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a b s t r a c t

We formulate a reduced-order strategy for efficiently forecasting complex high-dimensional dynamical
systems entirely based on data streams. The first step of ourmethod involves reconstructing the dynamics
in a reduced-order subspace of choice using Gaussian Process Regression (GPR). GPR simultaneously
allows for reconstruction of the vector field and more importantly, estimation of local uncertainty. The
latter is due to (i) local interpolation error and (ii) truncation of the high-dimensional phase space. This
uncertainty component can be analytically quantified in terms of the GPR hyperparameters. In the second
step we formulate stochastic models that explicitly take into account the reconstructed dynamics and
their uncertainty. For regions of the attractor which are not sufficiently sampled for our GPR framework
to be effective, an adaptive blended scheme is formulated to enforce correct statistical steady state
properties, matching those of the real data. We examine the effectiveness of the proposed method to
complex systems including the Lorenz 96, the Kuramoto–Sivashinsky, as well as a prototype climate
model. We also study the performance of the proposed approach as the intrinsic dimensionality of the
system attractor increases in highly turbulent regimes.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

A broad range of systems are characterized by a high-
dimensional phase space and existence of persistent or inter-
mittent instabilities. These properties are ubiquitous in many
complex systems involving fluid flows such as the atmosphere,
ocean, coupled climate system, confined plasmas, and engineer-
ing turbulence at high Reynolds numbers. For these systems short
term prediction, as well as quantification of long-term statistics
can be very challenging. The difficulty is the result of (i) intrin-
sic limitations of typical order-reduction methods for systems ex-
hibiting unstable dynamicsmitigated by strongly nonlinear energy
transfers [1–3], and (ii) inevitable error in the model equations
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especially when we do not have a complete understanding of the
underlying physical mechanisms [4–7].

For such systems it is often beneficial, instead of adopting
the typical equation-driven approach, to consider a data-driven
perspective. One of the simplest methods used to forecast dynam-
ical systems is the vector autoregression model [8,9], which as-
sumes that the current state of the system depends linearly on
a fixed number of its preceding states and an additional noise
term. These models have been applied to modeling problems in
economics, medicine and soil sciences [10–12] with success.
Nevertheless, they are greatly limited by their ad hoc parametric
structure, which requires significant tuning and testing to be effec-
tively applied to different systems. Another relevant direction in-
volves the generation of symbolic nonlinear equations using time
series of the system response [13,14]. However, symbolic regres-
sion is expensive and to this end a sparse identificationmethod has
been recently proposed and demonstrated to work effectively for
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systems with low-dimensional attractors [15]. For turbulent sys-
tems with high-dimensional structures, physics-constrained non-
linear regression models have been developed in [16] and shown
to perform robustly. However, thesemodels assume a stable linear
part in the dynamics operator, which is not always the case for the
dynamics within a reduced order subspace [17,18,1,2]. This limi-
tation was resolved in [19] where cubic terms were also included
with appropriate negative definite assumptions allowing for lin-
early unstable modes.

A class of non-parametric methods are inspired by an empirical
forecasting technique called analog forecasting. This approachwas
introduced in [20] as a method for predicting the time evolution
of observables in dynamical systems based on a historical record
of training data. For any arbitrary current state of the system,
an analog, i.e. the state in the historical record which most
closely resembles the current state, is identified. Then, in order to
perform prediction, the historical evolution of the analog state is
followed for the desired lead time, and the observable of interest
is predicted based on the corresponding analog value. This method
has been applied in a number of applicationswith very good results
[21–23]. However, its main drawback is the difficulty to pick the
most skillful analog that will best represent the evolution of the
system. This is because in analog forecasting very little emphasis is
placed on the geometrical structure of the data-points.

Recent approaches [24–26] have successfully managed to
incorporate the geometrical properties of available data through
use of diffusion maps [27,28]. The basic idea is to represent
the semigroup solution using a basis adapted to the invariant
measure. Because of the ‘global’ nature of the basis elements
produced by the diffusion maps algorithm, a large number of
basis elements are oftennecessary to probabilistically evolve initial
states with small variance. In addition, computing these basis
elements using diffusion maps is an expensive process especially
for large data sets, as it requires solving an eigensystemwhose size
is proportional to that of the training data.

A different perspective for the same problem can be found
in [29,30]. The idea is to utilize nonlinear diffusionmap coordinates
and formulate a deterministic dynamical system on the system
manifold. This approach results in a reduced-space data-driven
dynamical system which describes the evolution of states on the
attractor. Models formulated this way are able to effectively take
advantage of the low intrinsic dimensionality. Along the same
spirit, in [31] the local dynamics on the attractor are represented
with weighted averages of the data-points using local similar-
ity kernels. However, the resulting low-dimensional attractors
are typically noisy due to truncation errors, observation noise, or
under-sampled training data. Therefore, it is crucial to be able to
quantify the error in the evolved dynamics in reduced space. This
is the main goal of this work.

In particular, we propose a generally applicable methodology
for forecasting and quantifying uncertainty in reduced-space
states, based on Gaussian process regression (GPR) [32–36]. The
main advantage of employing GPR to reconstruct the reduced-
order dynamics is the simultaneous estimation of the dynamics
and the associated error/uncertainty, which can be important
when reduction dimension is lower than the intrinsic dimension
of the system. Using GPR dynamics we formulate a reduced-order
stochastic model taking into account uncertainty from various
sources. We also propose an adaptive blended scheme for systems
which are not sufficiently sampled everywhere. We examine the
effectiveness of the proposed method for different systems and
evaluate its performance as the intrinsic dimension of the system
attractor increases in highly turbulent regimes.

This paper is structured as follows. In Section 2, we give an
overview for Gaussian Process Regression technique. Section 3
describes the use of GPR to construct stochastic models in
reduced-order space and perform probabilistic forecast. In the
same section we present the decomposition of the error into
different components and quantify those in terms of the GPR
hyperparameters. The proposed methodologies are applied to
three complex systems in Section 4. Finally, Section 5 provides a
summary and brief discussion of possible future directions.

2. An overview of Gaussian process regression

In this section, we present an overview of Gaussian Process Re-
gression [32], appropriately formulated for forecasting dynamical
systems. GPRworks under the probabilistic regression framework,
which takes as input a training data set D = {(yn, xn), n =

1, . . . ,N} of N pairs of vector input xn ∈ RL and noisy scalar out-
put yn, and constructs a model that generalizes well to the dis-
tribution of the output at unseen input locations. The noise in
the output models uncertainty due to factors external to x, such
as truncation or observation errors. Here we assume that noise
is additive, zero-mean, stationary and normally distributed, such
that

y = f (x)+ ϵ, ϵ ∼ N (0, σ 2
noise), (1)

where σ 2
noise is the variance of the noise.

The primary idea behindGPR is to use aGaussian process (GP) to
represent f , referred to as latent variables. The input x plays the role
of indexing these latent variables such that any finite collection
{f (x1), . . . , f (xk)} with unique indices follow a consistent Gaus-
sian distribution. In this way, we limit ourselves to only looking
at functions whose values correlate with each other in a Gaussian
manner. In Bayesian framework, this is equivalent to putting a GP
prior over functions. Due to the consistency requirement, we are
able tomake inference on function values corresponding to unseen
inputs conveniently using a finite set of training data.

A major advantage for using the Gaussian prior assumption is
that functions can be conveniently specified by a mean function
m(x) and a covariance function k(x, x′):

m(x) = E[f (x)],
k(x, x′) = E[(f (x)− m(x))(f (x′)− m(x′))],

(2)

where E[·] denotes expectation. The form of the mean function is
important only in unobserved region of the input space and usually
set to zero. The properties of the process are then entirely dictated
by the covariance function, which is by definition symmetric and
positive semi-definite when evaluated at any pair of points in the
input space. The covariance function typically contains a number
of free parameters called hyperparameters which define the prior
distribution on f (x). The most commonly used is the squared
exponential covariance function

k(x, x′) = θ1 exp


−
∥x − x′

∥
2

2θ2


, (3)

where ∥ · ∥ is a norm defined on the input space. Note that this
covariance function decays rapidly when evaluated at increasingly
distant pairs of input x and x′, indicating weak correlations
between f (x) and f (x′). θ1 is a hyperparameter specifying
the maximum allowable covariance. θ2 is a strictly positive
hyperparameter defining rate of decay in correlation as points
become farther away from each other. Another hyperparameter θ3,
which is not expressed explicitly in (3), is used to represent the
unknown variance σ 2

noise of the i.i.d. noise ϵ in (1).
The hyperparameters {θ1, θ2, θ3} are grouped together as a

vector θ treated as the realization of a random vector 2. The
realization that is most coherent with the data set is selected
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using training data and then used to make predictions. Methods
for estimating these parameters are described in Section 2.2.

2.1. Prediction with GPR

Assuming that the hyperparameters are known, inference is
easily made. Denoting the vector of training latent variables by f
and the vector of test latent variables by f∗, we have the following
joint Gaussian distribution:

p(f, f∗) = N


0,

Kf,f K∗,f
Kf,∗ K∗,∗


. (4)

K is the symmetric covariance matrix whose ijth entry is the co-
variance between the ith variable in the group denoted by the first
subscript and the jth variable in the group denoted by the second
subscript (∗ is used in place of f∗ for short), computed using covari-
ance function k(·, ·) in (3) and corresponding hyperparameters. For
convenience, we do not explicitly write out the conditioning on θ
in (4) and other conditional probability expressions that follow in
this section.

The conditional probability for the training observations y can
then be incorporated to find the posterior distribution for f∗.
Because of the noise assumption, we have

p(y|f) = N (f, σ 2
noiseI). (5)

Using Bayes rule, the joint posterior can be written as

p(f, f∗|y) =
p(f, f∗)p(y|f)

p(y)
, (6)

which can be marginalized to find p(f∗|y):

p(f∗|y) =


p(f, f∗|y)df =

1
p(y)


p(f, f∗)p(y|f) df. (7)

This corresponds to conditioning the joint Gaussian prior
distribution on the observations, resulting in the closed-form
Gaussian distribution

p(f∗|y) = N

K∗,f(Kf,f + σ 2

noiseI)
−1y, K∗,∗

− K∗,f(Kf,f + σ 2
noiseI)

−1Kf,∗


, N (f
∗

,Σf∗), (8)

for which a detailed derivation/proof can be found in Section 4.3.4
of [37]. Since y∗

= f∗ + ϵ∗, with ϵ∗
∼ N (0, σ 2

noiseI) being
independent of f∗, the mean and covariance can be directly added
to obtain

p(y∗
|y) = N


K∗,f(Kf,f + σ 2

noiseI)
−1y, K∗,∗

− K∗,f(Kf,f + σ 2
noiseI)

−1Kf,∗ + σ 2
noiseI


, N (f

∗

,Σy∗). (9)

The computation complexity of (9) appears to be dominated by
the matrix inversion term (Kf,f +σ

2
noiseI)

−1. However, if we use the
same set of training cases, Kf,f remains the same and the inversion
can be easily pre-computed in terms of the Cholesky factors and
stored for all later uses. The overall complexity is then reduced to
O(N2). This makes it feasible to use up to more than ten thousand
of training examples to make predictions.

2.2. Evaluation of hyperparameters

A crucial part of the GPR framework is choosing suitable
hyperparameters θ. The parameter choice has fundamental impact
on how well the model fits with data. The best set of parameters
is usually obtained by optimizing over training data using
appropriate objective/penalty functions. In the following, two
possible approaches are described.
2.2.1. Maximum a posteriori estimates
A complete Bayesian approach involves placing a prior

distribution (hyper-prior) h(θ) over the hyperparameters and
marginalizing to eliminate the dependence of hyperparameters θ.
However, this process is usually computationally expensive. In-
stead, the maximum a posteriori (MAP) estimate is often used as
a point estimate for θ. If we assume uniform distributions on the
hyperparameters, the resulting MAP turns into a maximum likeli-
hood estimate (MLE) for θ. As a function of θ, the log-likelihood for
the training data can be written as

LMAP(θ) = log p(y|θ) = log

(2π)−

k
2 |Ky,y|

−
1
2 exp


−

1
2
yTΣyy


=

1
2
yT (Ky,y)

−1y −
1
2
log |Ky,y| −

N
2

log 2π, (10)

where N is the size of the training data and Ky,y , Kf,f + σnoiseI .
The partial derivatives with respect to the hyperparameters can
be readily obtained by differentiating (10) and simplifying with
relevant matrix identities
∂LMAP

∂θj
=

1
2
yT (Ky,y)

−1 ∂Ky,y

∂θj
(Ky,y)

−1y −
1
2
Tr

(Ky,y)

−1 ∂Ky,y

∂θj


=

1
2
Tr

(ααT

− (Ky,y)
−1)

∂Ky,y

∂θj


, (11)

where α , (Ky,y)
−1y. The most computationally expensive step in

this expression is evaluating (Ky,y)
−1 which requires O(N3) time,

but again only needs to be computed once for all θj. Thus the overall
time requirement for computing the analytical derivative of the log
likelihood is only O(N2) per hyperparameter, making it realistic
to implement a gradient-based optimization algorithm. For the
examples in this work we implement a conjugate gradient (CG)
optimizer to perform searches for the optimal hyperparameters.

2.2.2. Cross-validation
An alternative approach that emphasizes more on empirical

performance for the selection of hyperparameters is the cross-
validation method. The whole data set is split into a training
set and a validation set, and the prediction performance of GPR
models built with the training set is measured on the validation
set. The process is usually repeated for a large number of different
partitions of training and validation data in order to obtain an
unbiased measure overall. The special case of using one data point
for validation and all others for training is called Leave-one-out
(LOO) cross-validation. In LOO, the predictive log-likelihood for a
single validation case yn is

log p(yn|y−n, θ) = −
1
2
log σ 2

n −
yn − µn

2σ 2
n

−
1
2
log 2π, (12)

where y−n denotes training data with case n excluded. µn and σn
are predicted mean and variance for case n, computed using (9),
and can be considered functions of θ. Summing over all cases, the
total likelihood is then

LLOO(θ) =

N
n=1

log p(yn|y−n, θ), (13)

which can be optimized over θ. This expression may seem
expensive to compute at first because calculating each µn and σn
requires inverting a different matrix. However, these matrices are
highly similar, each with one row and column removed from the
covariance matrix for the entire training set. As a result, µn and σn
can be conveniently computed from (Ky,y)

−1 as

µn = yn −

(Ky,y)

−1y

n /

(Ky,y)

−1
nn ,

σ 2
n = 1/


(Ky,y)

−1
nn ,

(14)
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where the subscripts refer to the indices of the corresponding
matrix/vector. Carefully examining (14) would reveal that µn is
rightfully independent of yn. Since only one matrix inversion is
required, the overall complexity for calculating LLOO is O(N2).

Taking the derivative of the expressions in (14) with respect to
θj we obtain

∂µn

∂θj
=


Zjα

n

(Ky,y)−1

nn

−
α

Zj(Ky,y)

−1

nn

(Ky,y)−1
2
nn

,

∂σ 2
n

∂θj
=


Zj(Ky,y)

−1

nn

(Ky,y)−1
2
nn

,

(15)

where Zj , K−1
y,y

∂Ky,y
∂θj

and α is defined as in previous section. Using
the chain rule, the derivative of the LOO likelihood is then

∂L

∂θj
=

N
n=1

∂ log p(yn|y−n, θ)

∂µn

∂µn

∂θj

+
∂ log p(yn|y−n, θ)

∂σ 2
n

∂σ 2
n

∂θj

=

N
n=1


αi[Zjα]n −

1
2


1 +

α2
n

(K−1
y,y )


nn



×

Zj(Ky,y)

−1
nn


/

(Ky,y)

−1
nn . (16)

The computational complexity is O(N3), dominated by the N ×

N matrix multiplication calculating Zj. Thus, using a gradient
based optimization algorithm for LOO cross-validation is more
expensive than theMAP estimate. However, due to the fact that it is
formulated to minimize the prediction error, LOO cross-validation
generally has better performance empirically. For this reason, we
can first use MAP to coarsely find the hyperparameters and fine-
tune them using LOO cross-validation gradients. The combination
of both approaches ensures that good performances are attained at
moderate computational costs.

3. Reduced-order data-driven forecast models

Building on the GPR framework, we propose a purely data-
driven method for constructing reduced-order dynamical models
for nonlinear chaotic systems. It is assumed that we have no access
to the analytical expressions for the vector field representing the
dynamics of states; instead, we only have access to some sample
data consisting of the state vector u and its rate of change u̇: D =

{u(n), u̇(n), n = 1, . . . ,N | u, u̇ ∈ RD
}. We also assume that the

data originate from an ergodic system u̇ = g(u) that has reached
its statistical steady state. In addition we assume, for the purpose
of algorithm training that the data points are noise-free. It is not
required that u and u̇ are arranged in time order.

We are primarily interested in the casewhere the statesui are in
general high-dimensional but ‘live’ on amanifoldwith low intrinsic
dimensionality. However, we also assess the performance of the
developed framework when this is not necessarily the case. To
construct a predictive dynamical model from D satisfying these
assumptions we follow three major steps:
1. Derive reduced-order representations/embeddings y ∈ Rd and

ẏ ∈ Rd of the given data u ∈ RD and u̇ ∈ RD, where d ≪ D.
2. Learn GPR models for each component of ẏ as a function

of the reduced state y. This will result in GPR models with
independent hyperparameters for each component ẏi, i =

1, . . . , d in the reduced-order space.
3. Formulate stochastic models for y in the reduced-order space

using GPR dynamics.
Step 1: order-reduction

The first step aims to provide a mapping from each state vector
u(n) in the D-dimensional ambient space to a representation y in
a reduced d-dimensional space. In doing so, the intrinsically low
dimensional structure of the data is extracted and exploited to
facilitate efficient modeling. The procedure for finding such a map
is generally known as dimensionality reduction and is by itself an
active area of research. Many techniques, linear and nonlinear,
have been established and used with great success in a variety
of applications. It is not our focus in this work to select the best
possible procedure for each application. Instead, wewill only use a
few state-of-the-art methods and assess their performance when
integrated with the GPR data model.

After dimension reduction, we obtain the low-dimensional
coordinates for all training data, and more importantly a mapping
ψ(u)1 which can be used to convert any non-training data to its
low-dimensional representation. We can then easily use this map
along with ambient space dynamics u̇ to find the reduced space
dynamics by evaluating the limit

ẏ = lim
1t→0

ψ(u +1tu̇)− ψ(u)
1t

. (17)

Here we have assumed that dimension reduction is performed
‘imperfectly’, as often is the case in realistic applications. Through
dimension reduction, the state vectors are usually transformed in a
way that allows us to rank the coordinates by their importance and
truncate the ones deemed ‘unimportant’ by the ranking criteria.
However, it is realistically impossible for the dynamics to be
decoupled during the same process. As a result, the truncated
coordinates still play roles in deciding the dynamics of the
preserved coordinates, which leads to the unfortunate existence
of non-unique dynamics. Fig. 1 (left) illustrates this phenomenon,
using the Lorenz 63 system. The attractor has a fractal dimension
that is slightly higher than 2 and the principal component
analysis is capable of generating a two-dimensional embedding
containing 96% of the total variance. Plotting the trajectories in
the reduced space reveals the presence of non-unique dynamics
as suggested by intersecting trajectories. Furthermore, due to
the fact that dynamics are constructed with a finite number of
training examples, predictions are made with different levels of
confidence depending on the location of the input with respect
to the training data (i.e. potential interpolation error). These two
factors motivate the use of a probabilistic description for the
reduced-order dynamics. Thismakes a GPR-based dynamicsmodel
particularly suitable in reduced-order space.

Step 2: Gaussian process regression

In the second step, we train d independent GPR models, one
for each component of the reduced dynamics ẏ, by estimating the
corresponding hyperparameters with the methods described in
Section 2.2. Themodels take in all components of the reduced state
vector y as the common input. We can write the GPRmodels in the
form

ẏi = Gi(y,Di, θi) = N


fi(y,Di, θi), σ

2
i (y,Di, θi)


, (18)

where Di denotes the training data set {ẏ(n)i , y
(n)

| n = 1, . . . ,N}.
In the theorem below we will show that such a model offers a
clean way to quantify the uncertainties in the predicted dynamics
arising from both of the major sources, namely interpolation and
truncation errors.

1 Can have no explicit function form and instead depends on training data, which
are not included in the function argument for clarity.
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Fig. 1. (left) Lorenz 63 attractor: in reduced state space, uncertainty in the reconstructed vector field is observed; zoomed-in plot shows twogroups of intersecting/conflicting
trajectories (red and blue) in 2-dimensional PCA projected space; without additional information, a given state has two equally likely future states in the projected space
(right) probabilistic modeling of dynamics in a 2-dimensional reduced space: a point is marched to a Gaussian distribution; mean is connected with long-dashed arrow;
aspect ratio of equiprobability contours is characterized by the variances predicted by the GPR. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Theorem 1. For the GPR dynamical model (18) with a squared
exponential covariance function of the form (3), the variance of the
estimated derivative is bounded by the observation noise and the first
hyperparameter as follows:

σ 2
i (y,Di, θi) ≤ θi,1 + θi,3,

where θi,1 denotes the hyperparameter θ1 for model Gi and θi,3 =

σ 2
noise,i. The first term on the right hand side accounts for uncertainties

arising from interpolating discrete training data, while the second
component accounts for uncertainty due to order-reduction and/or
observation errors.

Proof. Let us consider the predicted variance for a single test case
using (9)

(σ ∗

i )
2

= k(y∗, y∗)− k∗,f(Kf,f + σ 2
noise,iI)

−1kf,∗,

where k(y∗, y∗) = θi,1 + θi,3 and k∗,f, kf,∗ are row and column
vectors respectively. Since k(·, ·) ≥ 0, k∗,f ≥ 0 and kf,∗ ≥ 0. Thus
(σ ∗

i )
2 is maximizedwhen k∗,f, kf,∗ approach 0. This corresponds to

the case where the test input y∗ is distant from all training inputs
so that the exponents in the covariance function all approach−∞.
The resulting (σ ∗

i )
2 then takes the value θi,1 + θi,3.

To understand the role of each term in the derived bound, we
look at a hypothetical ‘perfect’ training data set for y∗, where all
training pairs (yi, ẏi) have the same input as the test case, i.e. y =

y∗ for all y ∈ Di.
Then,

k = θi,1 for every entry in k∗,f, kf,∗ and Kf,f.

As a result,Kf,f+σ
2
noise,iI and its inverse both have simple structures

and it can be easily verified that

k∗,f(Kf,f + σ 2
noise,iI)

−1kf,∗ =
Nθ2i,1

σ 2
noise,i + Nθi,1

,

where N is the number of training cases and the dimension of Kf,f.
Thus we have the limit

lim
N→∞

k∗,f(Kf,f + σ 2
noise,iI)

−1kf,∗ = θi,1.

It follows that

lim
N→∞

(σ ∗

i )
2

= θi,1 − θi,1 + θi,3 = θi,3.

This corresponds to the minimum value of σ ∗2
i , where the

interpolation process (GPR) causes zero uncertainty in the
predicted dynamics. The entire variance can be attributed to
external factors, primarily the effect of the truncated coordinates
in this case. This completes the proof.
Step 3: formulation of the stochastic model

We can now use GPR dynamics to construct stochastic models.
The simplest and most natural approach is to utilize a diffusion
process with drift and diffusion coefficients obtained directly from
the GPR:
(dyi)GPR = fi(y,Di, θi)dt + σi(y,Di, θi)dWi, (19)
where Wi denotes a standard Wiener process. The drift and
diffusion coefficients are the mean and uncertainty of the GPR
models Gi. By numerically solving (19) for an ensemble of
Monte Carlo samples, the reduced-order states can be forecasted
along with associated uncertainty quantifications. Note that more
complicated stochastic models may be utilized in order to take
into account time correlation of the noise. However, in the
present context we resort to the most straightforward option of
uncorrelated noise with spatially non-homogeneous intensity.

3.1. Benchmark: mean stochastic model (MSM)

We now give a brief overview of the mean stochastic models
approach. This is simple but yet powerful method for uncertainty
quantification and filtering of reduced-order set of variables
describing turbulent systems [5]. The method, although data-
driven, is very different in nature from the presented framework
since it relies on the global statistics of the system attractor,
rather than local information. Nevertheless, a comparison with
the presented approach will reveal the types of systems and
dynamical regimeswhere it is advantageous to use local dynamical
information through GPR instead of the much cheaper MSM
method.

InMSM themain idea is to build up themodel with two statisti-
cal equilibrium properties, the energy spectrum and damping time
scales for each considered variable. In particular, the components
of the reduced state are modeled as diffusion processes having the
form
(dyi)MSM = ciyidt + ξidWi, (20)
where ci and ξi are constants calculated from data, making (20) an
Ornstein–Uhlenbeck (OU) process. In the statistical steady state,
model variable yi has zeromean.2 Its energy/variance Ei and decor-
relation time scaled Ti are given by

Ei,MSM = var (yi)MSM = −ξ 2i /(2ci), Ti,MSM = −1/ci. (21)

2 Which we assume to match that of the real data, as satisfied automatically by
many dimension reduction methods; in case this is not true for the reduced data, it
will need centering and the modeled quantity instead measures the deviation from
the real data mean.
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On the other hand, energy and decorrelation time of the data set
can be calculated by

Ei = var (yi) = E [yiyi] and

Ti =


∞

0

E[yi(t)yi(t + τ)]

var (yi)
dτ ,

(22)

where the overhead bar represents taking the complex conjugate
if the reduced modes are complex-valued. Assuming this informa-
tion is readily available, the variance and decorrelation time of the
MSM can be matched with those of the real data by letting [5]

ci = −1/Ti, ξ =

2Ei/Ti. (23)

By design, MSM behaves similarly to the real system in the statis-
tical steady state. The damping and diffusion components mimic
the nonlinear interactions between different modes by removing
and injecting energy into the system, respectively. The MSM can
be especially effective for highly chaotic systems because their be-
haviors are dominated by turbulent nonlinear interactions whose
energy flow bears greater resemblance to the randomprocess used
in the model.

3.2. Blended GPR–MSM forecast models

One apparent drawback of the reduced-orderGPRmethod is the
absence of any mechanism to ensure that trajectories stay on the
attractor. Indeed, Theorem 1 implies that GPR naturally associates
more uncertainty in ‘off-attractor’ regions where no training data
is present. Therefore, once a trajectory is driven into such regions,
close-to-zero drift coefficients and large diffusion coefficients will
be repeatedly generated and very likely will drive the trajectory
farther away from the attractor.

To address this issue, we formulate a blended GPR—MSM
approach: GPR model is used in regions well encapsulated by
training data or else MSM dynamics is used. Note that the variance
produced by model (18) offers an easy way to determine whether
an excessive amount of uncertainty is due to the training data
not covering the current state very well, by comparing it with the
maximum possible interpolation uncertainty θi,1.

Hence, we define the following composite indicator function to
facilitate selection of the more appropriate dynamical model:

χ(y) =

d
i=1

1


σ 2
i (y)− σ 2

noise,i

θi,1
< δ


(24)

where δ is a threshold level between 0 and 1, and 1(·) is an
indicator function which takes an expression as its input and
returns 1 if the expression is true and 0 otherwise.

In this way, χ returns a value of 1 only if the interpolation
uncertainty y falls below a certain percentage of its maximum
possible value. This function is equivalent to drawing a d −

1 dimensional contour object in the reduced state space and
assigning all points inside to have function values of 1. This is a
natural estimate of the ‘trust region’ in the reduced space where
GPR dynamics is supported by well positioned training data to
produce reliable results. Fig. 2 shows an example of trust region
in the case of Lorenz 63 system. The resulting decision boundary
is an ‘envelope’ that encloses the majority of the training data.
In general, GPR dynamics is used when interpolation with the
available data is feasible and MSM is used when extrapolation is
required.Most importantly, theχ criterion (24) is extremely cheap
to evaluate and with almost no additional computational expense
besides computing the predicted variance.

When implementing the forecast, GPR model is used if χ
evaluates to 1 on the current state and MSM model is used
Fig. 2. Blended GPR–MSM forecast for Lorenz 63: red dots are test points whose
χ values (relative to a training data time series of size 10,000) are close to the
threshold δ = 0.2 and they form a decision boundary in the two-dimensional
reduced space. Dynamics are determined by GPR when a point lies inside the
boundary and byMSMotherwise. The corresponding two-dimensional joint density
for the training data, generated by a bivariate kernel estimator, is shown in the
back. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

otherwise. Following this criterion, our blended-dynamics model
can be written as

dyi
dt


mixed

= χ(y)

dyi
dt


GPR

+ (1 − χ(y))

dyi
dt


MSM

. (25)

This blended-dynamics model has the advantages of both GPR and
MSM dynamics. In short times scales dynamics are dominated by
GPR to produce more accurate short-term forecast, whereas for
longer time scales MSM dynamics dominate to ensure that key
statistical properties of the ensemble match with those of the real
attractor.With this set of properties we have a data-driven scheme
that is not necessarily characterized by a stable linear operator (as
it is the case for example in physics-constrained models [16,19]),
but on the other hand ensures stability of second-order statistics
in the long time regime. This is particularly important for the
dynamicswithin the reduced-order subspace of a turbulent system
characterized by unstable linear dynamics (see e.g. [18]).

4. Applications

In this section, we demonstrate the performance of our
proposed methods in three different applications originating from
different fields of study and exhibiting varying levels of chaotic
behaviors.

4.1. Kuramoto–Sivashinsky equation

We first study the Kuramoto–Sivashinsky (K–S) equation,
originally developed by Kuramoto to model the angular-phase
turbulence of a reaction diffusion system [38], and by Sivashinsky
tomodel perturbations of a plane flame front propagating in a fuel-
oxygenmixture [39]. Here wework with the one-dimensional K–S
equation in derivative form:

∂u
∂t

= −ν
∂4u
∂x4

−
∂2u
∂x2

− u
∂u
∂x
,

u(0, t) = u(L, t) =
∂u
∂x


x=0

=
∂u
∂x


x=L

= 0,

u(x, 0) = u0(x),

(26)

where u is the modeled quantity depending on spatial variable
x ∈ [0, L] and time variable t ∈ [0,∞). ν > 0 is a physical
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Fig. 3. Contour plots for u(x, t) at different ν values in steady state. The system becomes more chaotic for smaller values of ν.
constant representing viscosity. Dirichlet and Neumann boundary
conditions are assigned to ensure that the system is ergodic [40].

(26) is discretized spatially with 2nd order accurate finite
difference schemes to produce a coupled system of ordinary
differential equations:
dui

dt
= −ν

ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

1x4

−
ui+1 − 2ui − ui−1

1x2
−

u2
i+1 − u2

i−1

21x
, (27)

where ui represents the value of u at the ith node, i.e. ui = u(xi) =

u(i1x) = u( iLD ), i = 0, 1, . . . ,D + 1 and D is the number of
discretized fields in [0, L]. In this example we use D = 512.
Boundary conditions are satisfied by letting u0 = uD+1 = 0 and
including additional ghost nodes u−1 = u1, uD+2 = uD to account
for the Neumann boundary conditions.

Data is simulated by solving (27) for 5000 time units at intervals
of 0.2, after an initial spin-up period of 1000 units. The first 60% of
the data (15000 points) is used for training, and the remainder is
used for testing the prediction skills of the proposed methods.

The chaotic behavior of the K–S equation is dependent on the
bifurcation parameter L̃ = L/2π

√
ν [41]. The system displays

higher levels of chaos for bigger values of L̃ (see Fig. 3). To test out
the performance of our proposedmethodology in different chaotic
regimes, L is kept fixed at 16 and ν is changed to produce different
values of L̃ and thus differently chaotic systems. Here we study
the prediction skills for two particular systems: ν = 1/10 and
ν = 1/16.

4.1.1. Dimension reduction: principal component analysis
Applying our proposed method for constructing a data-based

model, dimension reduction is first performed on the 512-
dimensional K–S system data. Here we employ the most basic
linear reduction method—principal component analysis (PCA). In
particular we reduce the system state as

a = WT
d ũ (28)

where Wd is the d eigenvectors of the covariance matrix Cuu
corresponding to the d largest eigenvalues. The tilde reflects the
fact that the mean state u must be subtracted from data before
the transformation, i.e. ũ = u − u. Such a reduced representation
ensures that as much variance is retained in its d components as
possible when limited to using a linear projection. The spectrum
(eigenvalues of the covariance matrix) as well as the mean for
different values of ν is shown in Fig. 4.
Fig. 4. Comparison of (top) temporal average u =
1
T

 T
0 u dt and (bottom) energy

spectrum Ek vs. k for different values of ν; systems with lower ν (more chaotic)
have greater average oscillations near the Dirichlet boundary conditions and slower
drop-off in their energy spectra.

4.1.2. Model simulations and results
We train d GPR models by learning the appropriate hyperpa-

rameters using methods described previously. Fig. 5 shows some
exampleGPRmodel predictions for the dynamics of the first princi-
pal component in 10- and 20-dimensional reduced space using the
optimized hyperparameters respectively. When the model is con-
structed on a 20-dimensional reduced-order space, much smaller
uncertainties are predicted for the dynamics because the unmod-
eled modes contain smaller percentages of the overall system en-
ergy and thus less prominent effects.

The model parameters for the MSM and blended models are
also calculated using the same data series. All models are solved
by numerical integration with the Euler–Maruyama method and a
time step of 1t = 0.02. For each run we evolve 50 independent
paths, whose initial conditions are drawn from a Gaussian
distribution with variance 1 in all dimensions of the original space
centered around the initial condition. The integrations are carried
out to T = 5.
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Fig. 5. Validation plots: predicted dynamics of the first principal component ȧ1 with (left) d = 10 and (right) d = 20; predicted mean (red solid) is compared with the
true test point dynamics (yellow dashed); shaded regions capture 2σ1 on both sides of ȧ1 . Horizontal axis corresponds to index of the test point. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
To evaluate the performance of the scheme we compare the
model prediction with the true state. As truth we consider the
trajectory evolved from the initial condition u0 with the exact
Eq. (27). The true state in physical space is then projected onto
the most energetic principal components to give the true reduced-
order state, denoted by at. The comparison is performed for the
same initial conditions. As a metric, the standard root mean
squared error (RMSE) is used

RMSE =

 1
V

V
i=1


afl
(i)

− atl
(i)
2
, (29)

where subscript l denotes the forecast/truth for the lth leading
principal component; V is the total number of initial conditions
tested. The RMSE is calculated at successive time instances to
generate error curves characterizing the evolution of error with
time. Fig. 6 shows the reduced-space RMSE curves for predicting
the K–S system at ν = 1/10 and ν = 1/16. In each plot, we have
included four error curves: (1) invariant measure corresponding to
the error for using the (constant) attractor mean as the prediction,
(2) MSM forecast, (3) reduced GPR model with 20 principal
components (4) mixed GPR–MSM with 20 principal components.
ν = 1/10 corresponds to a less chaotic regime, where 20 principal
components account for approximately 85% of the total variance.
For ν = 1/16, the system is much more chaotic and the attractor
has a higher intrinsic dimension. In this case, the first 20 principal
components account for less than 80% of the total variance.

From the simulation results we observe that for the weakly
chaotic regime ν = 1/10 the reduced-order GPR performs better
than the much less expensive MSM. However, the error does not
stabilize and shows signs of diverging in the long run. This prob-
lem is not present for the blended schemewhere the error remains
bounded as in MSM and converges properly to the invariant mea-
sure; this is not obvious in the plots due to the extremely slow
damping coefficients ci. In the more chaotic regime ν = 1/16, tra-
jectories are much more sensitive to initial conditions. As a result,
the same 20 principal components are expected to capture less
percentage of the overall dynamics. This is manifested in the error
curve as it growsmuch faster to the invariantmeasure and the pre-
diction performance of the reduced GPRmodel is now comparable
to that of theMSM. From these results it is clear that a low intrinsic
dimensionality is important in order for the developed data-driven
scheme to perform well. For highly turbulent systems where this
is not the case the less expensive MSMmodels is the better option.

Fig. 7 shows the average value of χ vs. time. The proportion
of ensemble members forecasted with GPR drops off much faster
in the more chaotic regime due to more trajectories approaching
edges of the attractor more quickly. Meanwhile, the steady state
mixture ratio for ν = 1/10 is smaller due to the slow damping
coefficients: it takes longer for MSM to drive a trajectory back than
for GPR to diffuse it away from the attractor. Hence, trajectories are
more likely to be governed by MSM in the long term.

4.2. Lorenz 96 system

In the second application we investigate the predictions skill of
the developed scheme on the Lorenz 96 (L96) system, originally
developed to crudely model the large scale behavior of the
midlatitude atmosphere [42]. L96 is governed by the following
system of nonlinear ordinary differential equations:

dXj

dt
= (Xj+1 − Xj−2)Xj−1 − Xj + F , (30)

where Xj, j = 0, . . . , J − 1, represent the ‘‘atmospheric vari-
able’’ discretized spatially. Following [42], we use J = 40. Periodic
boundary conditions are applied. The system consists of a nonlin-
ear advective-like term (Xj+1 − Xj−2)Xj−1, a linear dissipative term
−Xj and an external forcing term F > 0. The interactions amongst
these terms conserve the total energy of the system and keep all Xj
always bounded. The system has a trivial equilibrium solution at
X0 = · · · = XJ−1 = F , which is unstable for sufficiently large val-
ues of the forcing parameter F . As we increase the value of F , the
system moves from weakly chaotic regimes to fully turbulent [1],
as shown in the contour plots in Fig. 8.

Data in this application is simulated by integrating (30) from a
single initial condition randomly perturbed from the equilibrium
solution by a small amount for 10000 time units. Four sets of data
are generated corresponding to F = 4, F = 6, F = 8 and F = 16.
In all cases, a 4-step Runge–Kutta method is used with a time step
of 1t = 0.01. 60% of data is used for training and the rest is used
for testing.

4.2.1. Dimension reduction: Fourier analysis and truncation
Following [43] we pre-process the data by applying the

following re-scaling and shifting, so that transformed variables X̃j

have zero mean and unit energy (defined as 1
2


j X̃

2
j ):

Xj = X + E1/2
p X̃j and t = E−1/2

p t̃, (31)

where X is the mean state and Ep is the average variance in energy
fluctuation calculated as:

Ep =
1
2T

J−1
0

 To+T

To
(Xj − X)2. (32)
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Fig. 6. RMSE comparison for the K–S systemwith (a) ν = 1/10 and (b) ν = 1/16. Standard deviation of the attractor (blue dashed line); MSM (red dashed line); 20 principal
components GPR (yellow solid line); blended GPR–MSM (purple solid thick line). All results are obtained by averaging over 1000 test initial conditions. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Substituting (31) into (30), we arrive at the following rescaled
L96 model:

dX̃j

dt̃
= E−1

p (F − X)+ E−1/2
p ((X̃j+1 − X̃j−2)X − X̃j)

+ (X̃j+1 − X̃j−2)X̃j−1. (33)

We then define the discrete Fourier transform and its inverse
on the rescaled variables:

X̂k =
1
J

J−1
j=0

X̃je−2π ikj/J , X̃j =

J−1
k=0

X̂ke2π ikj/J , (34)

while the energy of each Fourier mode X̂k is defined as

Ek ≡ Var(X̂k) = (X̂k(t̃)− X̂k)(X̂k(t̃)− X̂k)∗. (35)
Fig. 7. Percentage of ensemble members forecasted with GPR over time for ν =

1/10 and ν = 1/16.

The resulting energy spectrum Ek for Fourier modes k = 0, . . . , 20
under different forcing is shown in Fig. 9. We observe that L96 has
very different energy levels in its Fourier modes, especially in the
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Fig. 8. Contour plots for the L96 system exhibiting different levels of chaos as F changes. F = 16 system is much more turbulent than F = 8 system.
Fig. 9. Energy spectrum Ek vs. k for F = 4, F = 6, F = 8 and F = 16.

Table 1
Most energetic Fourier modes used to construct reduced-space GPRmodels in each
forcing regime.

Forcing regime Selected wavenumbers k (ordered by energy Ek)

F = 4 7, 10, 14, 9, 17, 16
F = 6 8, 7, 9, 10, 11, 6
F = 8 8, 9, 7, 10, 11, 6
F = 16 8, 9, 10, 7, 11, 6

weakly chaotic regimes. Therefore, a simple and natural way to
construct a reduced-order model is to use a few of its most ener-
getic Fourier modes to form a truncated low-dimensional repre-
sentation of the whole system andmodel the effects of the ignored
modes stochastically. The most energetic modes for each forcing
are summarized in Table 1. Note that F = 6, F = 8 and F = 16
energy spectra share the same 6 most energetic Fourier modes in
slightly different orders. Note that the most energetic modes may
not necessarily be the most dynamically relevant ones [44]. How-
ever, here we focus on quantifying the approximation properties
of the proposed scheme within a given subspace; the selection of
this subspace is a different issue, which is problem- and context-
dependent.

4.2.2. Model simulations and results
The six Fourier modes with the highest energy, Ek, in each

regime are used as the reduced-order representation of the system
state. Since the modes are complex-valued, the reduced space is in
fact 12-dimensional. Independent GPR models are constructed for
the dynamics of both the real and imaginary parts of the top six
Fourier modes.

Fig. 10 shows some examples of predicted dynamics for the real
part of the most energetic Fourier mode in each forcing regime,
along with the true dynamics estimated from finite differences.
For F = 4, the dynamics can be predicted almost perfectly with
very little error. As F increases, the predicted dynamics remain
close to the true value and well encapsulated within the two
standard deviation intervals. However, the predictions come with
increasingly larger uncertainties as the unmodeled modes contain
more energy and have bigger impact on the dynamics of the
modeled modes. This is a similar pattern also observed in the K–S
system.

Using theseGPRmodels, reduced space dynamics are forecasted
for 1000 initial conditions randomly drawn from the test data
set. Each initial condition is made Gaussian with covariance 0.1I
in the original space. The true state is obtained by running an
ensemble using the model Eqs. (30) and then applying rescaling
and Fourier transform. The RMSE between the predicted mean
state and the true mean state is calculated using definition (29),
with the exception that square of the complex absolute value
is used instead. Results for MSM and blended models are also
presented for comparison. The results are shown in Fig. 11.

For F = 4, the RMSE of the reduced-order GPR prediction is
much lower compared to that of MSM method in the short term.
However, due to chaos in the system, error is amplified quickly
and grows beyond the variance of the system. For F = 6, the
reduced-order GPR still produces significantly better short-term
prediction than the MSM, but the gap is visibly smaller than in
the less chaotic F = 4 case. As forcing is increased, the gap
further closes and the short-term performance of the reduced GPR
and MSM becomes comparable to each other. This is a reasonable
trend taking into account that the six modeled modes contain a
smaller proportion of the total energy as the systems becomemore
chaotic. The dynamical effect of the unmodeled modes becomes
increasingly significant, to the extent that makes them collectively
more important than the modeled modes. Thus, the diffusion term
in (19) dominates and themodel behaves similarly toMSM. Hence,
taking into account the low computational complexity, MSM is the
appropriate model to use in very turbulent regimes. To increase
the power of the reduced GPR approach in these highly turbulent
regimes, a larger number of Fourier modes are required.

The results also showcase the mixture model as an effective
middle ground between the reduced GPR and MSM forecast,
possessing both the short-term accuracy of the former and the
long-term stability of the latter. Fig. 12 shows the percentage of
the ensemble for which GPR dynamics is used as time evolves. We
observe that the rate of drop in this percentage increases with F
and is consistent with the rate of increase in the average RMSE for
the reduced GPR forecast.

4.3. A barotropic climate model

We now investigate the effectiveness of the proposed method
on a spectral barotropic model on a spherical earth with realistic
orography [45]. This model has its forcing parameters calculated
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Fig. 10. Validation plots for the dynamics of the most energetic mode of F = 4, F = 6, F = 8 and F = 16 with the GPR model (red solid), true test point dynamics
(yellow dashed) and region within two standard deviations from the predicted mean (shaded). Predictions for smaller F are more accurate with smaller error variances. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
from observations so that the climatological mean and low-
frequency variability are realistic. The model equation is given by

∂ζ

∂t
= −J(ψ, ζ + f + h)−

ζ

τ
+ K∆3ζ + F (36)

where ζ represents relative vorticity, f = 2Ω sin θ is the
Coriolis parameter (Ω is the angular velocity of the earth), τ is
the Ekman damping coefficient, K is the coefficient of the scale-
selective damping, and F is the external time-dependent forcing.
Furthermore, ψ is the corresponding stream function such that
ζ = 1ψ . Under appropriate nondimensionalization, this equation
has unit length equal to the radius of the earth and unit time
equal to the inverse of the angular velocity of the earth. The Jacobi
operator J(a, b) is defined as

J(a, b) =


∂a
∂λ

∂b
∂µ

−
∂a
∂µ

∂b
∂λ


(37)

where µ is the sine of the latitude and λ is the sine of the
longitude. The nondimensionalized orography h is related to the
real orography h′ by h = A0h′/H where A0 = 0.2 defines the
strength of the wind blowing on the surface of the orography
and H = 10 km is a height scale [46]. The model is truncated
at T21. By restricting the spectral model to modes whose zonal
wavenumber and total wavenumber sum up to even numbers, a
model of hemispheric flow is obtained with a total number of 231
variables. The data used to set up the GPR and MSM models is
acquired by integrating Eq. (36) for 105 days after an initial spin-
up period of 1000 days, using a fourth-order Adams–Bashforth
integration scheme with a 45-min time step. The Ekman damping
time scale is set to 15 days and the strength of the scale is selected
such that wavenumber 21 is damped at a time scale of 3 days. The
spatial domain (spherical surface) is discretized into aD = 64×32
grid with equally spaced latitude and longitude. 80% of data is
randomly selected and used for training while the rest is used for
testing. Fig. 13 top shows the mean and variance of the statistical
steady state.

4.3.1. Dimension reduction: classical multidimensional scaling
For the dimension reduction portion of this problem, we use

a generalized version of the classical multidimensional scaling
(MDS) procedure. It is motivated by the idea of preserving scalar
products, i.e. the lower-dimensional embedding for a data set
should be created such that the original pairwise scalar products
are preserved as much as possible. Hence, assuming the products
are clearly defined in both the original and the reduced space,3
MDS seeks to solve the minimization problem

min
y1,...,yN


i<j

(sζ(i, j)− sy(i, j))2 (38)

where sζ and sy respectively denote the product function defined
in the original ζ space and the reduced y space. (i, j) are
indices of the data between which products are calculated. This
objective function minimizes the total squared error between
pairwise products. When sy is chosen to be the scalar vector (dot)

3 PCA is equivalent to MDS if the distance measures in both spaces are defined to
be the scalar vector (dot) product; hence PCA is also called classical MDS.
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Fig. 11. RMSE comparison of the three most energetic modes for L96 in different forcing regimes (units for both horizontal and vertical axes correspond to those before
rescaling (31)). Standard deviation from the attractor mean (blue dashed line); MSM (red dashed line); GPR (yellow solid line); blended GPR–MSM (purple solid thick line).
All results are obtained by averaging over 1000 test initial conditions. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
product, the analytical solution to this optimization problem can
be obtained. Let [W ]ij = sζ(i, j) be the Gram matrix, and its
eigenvectors be sorted in descending order by absolute value:
|κ1| ≥ |κ2| ≥ · · · ≥ |κN |. The optimal d-dimensional embedding
for a training point ζn under (38) can be written in terms of the
eigenvectors of the W , Wvl = κlvl, with vl = [v1,l, . . . , vN,l]

T , as
follows

yn =


κ
1/2
1 vn,1

κ
1/2
2 vn,2
...

κ
1/2
d vn,d

 . (39)

Since Eq. (38) in matrix form can be also interpreted as finding
the best low-rank approximation to the Gram matrix in terms of
the Frobenius norm, the optimality of (39) can be proven by the
Eckart–Young–Mirsky theorem. Specifically for this problem, we
use the standard kinetic energy product as measures of proximity
between states, which preserves the nonlinear symmetries of the
dynamics for the system (36):

sζ(i, j) = ⟨ζi · ζj⟩ =


S

∇ψi · ∇ψj dS

= −


S

ζiψj dS = −


S

ζjψi dS. (40)
The energy spectrum associated with this definition of sζ is shown
in the bottom Fig. 13. Note, however, that (39) only gives the
optimal embedding for the N training points used to construct the
Gram matrix W . To calculate the embedding for a new point, it is
convenient to first find the empirical orthogonal functions (EOFs)
corresponding to each dimension of the reduced-order space

φm =

N
n=1

κ−1/2
m vn,mζn, (41)

where m runs from 1 to d. The EOFs share the same dimension
with ζ and naturally ranked according to their energy level. In ad-
dition, they are orthogonalwith respect to the energy product (40),
i.e. ⟨φm1

,φm2
⟩ = δ(m1,m2), where δ denotes the Kronecker-delta

function. The first four EOFs are shown in Fig. 14. They account for
13.5%, 11.4%, 10.4% and 7.1% of the total energy respectively. More-
over, these EOFs bear resemblance to realistic climate patterns.
For example, the first EOF is characterized by a center of action
over the Arctic that is surrounded by a zonal symmetric structure
in midlatitudes, similar to the Arctic Oscillation/Northern Hemi-
sphere Annular Mode (AO/NAM) [47]. The second, third and four
EOFs are comparable to the East Atlantic/West Russia [48], the Pa-
cific/North America (PNA) [49] and the Tropical/Northern Hemi-
sphere (TNH) [50] patterns respectively. Therefore, predictions for
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Fig. 12. Percentage of ensemble members using GPR dynamics over time for
different forcing regimes in L96. Average is performed over 500 initial conditions.

these EOFs have high practical significance because they are anal-
ogous to predicting corresponding climate patterns.

The calculated EOFs act as mode shapes and the components of
y as the coefficients for these mode shapes, since it can be easily
verified that ζ =

N
m=1 ymφm for a full expansion d = N . Thus,

using the orthogonality property, the reduced representation y∗ for
a new state ζ∗ can be obtained by taking inner products (40) with
the EOFs, i.e.

y∗
=


⟨ζ∗,φ1⟩

⟨ζ∗,φ2⟩

...
⟨ζ∗,φd⟩

 . (42)

4.3.2. Model simulations and results
Hereweuse d = 30, asφd contains only about 3% ofφ1’s energy.

Similarly to the previous applications, 30 GPR models are trained
for real-valued ẏ1, . . . , ẏ30. 1000 points are randomly picked from
the attractor and used as the testing initial conditions. Centered
around each initial condition, a Gaussian ensemble with a small
variance (1 × 10−3) along each dimension is formed and marched
forward using the reduced-order GPR, MSM and blendedmodeling
approaches respectively. We then calculate the average RMSE of
the predictions measured against the true states calculated using
the true dynamics. The resulting error comparison is shown in
Fig. 15.

We observe that the reduced-order GPR approach in the short
term significantly outperforms theMSMpredictions: the GPR error
curves generally take 300–400 h to reach the standard error of the
real attractor—at least three times longer than the 100 h offered
by the MSM forecast. This is because the reduced GPR approach
takes better advantage of the inherent low-dimensional structure
of the underlying attractor. It models the energy change for each
mode due to nonlinear effects much more precisely. The consid-
ered climate model is much less turbulent than the Lorenz 96
system with F ≥ 16, for which all models have comparable per-
formance due to the strongly turbulent character of the attractor.
In particular, the rates of change in the modeled modes are much
higher at some locations than others. GPR performs better at differ-
entiating these fast-growing regions of the attractor from the rela-
tively steady ones while MSM only admits similar rates of change
everywhere and for all times. Hence, when averaged over a larger
number of initial conditions, the GPR-based forecasts have much
better performance overall.

The introduction of mixture model in this case does not
compromise the prediction performance of the GPR in the short
term like in the F = 6 regime of L96 system. It helps effectively
control the variance to match that of the true system in the
statistical steady state.

5. Conclusions

We have formulated a reduced-order data-driven prediction
method for chaotic dynamical systems using the Gaussian Pro-
cess Regression (GPR) technique. The developed approach char-
acterizes reduced-order dynamics in terms of a deterministic and
Fig. 13. The mean (top left), variance (top right) and energy spectrum (bottom) of the T21 barotropic model in statistical steady state.
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Fig. 14. The four most energetic empirical orthogonal functions of the climatology.
Fig. 15. RMSE comparison for 6 most energetic modes in T21 system: standard deviation of the attractor (blue dashed line); MSM (red dashed line); GPR (yellow solid line);
blended forecast (purple solid thick line); All results are obtained by averaging over 1000 test initial conditions. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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a stochastic component. The deterministic component mainly
embodies the dynamics due to the explicitly modeled dimen-
sions/modes while the standard error represents dynamics un-
certainty due to sources such as the unmodeled modes and
interpolation errors. Based on these two components, a purely
data-driven stochastic model is formulated in the reduced-order
space and solved to provide a probabilistic forecast for the most
important modes of the system. This modeling technique is highly
generic and can adapt to a wide variety of nonlinear chaotic sys-
tems.

For dynamical systems exhibiting different levels of turbu-
lence/chaotic behaviors, comparison is carried out on the basis of
the root mean squared error (RMSE) between trajectories fore-
casted with model dynamics and real dynamics. In addition, the
mean stochastic model (MSM) method is also implemented as a
benchmark method. Numerical experiments demonstrate that the
GPR-based forecast has much lower errors provided that the at-
tractor has low intrinsic dimensionality, i.e. the majority of the en-
ergy in the system is captured in the reduced dimensions whose
dynamics are explicitlymodeled. However, this condition becomes
more difficult to satisfy as the system becomes more turbulent
since energy tends to spread out inmoremodes than that can be ef-
ficiently included in the GPRmodels. As a result, the GPR dynamics
are dominated by their stochastic components and prediction per-
formance is comparable to that of the MSM. Moreover, long-term
error of GPR forecast does not naturally converge to the standard
error of the attractor. To resolve this issue we develop a blended
GPR–MSM model so that GPR is only performed at locations en-
closed by sufficient training data. The blended approach guaran-
tees stable and consistent steady-state behavior matching that of
the attractor.

There is a number of promising directions towards which stud-
ies can be extended. One possible such direction is to use adap-
tive modeling such that different hyperparameters and/or training
data sets are used to make forecasts at different locations on the
attractor. In this way, we can improve the prediction skill in
rapidly-changing regions by using finer length scales and more
data evidence while maintaining high accuracy with smaller train-
ing data sets and bigger length scales in smooth regions. Even
though this comes at the expense of more computation costs,
sparse GPR algorithms (see [51]) can be used. Another direction
is to take into account correlations in the prediction of dynamics
between different variables from the reduced-order space, instead
of modeling them independently of one another. Possible mecha-
nisms for achieving this goal include using a correlated noise pro-
cess and introducing correlations in the GP prior (see cokriging
[52,34]). Although more involved theoretical development and
supporting numerical simulations are needed, both directions have
the potential to further upgrade the prediction skills of GPR dy-
namical models. Finally, the developed approach can form the
basis for the combination of data-driven and adaptive order-
reduction methods (e.g. combined with dynamically orthogonal
equations, [53,18]) for the formulation of data- and equation-
assisted schemes (see e.g. [54,55]) for filtering and prediction. This
step should be important for the short-term prediction [56,57]
and probabilistic quantification [58–60] of systems undergoing ex-
treme responses.
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