = − + ( ) + .s a s
2 (78)

Now σy
2, σv

2, and σyv are still unknown, but can be determined by integrating both sides of Eqs. (64), (66), (68) and (70) and forming the following
system of equations,

∫σ S ω σ σ σ dω= ( ; , , ) ,y xx y yv v
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2 2
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2
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(81)

from which we obtain σ σ σ, ,y yv v
2 2.

Suspended deck-saet system with a linear attachment

If the attachment is linear ca=0, , , and in Eqs. (74), (75) and (78) reduce to

ω m ω λ λ λ jω k k k( ) = − + ( + + )( ) + + + ,h h s a h s a
2 (82)

ω λ jω k( ) = ( ) + ,a a (83)

ω m ω λ jω k( ) = − + ( ) + ,a a a
2 (84)

which can be directly integrated to obtain the second order response statistics.

Appendix B. Monte-Carlo simulations

For the Monte-Carlo simulations the excitation time series is generated by superimposing the background and rare event components. The
background excitation, described by a stationary stochastic process with a Pierson-Moskowitz spectrum (Eq. (4)), is simulated through a
superposition of cosines over a range of frequencies with corresponding amplitudes and uniformly distributed random phases. The intermittent
component is the random impulse train, and each impact is introduced as a velocity jump at the point of the impulse. For each of the comparisons
performed in this work we generated 10 realizations of the excitation time series, each with a train of 100 impulses. Once each ensemble for the
excitation is computed, the governing ordinary differential equations are solved using a 4th/5th order Runge-Kutta method (we carefully account
for the modifications in the momentum that an impulse imparts by integrating up to each impulse time and modifying the initial conditions that the
impulse imparts before integrating the system to the next impulse time). We verified that this number of ensembles and their durations leads to
converged response statistics for the displacement, velocity, and acceleration.
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