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Extreme Events: Mechanisms
and Prediction
Extreme events, such as rogue waves, earthquakes, and stock market crashes, occur spon-
taneously in many dynamical systems. Because of their usually adverse consequences,
quantification, prediction, and mitigation of extreme events are highly desirable. Here,
we review several aspects of extreme events in phenomena described by high-
dimensional, chaotic dynamical systems. We especially focus on two pressing aspects of
the problem: (i) mechanisms underlying the formation of extreme events and (ii) real-
time prediction of extreme events. For each aspect, we explore methods relying on mod-
els, data, or both. We discuss the strengths and limitations of each approach as well as
possible future research directions. [DOI: 10.1115/1.4042065]

1 Introduction

Extreme events are observed in a variety of natural and engi-
neering systems. Examples include oceanic rogue waves [1–3],
extreme weather patterns [4–7], earthquakes [8], and shocks in
power grids [9,10]. These events are associated with abrupt
changes in the state of the system and often cause unfortunate
humanitarian, environmental, and financial impacts. As such, the
prediction and mitigation of extreme events are highly desired.

There are several outstanding challenges in dealing with
extreme events. These events often arise spontaneously with little
to no apparent early warning signs. This renders their early predic-
tion from direct observations a particularly difficult task [11–13].
In certain problems, such as earthquakes, reliable mathematical
models capable of predicting the extreme events are not available
yet [14].

In other areas, such as weather prediction where more advanced
models are in hand, accurate predictions require detailed knowl-
edge of the present state of the system, which is usually unavail-
able. The partial knowledge of the current state together with the
chaotic nature of the system leads to uncertainty in the future pre-
dictions. These uncertainties are particularly significant during the
extreme episodes [15–17].

In addition, models of complex systems are usually tuned using
data assimilation techniques. This involves selecting the model
parameters so that its predictions match the existing empirical
data. The effectiveness of data assimilation, however, is limited
when it comes to rare extreme events due to the scarcity of obser-
vation data corresponding to these events [18–21].

These challenges to modeling and prediction of extreme events
remain largely outstanding. The purpose of the present article is to
review some of these challenges and to present the recent devel-
opments toward their resolution.

The analysis of extreme events can be divided into four compo-
nents as illustrated in Fig. 1: mechanisms, prediction, mitigation,
and statistics. Below, we briefly discuss each of these
components.

(i) Mechanisms: The mechanisms that trigger the extreme
events are the primary focus of this article. Consider an evolving
system that is known from the time series of its observables to
produce extreme events. We are interested in understanding the
conditions that underlie the extreme events and trigger their for-
mation. Even when the governing equations of the system are
known, it is often a difficult task to deduce the mechanism under-
lying the extreme events. This is due to the well-known fact that
even seemingly simple governing equations can generate very
complex chaotic dynamics. The task of deducing the behavior of

solutions from the governing equations becomes especially daunt-
ing when the system consists of many interacting degrees-of-
freedom, which give rise to a high-dimensional and complex
attractor.

In Sec. 3, we review a number of methods that unravel the
extreme event mechanisms. These methods have been developed
to analyze specific classes of dynamical systems. For instance, the
multiscale method discussed in Sec. 3.1 only applies to systems
whose degrees-of-freedom can be separated into the so-called
slow and fast variables. Even when such a slow–fast decomposi-
tion is available, computing the corresponding slow manifold and
its stable and unstable manifolds becomes quickly prohibitive as
the dimension of the system increases.

As a result, a more general mathematical framework is needed
that is applicable to a broader range of dynamical systems and at
the same time can leverage the ever growing computational
resources. We explore such a general framework in Sec. 4.

(ii) Real-time prediction: Most undesirable aspects of extreme
events can often be avoided if the events are predicted in advance.
For instance, if we can predict severe earthquakes a few hours in
advance, many lives will be saved by evacuation of endangered
zones. As a result, their real-time prediction is perhaps the most
exigent aspect of extreme phenomena.

Real-time prediction requires measurable observables that con-
tain early warning signs of upcoming extreme events. We refer to
such observable as indicators of extreme events. Reliable indica-
tors of extreme events must have low rates of false-positive and
false-negative predictions. A false positive refers to the case
where the indicator incorrectly predicts an upcoming extreme
event. Conversely, a false negative refers to the case where the

Fig. 1 The study of extreme events consists mainly of four
components
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indicator fails to predict an actual extreme event. Knowing the
mechanisms that trigger the extreme events does not necessarily
enable their prediction. However, as we show in Sec. 5, even par-
tial knowledge of these mechanisms may lead to the discovery of
reliable indicators of extreme events.

Another important aspect of extreme event prediction is the
confidence in the predictions. The sensitivity to initial conditions
leads to an inherent uncertainty in chaotic systems even when the
system model is deterministic [22,23]. Such uncertainties perme-
ate the prediction of extreme events. As a result, the predictions
have to be made in a probabilistic sense where the uncertainties in
the predictions are properly quantified (see Sec. 5.1).

It should be clear that we study systems whose extreme events
have distinct, although not obvious, dynamical origins. As such,
the prediction of individual extreme events in these systems is via-
ble in principle. However, certain extreme events (not studied here)
may be inherently unpredictable since their origins are indistin-
guishable from the regular evolution of the system. We refer to the
discussion on “dragon kings” versus “black swans” in Refs. [24]
and [25] for further reading on predictability of extreme events.

(iii) Mitigation: Can we control a system so as to suppress the
formation of extreme events? This is of course beyond reach in
many natural systems such as ocean waves and extreme weather
patterns. However, in certain engineered systems, such as power
grids, one can in principle design control strategies to avoid the
formation of extreme events [26–28]. To this end, knowing the
mechanisms that trigger the extreme events is crucial as it informs
the design of the control strategy. The real-time prediction of the
extreme events, on the other hand, informs the optimal time for
the activation of the control strategy (see Fig. 1).

The mitigation of extreme events within a dynamical systems
framework has only recently been examined [29–34]. The
research in this direction has been limited to mitigation in simpli-
fied models by introducing arbitrary perturbations that nudge the
system away from the extreme events. However, a systematic
study involving controllability and observability of extreme
events in the sense of control theory is missing.

(iv) Statistics: The statistical study of extreme events attempts
to answer questions regarding the frequency and probability of
occurrence of extreme events from a large sample. Such statistical
questions are perhaps the most intensely studied aspect of extreme
events due to their applications in finance, insurance industry, and
risk management [35–38]. In this article, we will limit our discus-
sion of the statistics to this section and refer the interested reader
to the cited literature on the topic.

Two major frameworks for quantifying the extreme statistics of
stochastic processes are the extreme value theory and the large
deviation theory. The extreme value theory studies the probability
distribution of the random variable Mn ¼ maxfX1;X2;…;Xng
where X1;X2;… is a sequence of random variables [39]. The main
objective in extreme value theory is to determine the possible lim-
iting distributions of Mn as n tends to infinity. In particular, the
Fisher–Tippett–Gnedenko theorem (also known as the extremal
types theorem) states that if fXigi�1 is a sequence of independent
and identically distributed (i.i.d) random variables, then the limit-
ing distribution of Mn can only converge to three possible distribu-
tions and provides explicit formula for these distributions
[40–42]. This is a significant result since the extreme statistics of
the random variable can be deduced even when no extreme events
have actually been observed. In many practical cases, however,
the random variables are not independent. Therefore, the more
recent work in extreme value theory has been focused on relaxing
the independence assumption [43–51]. For an extensive review of
extreme value theory in the context of dynamical systems, we
refer to a recent book by Lucarini et al. [52].

Another prominent framework for the statistical analysis of
extreme events is the large deviation theory, which is concerned
with the tail distribution of random variables. The tails of the
probability distributions contain the extreme values a random
variable can take; hence, the name large deviations. The large

deviations were first analyzed by Cramèr [53] who studied the
decay of the tail distribution of the empirical means Zn ¼Pn

i¼1 Xi=n for n� 1 where fXigi�1 is a sequence of i.i.d random
variables. Later, Donsker and Varadhan [54–57] generalized the
large deviation results to apply them to Markov processes. The
current scope of the large deviation theory is quite broad and is
applied to quantifying heavy tailed statistics in a variety of deter-
ministic and stochastic dynamical systems. We refer the interested
reader to the articles by Varadhan [58] and Touchette [59,60] for
a historical review of large deviation theory and its applications.

The four aspects of extreme events mentioned above are inter-
twined. However, the discovery of mechanisms that give rise to
extreme events resides in the heart of the problem (see Fig. 1). For
instance, even partial knowledge of the mechanisms that trigger
the extreme events may lead to the discovery of indicators that
facilitate their data-driven prediction (see Sec. 5.2). In addition,
once we know what mechanisms trigger the extreme events, we
can make informed choices about the control strategies toward
avoiding them. To this end, the real-time prediction of upcoming
extreme events informs the time the control strategy should be
activated. Knowledge of the mechanisms of the extreme events
can also help improve the statistical estimates regarding their like-
lihood and frequency.

As a result, the main focus of this article will be on the first
aspect of extreme events, i.e., the mechanisms. We will also dis-
cuss some aspect of the real-time prediction of the extremes, espe-
cially the quantification of the reliability of the indicators of
extreme events. In Sec. 2, we introduce the general setup and
notation. Section 3 reviews some well-known mechanisms for
extreme event formation in deterministic and stochastic dynamical
systems. In Sec. 4, we review a variational method for discovering
the mechanisms of extreme events and illustrate its application
with two examples: intermittent turbulent energy dissipation and
rogue ocean waves. In Sec. 5, we discuss reliable indicators of
extreme events for their real-time prediction. Section 6 contains
our concluding remarks.

2 Setup and Notation

In this section, we lay out the setup of the problem that allows
for a dynamical systems framework for extreme event analysis.
We consider systems that are governed by an initial value problem
of the form

@tu ¼ NðuÞ (1a)

uðx; 0Þ ¼ u0ðxÞ; 8x 2 X (1b)

where the state uðtÞ¢uð�; tÞ 2 U belongs to an appropriate func-
tion space U for all times t� 0. The initial state of the system is
specified by u0 : X! Rd , where X � Rd and d 2N. The opera-
tor N is a potentially nonlinear operator that is provided by the
physics. The PDE (1) should also be supplied with appropriate
boundary conditions uj@X where @X denotes the boundary of X.

System (1) generates a solution map

St :U ! U
u0 7!uðtÞ

(2)

that maps the initial state u0 to its image u(t) at a later time t. The
solution map has the semigroup property, i.e., S0ðu0Þ ¼ u0 and
Stþsðu0Þ ¼ StðSsðu0ÞÞ ¼ SsðStðu0ÞÞ for all u0 2 U.

We equip the space U with further structure. In particular, we
assume that ðU;B;lÞ is a probability space and that the probabil-
ity measure l is St-invariant. We refer to a measurable function f :
U ! R as an observable. Note that for an observable f, Xt ¼
f � St is a continuous stochastic process whose realizations are
made by choosing an initial condition u0 drawn in a fashion com-
patible with the probability measure l.
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The observable f is a quantity whose statistics and dynamical
evolution are of interest. For instance, in the water wave problem
considered in Sec. 4.3 below, the observable is the wave height.
In meteorology, the observable of interest could be temperature or
precipitation. Here, we are in particular interested in the extreme
values of the observable f. In practice, the extreme values are
often defined by setting a threshold fe. The observable values that
are larger than this threshold constitute an extreme event. This
motivates the following definition of extreme events.

DEFINITION 1. (Extreme Events): For an observable f : U ! R,
the extreme event set E(fe), corresponding to the prescribed
extreme event threshold fe 2 R, is given by

Ef ðfeÞ ¼ fu 2 U : f ðuÞ > feg
¼ f�1ððfe;1ÞÞ (3)

The extreme event sets within the state space U are depicted in
Fig. 2. As the system trajectory St(u0) passes through the extreme
event set Ef(fe), the time series of the observable f exhibit a sudden
burst. In this figure, the extreme event set is depicted as a collec-
tion of patches, but in principle, this set can have an extremely
complex geometry.

In certain problems, the extreme events may correspond to
unusually small values of the observable f. In that case, Definition
1 is still operative by studying the observable �f instead of f. A
third type of rare events (which are not necessarily extreme) is the
rare transition between long-lived states (see Fig. 3). In this case,
the system evolves for long times around a particular state before
it is suddenly ejected to the neighborhood of a different state
around which the system evolves for a long time before being
ejected again [61–67]. Although such rare transitions do not nec-
essarily fall under Definition 1, we return to them in Sec. 3.3 and
review the mechanisms that cause the transitions.

Finally, we point out that, although the governing equations (1)
are formulated as a partial differential equation (PDE), we will
also consider systems that are described by a set of ordinary dif-
ferential equations (ODEs), _u ¼ NðuÞ, where uðtÞ 2 Rn denotes
the state of the system at time t. This ODE could also arise from a
finite dimensional approximation of a PDE model as is common
in numerical discretization of PDEs.

3 Routes to Extreme Events

There are certain classes of dynamical systems exhibiting
extreme events for which the mechanisms that trigger these events
are well-understood. In this section, we review three such systems
and discuss the underlying mechanisms of extreme events in them.

3.1 Multiscale Systems. An interesting type of extreme
events appears in slow–fast dynamical systems where the motion
is separated into distinct timescales. The extreme events in such
systems appear as bursts when a system trajectory is dominated
by the fast timescales of the system. The early work on this sub-
ject was motivated by the observation of relaxation oscillations in
electrical circuits [68–70]. Later, slow–fast dynamics found appli-
cations in a wide range of problems such as chemical reactions
[71–75], excitable systems (e.g., neural networks) [76–82],
extreme weather patterns [83–85], and dynamics of finite size par-
ticles in fluid flows [86,87].

We first discuss the phenomenology of bursting in slow–fast
systems and then demonstrate its implications on a concrete
example. Figure 4 sketches the phase space geometry of a

Fig. 2 Geometry of the state space U and the time history of the observable f. As the trajec-
tory passes through the extreme event set Ef(fe), a burst in the observable time series appears.

Fig. 3 Rare transitions between two stable states made possible through noise

Fig. 4 A schematic picture of a trajectory of a slow-fast sys-
tem. The slow manifold is of the saddle type, that is, it consists
of a normally attracting component Ma (blue) and a normally
repelling component Mr (red). The trajectory diverges rapidly
away from the slow manifold when it visits a repelling subset.
Subsequently, the trajectory approaches the slow manifold
along its attracting component.
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slow–fast system. It has an invariant slow manifold where the tra-
jectories follow the slow time scale. In the directions transverse to
the slow manifold, the dynamics follow the fast time scales. We
assume that the slow manifold is normally hyperbolic. Loosely
speaking, normal hyperbolicity means that the transverse attrac-
tion to and repulsion from the manifold is stronger than its internal
dynamics [88,89]. We also assume that the slow manifold is of
the saddle type, that is, it consists of two components: attracting
and repelling. Normal perturbations to the manifold on its attract-
ing component decay over time while the perturbations over the
repelling component grow. Due to invariance of the slow mani-
fold, trajectories starting on the manifold remain on it for all times
unless they exit the manifold through its boundaries.

Now, consider a trajectory that starts slightly off the slow mani-
fold over its attracting component (the black curve in Fig. 4). Ini-
tially, this trajectory converges toward the slow manifold until it
approaches its repelling component. At this point, the normal
repulsion pushes the trajectory away from the slow manifold
where the fast time scales are manifest. This rapid repulsion con-
tinues until the trajectory leaves the neighborhood of the repelling
component and is pulled back toward the attracting components.

If the normal repulsion is strong enough, the episodes where
the trajectory travels away from the slow manifold appear as rapid
bursts. The repelling subset of the slow manifold can be a very
complex set as a result of which the burst can appear chaotic and
sporadic.

We demonstrate the bursting in slow–fast systems on a normal
form of a singular Hopf bifurcation [90]

e _x ¼ y� x2 � x3

_y ¼ z� x

_z ¼ �� � ax� by� cz

(4)

where e � 0 is a small parameter. For our discussion, we fix the
remaining parameters, a¼�0.3872, b¼�0.3251, c¼ 1.17 and
�¼ 0.0072168.

We first discuss the singular limit where e¼ 0. In this limit, sys-
tem (4) reduces to the differential-algebraic equations

0 ¼ y� x2 � x3

_y ¼ z� x

_z ¼ �� � ax� by� cz

(5)

This reduced system describes the slow flow on the critical
manifold

M0 ¼ fðx; y; zÞ : y ¼ x2 þ x3g (6)

In order to discern the dynamics outside the critical manifold, we
use a blow-up construction by rescaling time according to t¼ es.
The derivative with respect to the fast time s is given by
ðd=dsÞ ¼ eðd=dtÞ. With this change of variable, Eq. (4) becomes

x0 ¼ y� x2 � x3

y0 ¼ eðz� xÞ
z0 ¼ eð�� � ax� by� czÞ

(7)

where the prime denotes derivative with respect to the fast time s.
In the singular limit, e¼ 0, we have y0 ¼ 0 and z0 ¼ 0. Moreover,
in the rescaled system, every point on the critical manifold is a
fixed point since x0 ¼ y� x2 � x3 ¼ 0. This is an artifact of the
rescaling t¼ es, which is singular at e¼ 0. More precisely, points
on the critical manifolds are fixed points with respect to the fast
time scale. In turn, the slow dynamics on the critical manifold is
given by the reduced system (5). The combination of the reduced
system (5) and the rescaled system (7) describes the motion on the
critical manifold and away from it.

Of particular relevance to us is the behavior of trajectories in a
small neighborhood of the critical manifold. The critical manifold
consists of three connected components (see Figs. 5 and 6). Two
of these components, denoted by Ma, are normally attracting,
meaning that trajectories starting away from them in a transverse
direction converge toward the critical manifold. In contrast, trans-
verse perturbations to the normally repelling segmentMr diverge
rapidly from the critical manifold. As a result, trajectories starting
near the repelling submanifoldMr are repelled to a neighborhood
of the attracting manifold Ma where they follow the slow time
scales along the critical manifold until they reach one of the fold
points p1 or p2 (see Fig. 5). At the folds, located on the boundary
between the attracting and repelling submanifolds, the trajectory
is repelled again from Mr toward the second segment of the
attracting submanifoldMa. This cycle continues indefinitely, cre-
ating bursting trajectories that are repelled away from the repel-
ling submanifold and attracted back toward the critical manifold
along its attracting segment.

Now, we turn our attention to the nonsingular case where e> 0.
The above analysis of the singular flow (e¼ 0) bears some rele-
vance to the nonsingular case (e> 0). For sufficiently small pertur-
bations, 0< e � 1, the geometric singular perturbation theory
(GSPT) [91] guarantees, under certain conditions, that the critical
manifoldM0 survives as a perturbed invariant manifoldMe, that
Me is as smooth as the critical manifold, and that Me is OðeÞ
close to the critical manifold M0. Furthermore, the normally
attracting or repelling properties of the perturbed manifold Me
are similar to those of the critical manifoldM0.

In particular, for system (4), the critical manifold M0 deforms
into a nearby slow manifold Me. The perturbed slow manifold
has its own repelling and attracting submanifolds similar to those
of M0, which create bursting repulsion from and attraction
toward the slow manifold. Figure 6 shows a trajectory of the sys-
tem for e¼ 10�3. At this parameter values, the system has under-
gone a supercritical Hopf bifurcation [92] giving birth to a stable
periodic orbit (the black curve). This periodic orbit carries much
of the bursting properties described above for the singular system.
Most of the time, the trajectory spirals outward near the fold p1.
At the some point, the trajectory approaches the repelling segment
of the slow manifold Me whereby it is repelled away toward its
attracting segment. The trajectory follows the attracting segment
until it reaches the fold p2 where the repelling segment again
repels the trajectory toward the second attracting segment. Fol-
lowing the attracting segment, the trajectories return toward the
fold p1 and the small spiral motion repeats. This cycle continues

Fig. 5 Orbits of the rescaled system (7) with �5 0 projected on
the x–y plane. The s-shaped curve marks the slow manifold
y 5 x2 1 x3, which consists of three connected segments: two
segments are attracting (blue) and one segment is repelling
(red).
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indefinitely. Figure 6(c) shows the time series of the y-coordinate
along the periodic orbit showing the bursts resulting from repul-
sion away from the slow manifold.

For illustrative purposes, we presented in Fig. 6(a) parameter
set where the asymptotic motion of the system is relatively simple,
dictated by a single stable periodic orbit. The dynamics is not
always so predictable. There are parameter values (a, b, c, �, e)
where the system undergoes period doubling bifurcations resulting
in several co-existing unstable periodic orbits. As a result, a
generic trajectory never settles down to a particular periodic orbit.
Instead, it indefinitely bounces back and forth between unstable
periodic orbits. As a result, the bursting time series appear chaotic
and less predictable.

We illustrate this on a system, which exhibits chaotic bursts
for a wide range of parameters. Consider the coupled
FitzHugh–Nagumo units [80],

_xi ¼ xiðai � xiÞðxi � 1Þ � yi þ k
Xn

j¼1

Aijðxj � xiÞ;

_yi ¼ bixi � ciyi

(8)

where n is the number of units and (ai, bi, ci) are constant parame-
ters. The units are coupled to each other through the summation
term. The matrix A with entries Aij � {0, 1} is the adjacency

matrix that determines which units are coupled. The constant k
determines the strength of the couplings.

Figure 7 shows a typical trajectory of the FitzHugh–Nagumo
system with two units (n¼ 2). Also shown is the time series of the
mean of xi, i.e., �x ¼ ð1=nÞ

Pn
i¼1 xi. The mean �x mostly oscillates

chaotically around 0 with a relatively small variance. Once in a
while, however, it exhibits relatively large excursions away from
0 in the form of bursts. As opposed to the periodic extreme events
of Fig. 6, these bursts appear chaotically, with no regular recurrent
pattern. Similar extreme events have been observed in the
FitzHugh–Nagumo system with larger number of units and vari-
ous parameter values [81].

In this chaotic regime, the geometry of the invariant sets and
their stable and unstable manifolds can be incredibly complex.
One of the recent contributions to the field of slow–fast systems has
been the development of accurate numerical methods for computing
such invariant manifolds [93–96]. The computational cost of these
manifolds increases with the dimension of the system such that their
computation is currently limited to four or five-dimensional systems
[97]. Nonetheless, understanding the mechanism behind extreme
events in prototypical low-dimensional slow–fast systems has been
greatly informative at the conceptual level.

3.2 Homoclinic and Heteroclinic Bursting. Another geo-
metric mechanism of generating extreme events is through

Fig. 6 The state-space geometry of system (4) with parameters (a, b, c, m, �) 5 (20.3872,
20.3251, 1.17, 0.0072168, 0.001). (a) A stable periodic orbit of the system (black curve) is
shown together with the critical manifold (6). The attracting parts of the manifold are colored
in blue and the repelling part is colored in red. (b) Projection of panel (a) onto the x–y plane.
The inset shows a close-up view of the region enclosed in a gray box. (c) Time series of the y-
coordinate along the periodic orbit.

Fig. 7 The FitzHugh–Nagumo oscillators (8) with two units (n 5 2). The parameters are a1 5 a2 5 20.025794, c1 5 c2 5 0.02,
b1 5 0.0065, b2 5 0.0135, and k 5 0.128. The adjacency matrix A is symmetric with entries A11 5 A22 5 0 and A12 5 A21 5 1. (a) A
trajectory of the system projected onto the (x1, y1, y2) subspace. (b) Time series of the observable �x 5 (1/n)+n

i 5 1xi . (c) A close-
up view of the first burst of �x .
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homoclinic and heteroclinic connections (see Fig. 8). Since these
mechanisms share many of the characteristics of the slow–fast sys-
tems discussed in Sec. 3.1, we limit this section to a brief discussion
of the main ideas underlying homoclinic and heteroclinic bursting.

An example of a homoclinic connection is that of the Shilnikov
orbit of a saddle-focus fixed point. This is an unstable fixed point
with a two-dimensional (2D) stable manifold and a one-
dimensional unstable manifold (see Fig. 8(a)). Within the stable
manifold, the trajectories spiral toward the fixed point while they
are repelled from the fixed point in its unstable direction. The
Shilnikov orbit is the homoclinic trajectory that is asymptotic to
the fixed point both in forward time and in backward time.

Shilnikov [98] proved that, if the attraction within the stable
manifold is weaker than the repulsion along the unstable manifold,
small perturbations to the system give birth to infinitely many
unstable periodic orbits around the homoclinic orbit. These periodic
orbits resemble the shape of the original Shilnikov orbit [99]. More
precisely, the periodic orbits consist partly of spiral motion toward
the fixed point and partly of bursting motion away from it. Generic
trajectories shadow these periodic orbits such that the time series of
their z-component exhibits small-scale oscillations, corresponding
to the spiraling motion, and occasional bursts, corresponding to
repulsion along the unstable manifold [100,101]. Since the periodic
orbits are all unstable, the motion along generic trajectories can be
chaotic resulting in very complex dynamics. A classic example of
such chaotic motion is the Rossler attractor [102,103].

Although the Shilnikov bifurcation was first studied as a route to
chaotic motion in simple systems, it has found many applications in
explaining the self-sustained bursting phenomena observed in
nature. These include, for instance, sudden variations in geophysi-
cal flow patterns [104,105], spiking, and synchronization in neural
networks [78,106,107] and chemical reactions [108].

A similar mechanism of bursting is through heteroclinic con-
nections. As opposed to the homoclinic case, the heteroclinic orbit
asymptotes to different fixed points in forward and backward
times. Figure 8(b), for instance, depicts a heteroclinic connection
corresponding to the phase space of a three-dimensional vector
field introduced in Ref. [109]. As in the homoclinic case, the het-
eroclinic bursting has been useful in explaining several spiking
behavior observed in nature from nonlinear waves to turbulent
fluid flow [110–116].

3.3 Noise-Induced Transitions. So far, we have discussed
deterministic systems, which possess a self-sustaining mechanism
for generating extreme events. However, an important class of
rare extreme events is induced by noise [117–120]; see also Ref.
[121] for an excellent review for this form of transitions. Such
systems typically have equilibria that are stable in the absence of
noise. Noise, however, makes it possible to transition from the
neighborhood of one equilibrium to the other.

In such systems, the transition mechanism is the noise and, as
such, there is no ambiguity regarding what underlies the rare
events. However, the route the system takes during each transition
is not as clear. In fact, due to the random nature of the system, the

transition routes can only be identified probabilistically. In partic-
ular, one can inquire about the most likely route the system takes
in traveling between two states. The answer facilitates the predic-
tion of individual transitions as well as the quantification of transi-
tion rates in an ensemble of experiments. In this section, we
briefly review the transition-path theory, which is a framework
for addressing these questions.

The origins of the transition-path theory stem from chemical
physics where one is interested in computing the rate of chemical
reactions that lead to a transition from the reactant state to the
product state [61,122–126].

The transition-path theory aims to go beyond computing the
transition rates and determines the most likely paths that the sys-
tem may take during the transitions. To describe this theory, we
consider the Langevin equation

m€x ¼ �rVðxÞ � c _x þ
ffiffiffi
2
p

rðxÞgðtÞ (9)

where u ¼ ðx; _xÞ 2 R2n determines the state of the system, m is
the mass matrix, V : Rn ! R is the potential, and c is the friction
coefficient. The stochastic process g(t) is a white noise with mean
zero and covariance hgiðtÞgjðsÞi ¼ dijdðt� sÞ and aðxÞ ¼
rðxÞrðxÞ

†

2 Rn	n is the diffusion matrix.
For our introductory purposes, it is helpful to consider the over-

damped case c� 1 where Eq. (9) reduces to

_u ¼ �rVðuÞ þ
ffiffiffi
2
p

rðuÞgðtÞ (10)

where u ¼ x 2 Rn determines the state of the system. For simplic-
ity, we have assumed m¼ Id and rescaled time to eliminate the
dependence on the friction coefficient c. In the following, we
study system (10) in its own right, regardless of its connection to
system (9).

Figure 3 sketches the system (10) in the one-dimensional case
(n¼ 1). In the absence of noise g(t), the system converges asymp-
totically to one of the two local minima of the potential V. The
noise, however, nudges the trajectory away from these equilibria.
In rare instances, the trajectory can even pass over the saddle sep-
arating the two equilibria causing a transition from equilibrium u1

toward equilibrium u2 and vice versa.
In this simple example, there is no ambiguity about the path

these rare transitions take since there is only one degree-of-
freedom available. However, in higher dimensional problems
(n� 2), the rare transitions have more options for traveling
between local minima of the potential V. Figure 9(a) [67], for
instance, shows the so-called rugged Mueller potential in two
dimensions (n¼ 2) with infinitely many possible paths between
any pair of local minima.

In this case, the following question arises: given two sets
D1;D2 
 U, what is the most likely path the system may take for
transitioning from set D1 to set D2? Fig. 9(b) shows two such sets
that cover the lowest valleys of the potential V. To answer this
question, we assume that system (10) is ergodic with a unique
invariant probability density q : U ! Rþ such that the probability

Fig. 8 Sketches of a homoclinic (a) and a heteroclinic (b) orbit
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density of observing the state u is q(u). We would like to find the
probability density q12(u), which corresponds to the probability
that a trajectory passing through u has come from D1 and will be
going to D2. This probability density is given by

q12ðuÞ ¼ qþðuÞq�ðuÞqðuÞ (11)

where q�; qþ : U ! ½0; 1� are the so-called committor functions.
The committor function q� (u) measures the probability that a tra-
jectory passing through u came from D1. On the other hand, qþ(u)
measures the probability that the trajectory passing through u will
arrive at D2 before arriving at D1.

One can show that the committor functions satisfy the back-
ward Kolmogorov equations

Lqþ ¼ 0; u 2 UnðD1 [ D2Þ
qþ ¼ 0; u 2 D1

qþ ¼ 1; u 2 D2

8>><
>>: (12)

and

L
†

q� ¼ 0; u 2 UnðD1 [ D2Þ
q� ¼ 1; u 2 D1

q� ¼ 0; u 2 D2

8><
>: (13)

where L ¼ �rVðuÞ � r þ aðuÞ : rr is a linear operator and L†

is its adjoint with respect to the inner product ha;bi ¼Ð
UaðuÞbðuÞqðuÞdu (see, e.g., Refs. [65] and [127]). In addition,

the density q satisfies the forward Kolmogorov (or Fokker–
Planck) equation

r � ðqrVÞ þ rr : ðqaÞ ¼ 0 (14)

where the time derivative vanishes since the density is invariant.
In order to evaluate the transition probability density q12, one

needs to solve Eqs. (12)–(14) for qþ, q� and q, respectively.
Then, the transition probability density is computed from Eq.
(11). Figure 9(c) shows the transition probability density q12 cor-
responding to the rugged Mueller potential.

Recall that the probability density q12(u) corresponds to the
probability that a trajectory passing through u has come from D1

and will be going to D2. Although useful, this probability density
is still a pointwise quantity, which does not immediately inform
us about the most likely path the system will take in going from
D1 to D2.

To address this shortcoming, the transition-path theory uses the
probability current J12 : UnðD1 [ D2Þ ! Rn associated with the
transition probability density q12. The vector field J12 is defined
such that for any codimension-one surface S 2 UnðD1 [ D2Þ, the
integral of J12 over the surface, i.e.,

Ð
SJ12ðuÞ � dSðuÞ, equals the

Fig. 9 Two-dimensional rugged Mueller potential. (a) Contour lines of the potential V. Darker colors mark smaller values. (b)
Contour lines of a committor function corresponding to the rugged Muller potential. (c) Contour lines of the corresponding
probability density q12 of transition trajectories. (d) The flow lines of the probability current J12 of the transition trajectories.
(Reproduced with permission from E and Vanden-Eijnden [67]. Copyright 2010 by Annual Reviews.)
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probability flux of transition trajectory through S. The current J12

can be expressed explicitly in terms of the quantities introduced
previously [65,127] as

J12 ¼ qþq�J þ qq�arqþ � qqþarq� (15)

where J ¼ �qrV �r � ðqaÞ is the probability current associated
with the probability density q.

Figure 9(d) shows the streamlines of the transition current J12.
The color encodes the probability of the transition along each path
such that the darker colors mark a higher transition probability.
This figure finally shows the most probable path the transitions
trajectories take in going from D1 to D2.

Therefore, for noise-driven rare transitions, the transition-path
theory provides a rigorous framework for computing the most
likely mechanism for the rare events. We recall, however, that
computing the transition paths in this framework requires the solu-
tions to three PDEs (12)–(14). Solving these equations in higher
dimensions is quite costly such that the applications of transition-
path theory have been limited to two- and three-dimensional sys-
tems [66]. We finally point out that a number of numerical meth-
ods for approximating the rare transition paths have been
developed in order to partially remedy this high computational
cost [128–134].

4 Variational Method for Physics-Based Probing of

Extreme Events

In this section, we review a recent variational method for dis-
covering the mechanisms that cause the extreme events. This
method exploits the physics given by the governing equations (1)
together with the statistical information from the system attractor
in order to find initial states u0 that over a prescribed time interval
develop into an extreme event. The hope is to learn about the
mechanism that causes the extremes by examining the states that
precede the extreme events. We first introduce the variational
method in a general framework and then present two specific
applications of the method.

4.1 The Variational Method. Consider an observable f :
U ! R whose time series along the system (1) is known to
exhibit extreme events (see Definition 1). Also assume that there
is a typical timescale s over which the observable grows from its
typical values and increases past its extreme value threshold fe.
We, therefore, seek initial states u0 2 U such that f ðSsðu0ÞÞ > fe.
This motivates the definition of the domain of attraction of
extreme events as follows.

DEFINITION 2. (Extreme Event Domain of Attraction): For an
extreme event set Ef(fe) and a prescribed time s> 0, the corre-
sponding finite time domain of attraction to the extreme events is
the set

Af ðs; feÞ ¼ fu 2 UnEf ðfeÞ : 9 t 2 ð0; s�; StðuÞ 2 Ef ðfeÞg
¼ [

0<t�s
S�tðEf ðfeÞÞ

h i
nEf ðfeÞ (16)

Here, S�tðBÞ is shorthand for the pre-image ðStÞ�1ðBÞ of a set
B 2 B. The set Af(s, fe) contains the states u that at some future
time t, with t � s, enters the extreme event set Ef(fe). We remove
the extreme event set Ef(fe) from the domain of attraction to
exclude the states that are extreme at the initial time.

The extreme event domain of attraction Af can be an extremely
complex set whose numerical estimation is a daunting task. In
addition, determination of the entire set may be unnecessary for
deciphering the mechanisms that give rise to extreme events.
Instead, one representative state from this set may suffice in dis-
covering the extreme event generating mechanism.

We proposed in Ref. [135] to obtain the desired representative
states as the solutions of a constrained optimization problem. In

this approach, we seek states u0 2 U that maximize the growth of
the observable f over a prescribed time interval of length s> 0.
More precisely, we seek the solutions to the maximization
problem

sup
u02A
½f ðSsðu0ÞÞ � f ðu0Þ� (17)

where A is a subset of U to be discussed shortly. There are two
constraints that are embedded in the optimization problem (17).
One constraint is enforced through St generated by the governing
equations (1). In other words, it is implicitly implied that
u(t)¼ St(u0) is a solution of the governing equations.

A second constraint is implied by requiring the state u0 to
belong to the subset A. We envision A to approximate the attrac-
tor of the system (1). This constraint is essential for discarding
exotic states that belong to the state space U but have negligible
probability of being observed under the natural dynamics gener-
ated by the governing equations. It is known that dissipative dif-
ferential equations often possess an attractor, which is a subset of
the state space [136,137]. While the system can be initialized
from any arbitrary states u0 2 U, its trajectories quickly converge
to the attractor and remain on it. As a result, much of the function
space U is unexplored; the only states relevant to long-term
dynamics of the system are the ones belonging to the attractor or a
small neighborhood of it. To this end, this additional constraint
not only leads to more relevant states as precursors, but it also
reduces the computational cost of the optimization problem, since
we explore only the physically relevant solutions. For instance,
the state space of the FitzHugh–Nagumo system shown in Fig. 7
is R4. However, it is visually appreciable that its trajectories con-
verge to a small subset of R4.

Constraining the optimal states u0 in Eq. (17) to belong to
the attractor A eliminates the states that may lead to a large
growth of the observable but are dynamically irrelevant. The
FitzHugh–Nagumo system, for instance, has transient trajectories
along which �x becomes larger than 1.5, which is much larger than
the typical bursts shown in Fig. 7. These unusually large bursts,
however, occur along trajectories that are away from the attractor
and therefore are not sustained.

The attractor can be a very complex set whose estimation is
quite difficult. In fact, numerical approximation of the attractors
even in low-dimensional systems is an active area of research
(see, e.g., Refs. [138] and [139]). For our purposes, an approxi-
mate representation of the attractor is sufficient. Here, we assume
that the attractor can be approximated by the set

A ¼ fu0 2 U : ci � Ciðu0Þ � �ci; i ¼ 1; 2;…; kg (18)

where k 2N determines the number of constraints, the maps Ci :
U ! R are smooth enough, and ci; �ci 2 R are the lower and
upper bounds of Ci. The choice of the maps Ci and their bounds
depends on the problem and is elaborated in Secs. 4.2 and 4.3.

With the two constraints discussed above, the optimization
problem (17) can be written more explicitly as

sup
u02U
½f ðuðsÞÞ � f ðu0Þ� (19a)

@tu ¼ NðuÞ; uð0Þ ¼ u0 (19b)

ci � Ciðu0Þ � �ci; i ¼ 1; 2;…; k (19c)

where u(t) is the shorthand notation for a trajectory of the system
(1). If the set A is compact in U and the observable f and the solu-
tion map St are smooth enough, then there exist solutions to prob-
lem (19). These solutions are not necessarily unique. In fact, often
there are multiple local maxima, which may or may not be
informative as to the origins of the extreme events. The relevance
of the local minimizers can only be determined a posteriori. There
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are standard numerical methods for approximating the solutions
of the constrained optimization problems of the form (19) that we
do not review here but refer the interested reader to Refs.
[140–143].

Let û0 denote a solution of the problem (19) corresponding to
an extreme event, i.e., f ðSsðû0ÞÞ > fe. We point out that a generic
trajectory of the system (1) may never exactly pass through the
state û0. However, if the solution map St is continuous, any trajec-
tory passing through a sufficiently small neighborhood of û0 will
also develop into an extreme event. This is illustrated in Fig. 10.

We demonstrate the application of this variational method on
two examples. The first example involves the discovery of internal
energy transfers that lead to the extreme energy dissipation epi-
sodes in a turbulent fluid flow. The second example involves pre-
diction of unusually large ocean surface waves, commonly known
as rogue waves.

4.2 Application to a Turbulent Fluid Flow. In this section,
we present the application of the variational method to the
extreme energy dissipation in a turbulent fluid flow. This flow is
analyzed in detail in Ref. [135]; here, we reiterate our main find-
ings and add a number of complementary comments. Consider the
solutions to the two-dimensional incompressible Navier–Stokes
equation

@tu ¼ �u � ru�rpþ �Duþ F; r � u ¼ 0 (20)

where u : T
2 	Rþ ! R2 is the velocity filed, p : T

2 ! R is the

pressure field, � is the kinematic viscosity, and the torus T
2 ¼

½0; 2p� 	 ½0; 2p� is the fluid domain with periodic boundary condi-
tions. The velocity u(x, t) and pressure p(x, t) are functions of the

spatial variables x ¼ ðx1; x2Þ 2 T
2 and time t 2 Rþ. The flow is

driven by the deterministic Kolmogorov forcing F ¼ sinðkf x2Þe1

where kf¼ 4 is the forcing wavenumber and e1 ¼ ð1 0Þ>. The
simulations start from a random initial condition u(x, 0), which is,
in turn, propagated forward in time by numerically integrating the
Navier–Stokes equation (20). We allow enough time elapse before
collecting data in order to ensure that the initial transients have
decayed, and the trajectory has settled to the system attractor.

Because of the simplicity of the forcing F and the boundary
conditions, the Kolmogorov flow (i.e., the Navier–Stokes

equations driven by the Kolmogorov forcing) has been studied
extensively both by numerical and analytical methods
[116,144–148]. Similar variants of the Kolmogorov flow have
also been investigated experimentally [149–152].

In spite of the simplicity of the forcing and the boundary condi-
tions, the Kolmogorov flow exhibits complex chaotic dynamics
when the Reynolds number Re¼ ��1 is sufficiently large. In par-
ticular, the Kolmogorov flow is known to undergo intermittent
bursts in this chaotic regime [116]. The bursts are detected by
monitoring certain system observables such as the energy dissipa-
tion rate D : U ! Rþ and the energy input rate I : U ! R

D uð Þ ¼ �

2pð Þ2
ð

T
2
jruj2dx; I uð Þ ¼ 1

2pð Þ2
ð

T
2
u � Fdx (21)

The energy input rate I measures the rate at which the external
forcing pumps energy into the system. The energy dissipation rate
D measures the rate at which the system dissipates energy through
diffusion.

Figure 11(a) shows the time series of the energy dissipation
rate along a typical trajectory of the Kolmogorov flow at Re¼ 40.
This time series clearly exhibits chaotic, short-lived bursts. The
bursts of the energy dissipation are almost concurrent with the
bursts of the energy input rate I. This can be inferred from
Fig. 11(b) showing the joint probability density pI,D associated
with the joint probability distribution

Fig. 10 Nearby trajectories to the optimal solution also give
rise to extreme events. The upper panel shows a solution û0 of
the optimization problem (19) and the ensuing trajectory (red
curve). Trajectories passing through a sufficiently small open
neighborhood O of û0 also give rise to extreme events. The
lower panel depicts the evolution of the observable f along
these trajectories.

Fig. 11 Intermittent bursts in the Kolmogorov flow at Reynolds
number Re 5 40. (a) Time series of the energy dissipation rate D
and (b) Logarithm of the joint probability density pI,D of the
energy input rate I and the energy dissipation rate D.
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FI;DðI0;D0Þ ¼ lðu 2 U : IðuÞ � I0; DðuÞ � D0Þ (22)

where l is the invariant probability measure induced by the solu-
tion map St of the Kolmogorov flow (cf. Sec. 2). In practice, the
density pI,D is approximated from data sampled from long-time
simulations along several trajectories [153].

Since the large values of I correlate strongly with the large val-
ues of D (Fig. 11(b)), it is reasonable to assume that the same
mechanism instigates the bursts of both quantities. From a physi-
cal point of view, one is interested in the burst of the energy dissi-
pation rate D. However, since the energy input rate I is linear in
the velocity field u, it is mathematically more convenient to work
with this quantity.

Given the simple form of the Kolmogorov forcing
F ¼ sinðkf yÞe1, the energy input rate (21) can be written more
explicitly as IðuðtÞÞ ¼ �Im½að0; kf ; tÞ� where aðk1; k2; tÞ 2 C are
the Fourier coefficients such that

u x; tð Þ ¼
X
k2Z2

a k; tð Þ
jkj

k2

�k1

� �
eik�x (23)

where k¼ (k1, k2). This Fourier series is written in a divergence-
free form so that the incompressibility condition r � u ¼ 0 is
ensured. The energy input rate can be written in terms of
the modulus r(k, t) and phase /(k, t) of the Fourier coefficients
as IðuðtÞÞ ¼ �rð0; kf ; tÞsinð/ð0; kf ; tÞÞ where aðk; tÞ ¼ rðk; tÞ
expði/ðk; tÞÞ. Therefore, there are two scenarios through which
the energy input rate I can increase: (i) For a fixed r(0, kf, t), the
phase /(0, kf, t) approaches �p/2 resulting in �sinð/ð0; kf ; tÞÞ %
1 and subsequently increasing I. (ii) For a fixed phase /(0, kf, t),
the modulus r(0, kf, t) increases resulting in the growth of I.

Scenario (i) implies the alignment of the external forcing F and
the velocity field u(t) in the L2 function space. This scenario,
although appearing a priori more likely, is rejected based on
numerical observations (see Ref. [135] for more details). Instead,
it is the increase in the modulus r(0, kf, t) that in turn leads to the
increase in I during its bursts (scenario (ii)). The growth of r(0, kf,
t) is only possible through the internal energy transfers operated
by the nonlinear term u�ru. It is known that the nonlinear term
redistributes the energy (injected by the external forcing) among
the Fourier modes a(k, t) in such a way that the total transfer of
energy among modes is zero [154,155]. Note that both the nonlin-
ear term and the pressure gradient conserve energy since

ð
T

2
u � ðu � ruÞdx ¼ 0;

ð
T

2
u � rp dx ¼ 0 (24)

Examining the structure of the Navier–Stokes in the Fourier
space reveals that Fourier modes are coupled together in triads
such that the mode a(k, t) is affected by pairs of modes aðk0; tÞ and
aðk00; tÞ with k ¼ k0 þ k00 [154]. Each set of modes whose wave-
numbers satisfy k ¼ k0 þ k00 are referred to as a triad. Since each
mode may belong to several triads [155], they form a complex
network of triad interactions that continuously redistributes the
energy among various modes. As a result, it is not straightforward
to discern the mode(s) responsible for the growth of the modulus
of the mode a(0, kf), resulting in the bursts of the energy input I.

In Ref. [135], we employed a constrained optimization similar
to Eq. (19) to discover the modal interactions that cause the
extreme events in the Kolmogorov flow. Skipping the details,
Fig. 12 shows the obtained optimal solution in the Fourier space.
This optimal solution essentially consists of three Fourier modes
with wavenumbers (0, kf), (1, 0), and (1, kf). Interestingly, these
three modes form a triad since (1, kf)¼ (1, 0)þ (0, kf). Moreover,
the wavenumber (0, kf) is present in this triad supporting scenario
(ii) that postulated that the internal transfers of energy to mode a(0,
kf) are responsible for extreme events in the Kolmogorov flow.

Figure 13 shows the evolution of the moduli jað0; kf Þj and
jað1; 0Þj along a typical trajectory of the Kolmogorov flow. First,

we notice that jað0; kf Þj has bursts similar to those of the energy
dissipation rate (see Fig. 11). Second, the modulus jað1; 0Þj has
sharp dips, which are almost concurrent with the bursts of
jað0; kf Þj. This observation shows that, during extreme events, the
mode a(1, 0) loses its energy and transfers most of it to mode a(0,
kf) through the triad interaction (1, kf)¼ (1, 0)þ (0, kf). The
increase in jað0; kf Þj, in turn, leads to an increase in the energy
input rate I¼�Im[a(0, kf)] causing the observed bursts in I (see
Fig. 11).

How does this transfer of energy from a low wavenumber (1, 0)
to a higher wavenumber (0, kf) cause the bursts in the energy dissi-
pation rate D? To answer this question, we observe that

DðuÞ ¼ �
X
k2Z2

jkj2jaðkÞj2 (25)

which follows directly from the definition of the energy dissipa-
tion (21) and the Fourier series (23). The transfer of energy from
the mode a(1, 0) to the mode a(0, kf) will significantly increase
the energy dissipation rate since the term jað0; kf Þj2 is multiplied
by a larger prefactor k2

f ¼ 16 compared to the term jað1; 0Þj whose
prefactor is 1.

Fig. 12 The optimal solution for the Kolmogorov flow at Reyn-
olds number Re 5 40 and forcing wave number kf 5 4. (a) The
optimal solution in the Fourier space. The color refers to the
modulus of the Fourier modes, ja(k1; k2)j. Most modes are van-
ishingly small (white color). (b) A sketch of the main triad that is
obtained from the optimal solution. The other modes (21, 0), (1,
kf), etc. that are present in the optimal solution are repetitions
of these three modes due to the complex conjugate relation
a(2k, t) 5 2a(k, t)*. The red wavy arrows represent the energy
dissipated by each mode. The dashed lines represent the cou-
pling to other triads that not shown here.

Fig. 13 Time series of the modulus of the modes a(0, kf) and
a(1, 0) for the Kolmogorov flow at Reynolds number Re 5 40
and forcing wavenumber kf 5 4. Note that ja(0; kf )j5 r (0; kf ).
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4.3 Application to Oceanic Rogue Waves. In this section,
we consider the real-time prediction of rogue water waves. Rogue
waves refer to unusually large waves when compared to the surround-
ing waves. While there is no rigorous definition of a rogue wave, it is
customary to define it as a wave whose height exceeds twice the sig-
nificant wave height. For a given sea state, the significant wave height
refers to four times the standard deviation of the surface elevation [2].

As a starting point, we consider the free surface, as a unidirec-
tional, irrotational flow in deep seas. The surface elevation g :
ðx; tÞ7!gðx; tÞ is a function of the horizontal spatial variable x and
time t (see Fig. 14). The vertical coordinates are denoted by the
variable z such that the velocity potential is given by
/ : ðx; z; tÞ7!/ðx; z; tÞ. In this setting, the water waves are gov-
erned by the set of equations [156]

@/
@t
þ 1

2
jr/j2 þ gz ¼ 0; z ¼ g x; tð Þ (26a)

D/ ¼ 0; �1 < z < gðx; tÞ (26b)

@/
@z
¼ 0; z ¼ �1 (26c)

@g
@t
þ @/
@x

@g
@x
� @/
@z
¼ 0; z ¼ g x; tð Þ (26d)

Equation (26a) is the Bernoulli equation for irrotational flows
with a free surface. Equation (26b) follows from the conservation
of mass. Equations (26c) and (26d) are the boundary conditions at
the bottom of the sea and the surface, respectively. The constant g
denotes the gravitational acceleration.

To solve the water wave equations (26) numerically, we need
the initial surface elevation g(x, 0) and the initial velocity poten-
tial /(x, z, 0). While the practical measurement of the surface ele-
vation is possible [157–160], measuring the entire velocity
potential beneath the surface remains a challenging task. There-
fore, it is highly desirable to decouple the surface evolution from
the velocity potential. This motivates the use of the so-called
envelope equations, an approximation to the water wave equations
that only involves the surface elevation g.

The envelope equations govern the evolution of perturbations
to the Stokes wave. The Stokes waves take the form

g ¼ Refaeiðk0x�x0tÞ þ a2e2iðk0x�x0tÞ þ � � �g (27)

where a� 0 is the wave amplitude, k0 ¼ 2pk�1
0 is the wavelength,

and T0 ¼ 2px�1
0 is the wave period. The coefficients of the higher

harmonics are constant, ai 2 R. To obtain the envelope equations,
one allows for these coefficients to vary in time and space.
Assuming that these variations are slow, the modulating perturba-
tions can be written as

gðx; tÞ ¼ Re uðex; etÞeiðk0x�x0tÞ þ u2ðex; etÞe2iðk0x�x0tÞ þ � � �
n o

(28)

where u; ui 2 C are complex functions, and e denotes the wave
steepness, i.e., e¼ ak0. Perturbation analysis shows that, to the
first order, u(x, t) satisfies the nonlinear Schr€odinger (NLS)
equation [161–163],

@u

@t
þ 1

2

@u

@x
þ i

8

@2u

@x2
þ i

2
juj2u ¼ 0 (29)

where we have normalized the space and time variables with the
wavelength and wave period of the underlying periodic wave train
so that x7!k0x and t7!x0t. This perturbation analysis is valid
under certain assumptions [163,164], including that the wave
steepness is small (e � 1). These assumptions can be relaxed by
considering higher order terms in the perturbation analysis
[162,165,166].

Several exact solutions of the NLS equation have been found
over the years. Figure 15 shows three types of the so-called
breather solutions of the NLS equation [167–169]. These solu-
tions are localized in time or space or both. More recently, the
conditions that lead to the formation of the breathers have been
studied extensively [170–174]. Of particular interest to us is the
Peregrine breather (Fig. 15(c)) since it mimics the rogue waves in
the sense that it starts from a plane wave, develops into a localized
large wave, and again decays to a plane wave. While Peregrine
breathers were first discovered in the context of plane wave modu-
lation instability [163], more recent studies reveal their emergence
under more generic conditions [175,176].

The breather solutions have been observed in carefully con-
trolled experiments of water waves [167,177–182] and optical
fibers [176,183,184]. However, real ocean waves are irregular
wave fields consisting of many dispersive wave groups so that the
detection of breathers from a given wave field becomes a difficult
task [185]. More importantly, these exact breather solutions are
not the only possible mechanism for rogue wave formation. For
instance, Cousins and Sapsis [186] studied the evolution of initial
wave groups of the form juj ¼ A0sechðx=L0Þ for various combina-
tions of wave amplitude A0 and length scale L0. They find a range
of parameters (A0, L0) where the initially small wave groups
develop into a rogue wave at a later time when evolved under the
NLS equation.

One can approximate an irregular wave field as a superposition
of localized wave groups with such envelopes,

ju xð Þj ’
Xn

i¼1

Aisech
x� xi

Li

� �
(30)

where the parameters (Ai, Li, xi) are chosen so that the approxima-
tion error is minimized. An example of such decomposition is
shown in Fig. 16(a) [168]. Figure 16(b) shows the joint probabil-
ity density function (PDF) of the parameters (Ai, Li). This PDF is
computed by approximating many realizations of random waves
with the superposition Eq. (30).

This joint PDF contains several interesting pieces of informa-
tion. In particular, it indicates the most likely combination of
length scale and amplitude of wave groups in a given random sea
(marked with a white square). These wave groups, however, do
not necessarily develop into rogue waves. The solid black curve
in Fig. 16(b) marks the boundary between wave groups that
develop into a rogue wave at some point in the future (the wave
groups above the curve) and those that do not (the wave groups
below the curve). The intersection of this curve with the joint PDF
determines the most “dangerous” waves (marked by a white
circle), i.e., the most likely wave groups that will develop into a
rogue waves at some point in the future.

Cousins and Sapsis [187] used this information to develop a
reduced-order method for prediction of rogue waves in
unidirectional water waves in deep sea. This method does not
require the numerical integration of the NLS equations and, as a
result, is computationally much less expensive. In addition, the

Fig. 14 A sketch of the water wave problem. At any time t, the
free surface z 5 g(x, t) is given as a graph over the horizontal
coordinate x.
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reduced-order model only requires the knowledge of localized
wave groups that form the wave field. As such, this method can be
applied to cases where the wave field is only partially known or
when the measurement resolution is low. Later, Farazmand and
Sapsis [188] generalized the reduced-order prediction of rogue
waves to two-dimensional water waves (also see Ohta and Yang
[189]).

We finally point out that the most dangerous wave groups could
alternatively be found as solutions to a constrained optimization
problem similar to Eq. (17). However, since the computational

cost of generating Fig. 16 is not prohibitive, the most dangerous
waves were estimated directly from the joint PDF. Later, in the
context of large deviation theory, Dematteis et al. [190] obtained
similar results by solving a constrained optimization problem.

5 Prediction of Extreme Events

In this section, we turn our attention to the discovery of indica-
tors of extreme events. Given an observable f : U ! R of the sys-
tem (1), we seek indicators g : U ! R whose evolution along a
trajectory u(t) signals an upcoming extreme value of the observ-
able f. This is sketched in Fig. 17 where the indicator g attains a
relatively large value at time t just before the observable f attains
a large value over the future time interval [tþ t1, tþ t2]. Note that
the indicator g is itself an observable of the system, but it is care-
fully chosen such that it predicts the extreme events associated
with f.

As a first step, we need to quantify the predictive skill of an
observable g. To this end, we define a number of quantities. In
particular, we define the maximum observable values over a
future time interval

fmðu; t1; t2Þ ¼ max
t1�s�t2

f ðSsðuÞÞ (31)

where u 2 U is a state and 0< t1 � t2. We refer to t1 as the time
horizon of the prediction. In the special case where t1¼ t2, we
have

fmðu; t1; t1Þ ¼ f ðSt1ðuÞÞ (32)

where fm(u; t1, t1) is the value of the observable at t1 time units in
the future if the current state of the system is u. If t1 6¼ t2, then
fm(u; t1, t2) is the maximum of the observable f over the future
time interval [t1, t2] along the trajectory passing through the state
u. Our goal therefore is to find an indicator g : U ! R whose
large values correlate strongly with the large values of fm(�; t1, t2)
for appropriate choices of t1 and t2. We quantify this correlation
through conditional statistics.

Fig. 16 Reduced-order prediction of rogue waves. (a) An irreg-
ular wave field (solid blue) is approximated by the superposi-
tion of localized wave groups (dotted red). (b) The joint
probability density function of the length scales L and ampli-
tudes A obtained from decomposing many realizations of ran-
dom wave fields into localized wave groups. Darker colors mark
higher probability. The solid black curve marks the boundary
above which the wave groups develop into a rogue wave at
some point in the future when evolved under the NLS equation.
The dashed red curve marks the same boundary but under the
modified NLS (MNLS) equation [169].

Fig. 15 Breather solutions of the NLS equation. (a) The Ma
breather [167] is periodic in time and localized in space. (b) The
Akhmediev breather [168] is localized in time and periodic in
space. (c) The Peregrine breather [169] is doubly localized in
both space and time.
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5.1 Conditional Statistics for Extreme Events. Let pfm ;g 2
L1ðR2Þ denote the probability density associated with the joint
probability distribution

Ffm;gðf0; g0Þ ¼ lðu 2 U : fmðu; t1; t2Þ � f0; gðuÞ � g0Þ

¼
ðf0

�1

ðg0

�1
pfm;gða; bÞdb da (33)

for given 0< t1< t2. Similarly, let pg 2 L1ðRÞ denote the proba-
bility density associated with the distribution

Fgðg0Þ ¼ lðu 2 U : gðuÞ � g0Þ

¼
ðg0

�1
pgðbÞdb (34)

Therefore, the conditional probability density pfm jg is given by

pfmjg ¼
pfm ;g

pg
(35)

Roughly speaking, the conditional probability density pfm jgðf0; g0Þ
measures the probability of fmðu; t1; t2Þ ¼ f0 given that g(u)¼ g0.

Recall from Definition 1 that an extreme event corresponds to
f> fe. Therefore, an extreme event takes place over the future
time interval [t1, t2] if fm(u; t1, t2)> fe. An ideal indicator g of
extreme events should have a corresponding threshold ge such
that g(u)> ge implies fm(u; t1, t2)> fe. Conversely, g(u)< ge indi-
cates that no upcoming extreme events are expected, that is fm(u;
t1, t2)< fe. The corresponding conditional PDF pfm jg of such an
ideal indicator is shown in Fig. 18(a). Unsuccessful predictions
correspond to the cases where either fgðuÞ > ge and fmðu; t1; t2Þ <
feg or fgðuÞ < ge and fmðu; t1; t2Þ > feg.

These four possibilities are summarized below:

(i) Correct rejections: g< ge and fm< fe.
The indicator correctly predicts that no extreme events are
upcoming.

(ii) Correct predictions: g> ge and fm> fe.
The indicator correctly predicts an upcoming extreme
event.

(iii) False negatives: g< ge and fm> fe.
The indicator fails to predict an upcoming extreme event.

(iv) False positives: g> ge and fm< fe.
The indicator falsely predicts an upcoming extreme event.

These possibilities divide the conditional PDF plots of pfm jg into
four quadrants (see Fig. 18). Figure 18(a) sketches the conditional
PDF corresponding to a reliable indicator: there is a threshold ge

for which negligible false positives and false negatives are

Fig. 18 Two possible conditional PDFs for the predictor g(t) of a future extreme event
fm(t ; t1; t2) 5 max s‰½t1t1 ;t1t2 �f (s) of an observable f. (a) A skillful predictor characterized by low
false positives and low false negatives. (b) A “bad” predictor that returns high false negatives.

Fig. 17 The evolution of the observable f and the indicator g
along a trajectory in the state space U. The large value of the
observable g at a state u signals an upcoming large value of the
observable f over the future time interval [t1, t2].
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recorded (low density in quadrants III and IV). Figure 18(b), on
the other hand, sketches an unreliable predictor. For this indicator,
there is no choice of the threshold ge that leads to negligible
amount of false positives and false negatives. The sketched
threshold, for instance, returns no false positives but at the same
time, does not predict any of the extreme events, hence, returning
high false negatives.

The conditional PDF pfm jg also enables us to quantify the proba-
bility that an extreme event will take place over the future time
interval [t1, t2], given the value of the indicator at the present
time. More precisely, we can measure the probability that fm(u; t1,
t2)> fe, given that g(u)¼ g0. We refer to this quantity as the prob-
ability of upcoming extreme events (or probability of extreme
events, for short).

DEFINITION 3. (Probability of Upcoming Extremes): For a given
observable f : U ! R, its associated future maximum fmð�; t1; t2Þ :
U ! R and an indicatorg : u! R, we define the probability of
an upcoming extreme event as

Peeðg0Þ ¼
ð1

fe

pfm jgða; g0Þda (36)

where pfmjg is the conditional PDF defined in Eq. (35) and fe is the
threshold of extreme events (see Definition 1).

Roughly speaking, in terms of the invariant probability measure
l, Pee(g0) measures

lðu 2 U : fmðu; t1; t2Þ > fe j gðuÞ ¼ g0Þ (37)

For a reliable indicator g, we have Peeðg0Þ ’ 0 if g0< ge and
Peeðg0Þ ’ 1 if g0> ge, with a sharp transition in between (see
Fig. 18).

5.2 Applications. Now, we demonstrate how these quantities
are applied in practice by returning to the examples discussed in
Secs. 4.2 and 4.3. Recall from Sec. 4.2 that the extreme events in
the Kolmogorov flow (i.e., large values of the energy dissipation
rate) occur when a significant amount of energy is transferred
from the mode a(1, 0) to the forcing mode a(0, kf). As a result,
during the extreme events, the mode a(1, 0) loses energy, resulting
in relatively small values of jað1; 0Þj. Visual examination of the
time series of the energy dissipation rate D and modulus jað1; 0Þj
suggests that this energy loss takes place shortly before the
extreme values of the energy dissipation rate are registered. This
observation suggests that small values of jað1; 0Þj can be used for
short-term prediction of the extreme events.

The conditional statistics discussed above allows us to quantify
the extent to which such predictions are feasible. Figure 19(a)
shows the conditional PDF pfmjg where the observable f is the
energy dissipation rate (21), i.e., f(u)¼D(u). The indicator is cho-
sen to be g ¼ �jað1; 0Þj. The minus sign ensures that relatively
large values (although negative) of the indicator correlate with the
large values of the observable.

We point out a number of the important features of this figure.
Most importantly, very small portion of the conditional probabil-
ity density resides in the false positive or false negative regions
(quadrants III and IV). Since the extreme events are rare, most of
the density is concentrated in fm< fe region. This region correlates
strongly with g< ge which means the indicator successfully rules
out the nonextreme dynamics (quadrant I). Conversely, we see
also a high correlation between fm> fe and g> ge, which means
that the indicator successfully identifies upcoming extreme events.
This is better captured through the resulting probability of upcom-
ing extreme events Pee shown in Fig. 19(b). For g< ge¼�0.5, we
have Pee ’ 0 that means the probability of upcoming extreme
events is almost zero. Conversely, for ge>�0.3, we have
Pee ’ 1, that is an extreme event is almost certainly upcoming.
Due to the monotonicity of Pee, there is a point where Pee¼ 0.5

Fig. 19 Prediction of extreme events in the Kolmogorov flow
at Reynolds number Re 5 40 and forcing wave number kf 5 4.
(a) Conditional probability density pfm jg where fm(u; t1; t2)
5 max s‰½t1 ;t2 �D(u(s)) is the maximum future values of the energy
dissipation rate to be predicted and g(u) 5 2ja(1; 0)j is the indi-
cator. (b) Probability of future extreme events Pee as a function
of the indicator g(u) 5 2ja(1; 0)j. (c) An instance of an extreme
event and its short-term prediction signaled by Pee 5 0.5. The
observable being predicted is the energy dissipation rate, i.e.,
f(u(t)) 5 D(u(t)).
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corresponding to an indicator threshold g¼ ge, which, in this case,
is approximately �0.39.

Figure 19(c) shows the application of the indicator to predicting
extreme events along a trajectory of the Kolmogorov flow. Along
this trajectory, the indicator g is measured and the resulting Pee(g)
is computed. Most of the time, the probability of extreme events
is almost zero. At around time t¼ 30, however, this probability
increases rapidly and eventually passes the threshold Pee¼ 0.5,
signaling an imminent extreme event in the near future.

Similar results are obtained for the prediction of rogue waves.
Recall from Sec. 4.3 that rogue waves develop from localized
wave groups with certain range of length scales and amplitudes.
Cousins and Sapsis [187] proposed an indicator g of upcoming
rogue waves by projecting the wave envelope u unto a subspace
which captures this dangerous range of length scales and ampli-
tudes (see Ref. [187] for further details). The larger the projection,
the more likely is the occurrence of a future rogue wave.

Figure 20 shows the resulting conditional PDF pfm jg and the
probability of upcoming rogue waves Pee. Here, the observable is
the maximum wave amplitude over the entire domain, i.e.,
f ¼ maxxjuðx; tÞj. This conditional PDF has a similar structure to
that of the Kolmogorov flow shown in Fig. 19: strong correlation
between small (resp. large) values of the indicator g and the small
(resp. large) values of the future observable fm. However, the con-
ditional probability density in Fig. 20(a) has a more significant
density in quadrant III, i.e., there is a higher probability of false
negatives. This is also reflected in the probability of upcoming
extremes Pee shown in Fig. 20(b). Note that even for small values
of the indicator, g< 0.1, there is a non-negligible probability of
extremes, 0.05<Pee< 0.2. Contrast this with Fig. 19(b) where for
small indicator values, the probability of future extremes is almost
zero.

Nonetheless, the false negatives comprise only 5.9% of the pre-
dictions, which is relatively low. A more reliable indicator of
future rogue waves would have an even lower rate of false nega-
tives (as well as false positives). In Sec. 5.3, we discuss possible
methods for discovering most reliable indicators of extreme
events for a given dynamical system.

Cousins and Sapsis [187] report a prediction window of 25
wave periods (on average) for rogue waves. This prediction time
is much larger than the one corresponding to the turbulent Kolmo-
gorov flow (a few eddy turnover times). The longer prediction
time for the waves can be attributed to the integrability of the
underlying governing equations (NLS). In general, the maximal
prediction time (predictability) of extreme events is problem-
dependent and is expected to be inversely proportional to the lead-
ing Lyapunov exponent of the system.

5.3 Data-Driven Discovery of Indicators. In Sec. 5.2, we
demonstrated that the analysis of the structure of the governing
equations assisted with the variational method of Sec. 4 can lead
to the discovery of reliable indicators of extreme events. In the

Kolmogorov flow (Sec. 4.2), for instance, we showed that such a
reliable indicator is the modulus of a particular Fourier mode.

This approach relies on the solution of a constrained optimiza-
tion problem involving the governing equations of the system.
One may wonder whether there is a purely data-driven method for
discovery of reliable indicators of extreme events. For Kolmo-
gorov flow, for instance, it is quite possible that a carefully cus-
tomized data analysis technique, applied to a long-term simulation
data, could have led to the discovery of the same indicator.

To date, a systematic framework for discovery of indicators of
extreme events from data is missing. In the remainder of this sec-
tion, we briefly sketch properties that such an approach should
have. Recall that a reliable indicator of extreme events should
return low rates of false positive and false negative predictions.
An indicator that constantly issues alarms of upcoming extremes
will correctly “predict” the extreme events. However, this indica-
tor is not desirable since it also returns a large number of false
alarms. Conversely, an indicator that never issues an alarm will
have no false alarms but will also miss all the extreme events.
Therefore, a reliable indicator is one that returns minimal number
of combined false positives and false negatives.

The false-positive and false-negative predictions can be com-
bined into a quantity called the failure rate. For an observable f :
U ! R with the extreme event threshold fe 2 R, the failure rate
of an indicator g : U ! R is

Lðg; ge; t1; t2Þ :¼ lðu 2 U : fmðu; t1; t2Þ > fejgðuÞ < geÞ
þlðu 2 U : fmðu; t1; t2Þ < fejgðuÞ > geÞ (38)

where fmð�; t1; t2Þ : U ! R is the future maximum of the observ-
able f as defined in Eq. (31), and ge 2 R is the alarm threshold
such that g> ge signals an upcoming extreme event. Note that
Lð�; ge; t1; t2Þ : L1ðUÞ ! ½0; 1� measures the probability of false
negative (fm> fe given that g< ge) and false positive (fm< fe given
that g> ge) predictions.

It follows from the definition of the conditional PDF pfmjg that
the failure rate is equal to

Lðg; ge; t1; t2Þ ¼
ð1

fe

ðge

�1
pfmjgða; bÞdb da

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
False Negatives

þ
ðfe

�1

ð1
ge

pfmjgða; bÞdb da

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
False Positives

(39)

This expression measures the conditional density residing in quad-
rants III and IV of Fig. 18, measuring the false negatives and the
false positives, respectively.

The failure rate depends on the indicator g 2 L1ðUÞ and three
parameters, ge, t1 and t2. The main objective is to find an indicator

Fig. 20 Prediction of rogue waves. (a) The conditional PDF pfm jg where the observable is the
maximum wave height, f (u) 5 maxx ju(x ; t)j. (b) The resulting probability of extreme events Pee

as defined in Definition 3.
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g that minimizes the failure rate. However, one should simultane-
ously search for the appropriate parameters (ge, t1, t2). In Fig. 19,
for instance, the predictions correspond to t1¼ 1 and t2¼ t1þ 1. If
we gradually increase the prediction horizon t1, the prediction skill
of the indicator deteriorates such that for t1> 4 the indicator loses
any predictive power. This finite time predictability is expected
since in chaotic systems the observables tend to have finite corre-
lation times. A similar observation is valid for the indicator
threshold ge. Therefore, the minimization of the failure rate L
should be carried out simultaneously over the measurable observ-
ables g and the parameters (ge, t1, t2).

The resulting minimizer is a reliable indicator of extreme
events. Solving this optimization problem, however, is not
straightforward because of the nonlinear and nonsmooth depend-
ence of the failure rate L on the function g (see Eqs. (35) and
(39)). Treatment of this optimization problem will be addressed
elsewhere.

6 Summary and Conclusions

The study of extreme events can be divided into four compo-
nents: formation mechanisms, real-time prediction, mitigation,
and statistics. Compared to the statistical aspects that have been
studied thoroughly [58,191], the other three aspects have received
less attention. In this review, we focused on two of these aspects,
namely mechanisms and real-time prediction, and reviewed the
quantitative treatment of them.

Mechanisms that lead to the formation of extreme events are
not unique. Depending on the system, they can be, for instance, a
result of multiscale instabilities, driven by noise or the conse-
quence of nonlinear energy transfers. Yet, our review suggests
that there might be a unified mathematical framework for discov-
ering these mechanisms.

In high-dimensional chaotic systems, the mechanisms underly-
ing the extreme events are usually difficult to discern by relying
solely on observation (or simulation) data. A successful method
for discovering the underlying mechanisms should take a blended
approach combining the governing equations of the system with
the observation data or some low-order statistics. For instance, the
variational method of Sec. 4 seeks the extreme event mechanisms
as the solutions of a constrained optimization problem. Here, the
governing equations are used to form an appropriate objective
functional, and the observation data are used to form the appropri-
ate constraints.

Prediction of individual extreme events is another aspect
reviewed here. The prediction problem consists of designing a
reliable indicator function whose behavior (e.g., large values) sig-
nals an upcoming extreme event. A reliable indicator is one that
returns relatively low rates of false positive and false negative pre-
dictions. We saw that even partial knowledge of the mechanisms
that lead to the extremes can inform the choice of a reliable indi-
cator. For instance, the reduced-order methods for the prediction
of rogue waves [187,188] rely on earlier work on the nonlinear
Schr€odinger equation that revealed the mechanisms that generate
such waves [162,163,192].

While the discovery of the formation mechanisms relies on the
governing equations, the predictions can be performed in a purely
data-driven fashion. This, of course, assumes that the derived indi-
cator can be measured or observed in practice.

Discovery of reliable indicators of extreme events directly from
observed data is highly desirable. This is especially the case for
problems, such as earthquakes, epileptic seizures, and social
dynamics, where the governing equations are unknown. In
Sec. 5.3, we sketched some desirable properties that such a reli-
able indicator should have. We also outlined several technical
problems surrounding this approach that remain unresolved and
should be addressed in future work.

As for the mitigation of extreme events, very little has been
done. The existing studies are narrow in scope and revolve around
arbitrary perturbations that may nudge the system away from

extreme events. Therefore, a control theoretic study of the mitiga-
tion of extreme events merits further investigation. This includes
formulating the problem in terms of observable quantities that can
be measured in practice, as well as control variables that can be
adjusted. This greatly limits the admissible perturbations to the
system and sheds light on the practical limitations of mitigating
extreme events.

Finally, we point out that our discussion of extreme events was
limited to autonomous systems. These are systems governed by a
fixed set of principles. Our discussion does not apply to nonauton-
omous systems, such as stock markets [193] or social networks
[194,195], where the rules of engagement can change over time.
While nonautonomous dynamical systems have been studied
extensively [196,197], the literature on extreme events in these
systems is vanishingly small and remains an attractive area to be
investigated.

Acknowledgment

We would like to thank the anonymous reviewers for their com-
ments that helped improve this work.

Funding Data


 ARO MURI Grant W911NF-17-1-0306.

 ONR MURI Grant N00014-17-1-2676.

 AFOSR Grant FA9550-16-1-0231.

References
[1] Kharif, C., and Pelinovsky, E., 2003, “Physical Mechanisms of the Rogue

Wave Phenomenon,” Eur. J. Mech. B/Fluids, 22(6), pp. 603–634.
[2] Dysthe, K., Krogstad, H. E., and M€uller, P., 2008, “Oceanic Rogue Waves,”

Annu. Rev. Fluid Mech., 40(1), pp. 287–310.
[3] Donelan, M. A., and Magnusson, A.-K., 2017, “The Making of the Andrea

Wave and Other Rogues,” Sci. Rep., 7, p. 44124.
[4] Ropelewski, C. F., and Halpert, M. S., 1987, “Global and Regional Scale Pre-

cipitation Patterns Associated With the El Ni~no/Southern Oscillation,” Mon.
Weather Rev., 115(8), pp. 1606–1626.

[5] Easterling, D. R., Evans, J., Groisman, P. Y., Karl, T. R., Kunkel, K. E., and
Ambenje, P., 2000, “Observed Variability and Trends in Extreme Climate
Events: A Brief Review,” Bull. Am. Meteorol. Soc., 81(3), pp. 417–425.

[6] Moy, C. M., Seltzer, G. O., Rodbell, D. T., and Anderson, D. M., 2002,
“Variability of El Ni~no/Southern Oscillation Activity at Millennial Timescales
During the Holocene Epoch,” Nature, 420(6912), p. 162.

[7] Dakos, V., Scheffer, M., van Nes, E. H., Brovkin, V., Petoukhov, V., and
Held, H., 2008, “Slowing Down as an Early Warning Signal for Abrupt Cli-
mate Change,” Proc. Natl. Acad. Sci., 105(38), pp. 14308–14312.

[8] Geller, R. J., 1997, “Earthquake Prediction: A Critical Review,” Geophys. J.
Int., 131(3), pp. 425–450.

[9] Crucitti, P., Latora, V., and Marchiori, M., 2004, “Model for Cascading Fail-
ures in Complex Networks,” Phys. Rev. E, 69(4), p. 045104.

[10] Fang, X., Misra, S., Xue, G., and Yang, D., 2012, “Smart Grid—The New and
Improved Power Grid: A Survey,” IEEE Commun. Surv. Tutorials, 14(4), pp.
944–980.

[11] Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R.,
Dakos, V., Held, H., Van Nes, E. H., Rietkerk, M., and Sugihara, G., 2009,
“Early-Warning Signals for Critical Transitions,” Nature, 461(7260), pp.
53–59.

[12] Ghil, M., Yiou, P., Hallegatte, S., Malamud, B., Naveau, P., Soloviev, A.,
Friederichs, P., Keilis-Borok, V., Kondrashov, D., Kossobokov, V., Mestre,
O., Nicolis, C., Rust, H. W., Shebalin, P., Vrac, M., Witt, A., and Zaliapin, I.,
2011, “Extreme Events: Dynamics, Statistics and Prediction,” Nonlinear Proc-
esses Geophys., 18(3), pp. 295–350.

[13] Dakos, V., Carpenter, S. R., Brock, W. A., Ellison, A. M., Guttal, V., Ives, A.
R., Kefi, S., Livina, V., Seekell, D. A., van Nes, E. H., and Scheffer, M., 2012,
“Methods for Detecting Early Warnings of Critical Transitions in Time Series
Illustrated Using Simulated Ecological Data,” PLoS One, 7(7), p. e41010.

[14] Ben-Menahem, A., and Singh, S. J., 2012, Seismic Waves and Sources,
Springer Science & Business Media, New York.

[15] Murphy, J. M., Sexton, D. M., Barnett, D. N., Jones, G. S., Webb, M. J., Col-
lins, M., and Stainforth, D. A., 2004, “Quantification of Modelling Uncertain-
ties in a Large Ensemble of Climate Change Simulations,” Nature, 430(7001),
p. 768.

[16] Scarrott, C., and MacDonald, A., 2012, “A Review of Extreme Value Thresh-
old Estimation and Uncertainty Quantification,” REVSTAT–Stat. J., 10(1), pp.
33–60.

[17] Mohamad, M. A., and Sapsis, T. P., 2015, “Probabilistic Description of
Extreme Events in Intermittently Unstable Dynamical Systems Excited by
Correlated Stochastic Processes,” SIAM/ASA J. Uncertainty Quantif., 3(1),
pp. 709–736.

050801-16 / Vol. 71, SEPTEMBER 2019 Transactions of the ASME

http://dx.doi.org/10.1016/j.euromechflu.2003.09.002
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102203
http://dx.doi.org/10.1038/srep44124
http://dx.doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2
http://dx.doi.org/10.1038/nature01194
http://dx.doi.org/10.1073/pnas.0802430105
http://dx.doi.org/10.1111/j.1365-246X.1997.tb06588.x
http://dx.doi.org/10.1111/j.1365-246X.1997.tb06588.x
http://dx.doi.org/10.1103/PhysRevE.69.045104
http://dx.doi.org/10.1109/SURV.2011.101911.00087
http://dx.doi.org/10.1038/nature08227
http://dx.doi.org/10.5194/npg-18-295-2011
http://dx.doi.org/10.5194/npg-18-295-2011
http://dx.doi.org/10.1371/journal.pone.0041010
http://dx.doi.org/10.1038/nature02771
https://www.ine.pt/revstat/pdf/rs120102.pdf
http://dx.doi.org/10.1137/140978235


[18] Doucet, A., De Freitas, N., and Gordon, N., 2001, “An Introduction to Sequen-
tial Monte Carlo Methods,” Sequential Monte Carlo Methods in Practice,
Springer, New York, pp. 3–14.

[19] Majda, A. J., and Harlim, J., 2012, Filtering Complex Turbulent Systems,
Cambridge University Press, Cambridge, UK.

[20] Vanden-Eijnden, E., and Weare, J., 2013, “Data Assimilation in the Low
Noise Regime With Application to the Kuroshio,” Mon. Weather Rev.,
141(6), pp. 1822–1841.

[21] Altwegg, R., Visser, V., Bailey, L. D., and Erni, B., 2017, “Learning
From Single Extreme Events,” Philos. Trans. R. Soc. B, 372(1723),
p. 20160141.

[22] Alligood, K. T., Sauer, T. D., and Yorke, J. A., 1996, Chaos: An Introduction
to Dynamical Systems, Springer, New York.

[23] Hirsch, M. W., Smale, S., and Devaney, R. L., 2012, Differential Equations,
Dynamical Systems, and an Introduction to Chaos, Academic Press, New
York.

[24] Sornette, D., and Ouillon, G., 2012, “Dragon-Kings: Mechanisms, Statistical
Methods and Empirical Evidence,” Eur. Phys. J. Spec. Top., 205(1), pp. 1–26.

[25] Sornette, D., 2009, “Dragon-Kings, Black Swans and the Prediction of
Crises,” preprint arXiv: 0907.4290.

[26] Turitsyn, K., Sulc, P., Backhaus, S., and Chertkov, M., 2011, “Options for
Control of Reactive Power by Distributed Photovoltaic Generators,” Proc.
IEEE, 99(6), pp. 1063–1073.

[27] Susuki, Y., and Mezic, I., 2012, “Nonlinear Koopman Modes and a Precursor
to Power System Swing Instabilities,” IEEE Trans. Power Syst., 27(3), pp.
1182–1191.

[28] Belk, J. A., Inam, W., Perreault, D. J., and Turitsyn, K., 2016, “Stability and
Control of Ad Hoc dc Microgrids,” IEEE 55th Conference on Decision and
Control (CDC), Las Vegas, NV, Dec. 12–14, pp. 3271–3278.

[29] Hugo, L. D., de Cavalcante, S., Ori�a, M., Sornette, D., Ott, E., and Gauthier,
D. J., 2013, “Predictability and Suppression of Extreme Events in a Chaotic
System,” Phys. Rev. Lett., 111(19), p. 198701.

[30] Galuzio, P. P., Viana, R. L., and Lopes, S. R., 2014, “Control of Extreme
Events in the Bubbling Onset of Wave Turbulence,” Phys. Rev. E, 89(4),
p. 040901.

[31] Chen, Y.-Z., Huang, Z.-G., and Lai, Y.-C., 2014, “Controlling Extreme Events
on Complex Networks,” Nat. Sci. Rep., 4, p. 6121.

[32] Chen, Y.-Z., Huang, Z.-G., Zhang, H.-F., Eisenberg, D., Seager, T. P., and
Lai, Y.-C., 2015, “Extreme Events in Multilayer, Interdependent Complex
Networks and Control,” Nat. Sci. Rep., 5, p. 17277.

[33] Bialonski, S., Ansmann, G., and Kantz, H., 2015, “Data-Driven Prediction and
Prevention of Extreme Events in a Spatially Extended Excitable System,”
Phys. Rev. E, 92(4), p. 042910.

[34] Joo, H. K., Mohamad, M. A., and Sapsis, T. P., 2017, “Extreme Events and
Their Optimal Mitigation in Nonlinear Structural Systems Excited by Stochas-
tic Loads: Application to Ocean Engineering Systems,” Ocean Eng., 142, pp.
145–160.

[35] Morgan, M. G., Henrion, M., and Small, M., 1990, Uncertainty: A Guide to
Dealing With Uncertainty in Quantitative Risk and Policy Analysis, Cam-
bridge University Press, Cambridge, UK.

[36] Wilmott, P., 2007, Paul Wilmott Introduces Quantitative Finance, Wiley, Chi-
chester, UK.

[37] McNeil, A. J., Frey, R., and Embrechts, P., 2015, Quantitative Risk Manage-
ment: Concepts, Techniques and Tools, Princeton University Press, Princeton,
NJ.

[38] Longin, F., 2017, Extreme Events in Finance: A Handbook of Extreme Value
Theory and Its Applications (Wiley Handbooks in Financial Engineering and
Econometrics), Wiley, Hoboken, NJ.

[39] de Haan, L., and Ferreira, A., 2007, Extreme Value Theory: An Introduction,
Springer Science & Business Media, New York.

[40] Fr�echet, M., “Sur la Loi de Probabilit�e de L’�ecart Maximum,” Ann. Soc.
Polon. Math, 6, pp. 93–116.

[41] Fisher, R. A., and Tippett, L. H. C., 1928, “Limiting Forms of the Frequency
Distribution of the Largest or Smallest Member of a Sample,” Math. Proc.
Cambridge Philos. Soc., 24(2), pp. 180–190.

[42] Gnedenko, B., 1943, “Sur la Distribution Limite du Terme Maximum D’une
Serie Aleatoire,” Ann. Math., 44(3), pp. 423–453.

[43] Watson, G. S., 1954, “Extreme Values in Samples From m-Dependent Station-
ary Stochastic Processes,” Ann. Math. Stat., 25(4), pp. 798–800.

[44] Loynes, R. M., 1965, “Extreme Values in Uniformly Mixing Stationary Sto-
chastic Processes,” Ann. Math. Stat., 36(3), pp. 993–999.

[45] Leadbetter, M. R., 1974, “On Extreme Values in Stationary Sequences,” Z.
F€ur Wahrscheinlichkeitstheorie Verw. Geb., 28(4), pp. 289–303.

[46] Leadbetter, M. R., 1983, “Extremes and Local Dependence in Stationary
Sequences,” Probab. Theory Relat. Fields, 65(2), pp. 291–306.

[47] Hsing, T., H€usler, J., and Leadbetter, M. R., 1988, “On the Exceedance Point
Process for a Stationary Sequence,” Probab. Theory Relat. Fields, 78(1), pp.
97–112.

[48] Leadbetter, M. R., and Nandagopalan, S., 1989, “On Exceedance Point Proc-
esses for Stationary Sequences Under Mild Oscillation Restrictions,” Extreme
Value Theory, Springer, New York, pp. 69–80.

[49] Chernick, M. R., Hsing, T., and McCormick, W. P., 1991, “Calculating the
Extremal Index for a Class of Stationary Sequences,” Adv. Appl. Probab.,
23(4), pp. 835–850.

[50] Freitas, A. C. M., and Freitas, J. M., 2008, “On the Link Between Dependence
and Independence in Extreme Value Theory for Dynamical Systems,” Stat.
Probab. Lett., 78(9), pp. 1088–1093.

[51] Freitas, A. C. M., Freitas, J. M., and Todd, M., 2015, “Speed of Convergence
for Laws of Rare Events and Escape Rates,” Stochastic Processes Appl.,
125(4), pp. 1653–1687.

[52] Lucarini, V., Faranda, D., Freitas, A. C. M., Freitas, J. M., Holland, M., Kuna,
T., Nicol, M., Todd, M., and Vaienti, S., 2016, Extremes and Recurrence in
Dynamical Systems, Wiley, Hoboken, NJ.
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