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Abstract. The optimally time-dependent (OTD) modes form a time-evolving orthonormal basis that captures
directions in phase space associated with transient and persistent instabilities. In the original for-
mulation, the OTD modes are described by a set of coupled evolution equations that need to be
solved along the trajectory of the system. For many applications where real-time estimation of the
OTD modes is important, such as control or filtering, this is an expensive task. Here, we examine
the low-dimensional structure of the OTD modes. In particular, we consider the case of slow-fast
systems, and prove that OTD modes rapidly converge to a slow manifold, for which we derive an
asymptotic expansion. The result is a parametric description of the OTD modes in terms of the
system state in phase space. The analytical approximation of the OTD modes allows for their off-
line computation, making the whole framework suitable for real-time applications. In addition, we
examine the accuracy of the slow-manifold approximation for systems in which there is no explicit
time-scale separation. In this case, we show numerically that the asymptotic expansion of the OTD
modes is still valid for regions of the phase space where strongly transient behavior is observed, and
for which there is an implicit scale separation. We also find an analogy between the OTD modes and
the Gram–Schmidt vectors (also known as orthogonal or backward Lyapunov vectors), and thereby
establish new properties of the former. Several examples of low-dimensional systems are provided to
illustrate the analytical formulation.
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1. Introduction. Prediction of transient instabilities and extreme events in high-dimen-
sional systems has received considerable attention in recent years, as it has become one of the
most prominent open problems in physics, engineering, and life sciences. Extreme events may
be thought of as short-lived, large-amplitude bursting episodes interrupting quieter intervals of
much longer duration (sometimes referred to as “maturation” [31, 2]) during which observables
of a given trajectory remain relatively close to their mean values. The grand challenge is to
produce reliable (ideally quantitative) indicators capable of signaling the imminence of an
extreme event in a chaotic system. This is particularly critical in situations where extreme
events have catastrophic consequences, as is the case with oceanic rogue waves [14] or, more
generally, climate dynamics [9]. Situations in which extreme events are not synonymous
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with dramatic outcomes have been considered as well, ranging from large-amplitude pulses in
optical laser devices [36, 1] to intermittent fluctuations in turbulent models [19, 29, 12].

In a recent effort, Babaee and Sapsis [4] introduced a novel framework for predicting
extreme events in high-dimensional dynamical systems. Their approach, based on a mini-
mization principle, led to the concept of “optimally time-dependent (OTD) modes,” a set
of evolving orthonormal vectors that span the locally most unstable directions along a given
trajectory, and therefore may serve as indicators for prediction of an upcoming extreme event.
As discussed by Babaee and Sapsis [4] and Farazmand and Sapsis [16], the OTD modes
provide a computationally stable tool to capture transient instabilities in a broad sense, in-
cluding episodes of nonnormal growth, a task that poses great difficulty to conventional modal
(eigenvalue-based) analysis. In a subsequent work, Babaee et al. [3] went beyond their orig-
inal numerical investigations, and rigorously linked OTD modes and transient instabilities
by showing that the OTD subspace rapidly converges to the subspace spanned by the most
unstable eigendirections of the left Cauchy–Green tensor, that is, the directions associated
with the largest finite-time Lyapunov exponents.

As noted in [3], the OTD modes are surmised to share fundamental features with ex-
isting measures of instability for chaotic systems. While connections between OTD modes,
finite-time Lyapunov vectors [27], and dynamically orthogonal modes [34] have already been
established, the question of whether OTD modes are related to Gram–Schmidt vectors (also
known as orthogonal or backward Lyapunov vectors [5, 40]) and covariant Lyapunov vectors
[20] remains to be explored. The latter two have been used primarily in the context of molec-
ular dynamics in an attempt to quantify the rate of separation of two nearby trajectories in
the phase space, which notion is intimately tied to thermodynamic irreversibility [25, 8, 23].
Gram–Schmidt vectors and covariant Lyapunov vectors have the interesting property that
they converge at long times to well-defined bases that only depend on the state of the system
in the phase space [22, 15]. A similar behavior has been seen for the OTD modes in various
numerical experiments [4, 16, 3], and a rigorous proof that this is indeed the case would im-
mediately open the door to a local (possibly approximate) analytical description of the OTD
modes at any point in the phase space.

The present work aims to provide a definitive answer to this question. We consider a
generic finite-dimensional autonomous system (which may be viewed as a projection of an
infinite-dimensional autonomous system onto a finite-dimensional subset of complete func-
tions), and find intimate connections between the OTD modes and the Gram–Schmidt vectors.
This leads to the idea that at long times, the OTD modes can be expressed as a graph from
the phase space to the OTD space, regardless of the prior history of the trajectory. With this
in hand, we consider situations in which transient instabilities are associated with slow-fast
dynamics and develop a method that provides analytical approximations for the OTD modes
at every point in the phase space. We consider cases in which time-scale separation takes the
form of a small parameter appearing explicitly in the equations of motion and cases in which
it does not.

The remainder of the paper is structured as follows. We formulate the problem in section 2,
investigate the relationship between OTD modes and Gram–Schmidt vectors in section 3,
propose an analytical description of the OTD modes for slow-fast systems in section 4, extend
the approach to general dynamical systems in section 5, and offer some conclusions in section 6.
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2. Preliminaries.

2.1. Formulation of the problem. We consider a generic n-dimensional autonomous dy-
namical system whose evolution in the phase space is governed by

(2.1) ż = F(z), z ∈ Rn,

where the vector field F : Rn → Rn is Lipschitz continuous, and the overdot denotes differ-
entiation with respect to the time variable t. The solution of (2.1) for any initial condition
z(t0) = z0 can be written as z(t; z0) = φtt0(z0), where φtt0 is the flow map in the phase space.

Infinitesimal perturbations about a given trajectory obey the variational equation

(2.2) v̇ = Lv, v ∈ Rn,

where L = ∇zF is a (generally) time-dependent linear operator. Stability of a reference orbit
with respect to infinitesimal perturbations can be investigated by computing the Lyapunov
spectrum of the trajectory. Lyapunov exponents quantify the rate at which an infinitesimal
perturbation grows or decays along a trajectory, with positive (respectively, negative) values
indicating growth (respectively, decay). Numerical computation of Lyapunov exponents gen-
erally requires integration of the variational equation over long time intervals, which poses
significant issues related to numerical stability. This is because any r-dimensional subspace
{vi(t0)}ri=1 propagated by integrating the variational equation (2.2) rapidly collapses upon
itself as a result of two confounding factors: (a) the magnitude of the individual members
vi(t) of the subspace grows or decays exponentially rapidly, and (b) the angle between each of
them precipitously vanishes because each vi(t) tends to align with the most unstable direction
in the phase space, i.e., the first Lyapunov vector [39].

2.2. Review of the OTD modes. The concept of OTD modes was first introduced in [4]
in the form of a constrained minimization problem,

(2.3) arg min
u̇i

r∑
i=1

‖u̇i − Lui‖2 subject to 〈ui,uj〉 = Ir×r,

where 〈· , ·〉 is a suitable inner product, ‖ · ‖ the induced norm, and Ir×r the identity matrix of
size r (1 ≤ r ≤ n). The vectors ui(t) are the OTD modes, and they are by construction the
best approximation of the linearized dynamics in the subspace that they span. As discussed
in [4], the minimization problem (2.3) is equivalent to a set of coupled ordinary differential
equations governing the evolution of each OTD mode. For the generic dynamical system (2.1)
and an r-dimensional OTD subspace, the ith OTD mode obeys

(2.4) u̇i = Lui −
r∑

k=1

(〈Lui,uk〉uk −Φikuk) ,

where Φ is a skew-symmetric, but otherwise arbitrary, tensor. As discussed in [4], the choice of
Φ does not affect the OTD subspace, since any two initially equivalent subspaces propagated
with (2.4), each with a different choice of Φ, remain equivalent for all times. A natural
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candidate for Φ is the zero tensor, and this is what has been used in all of the studies on the
subject [4, 16, 3]. However, choosing Φ = 0 leads to a fully coupled system of OTD equations,
in that all r modes appear in each equation of (2.4). In contrast, choosing Φ such that

(2.5) Φik =


−〈Luk,ui〉, k < i,

0, k = i,

〈Lui,uk〉, k > i,

leads to a system in which the equation for the ith mode depends only on the modes uj with
index 1 ≤ j ≤ i. With this choice of Φ, the equation for the ith OTD mode reads

(2.6) u̇i = Lui − 〈Lui,ui〉ui −
i−1∑
k=1

(〈Lui,uk〉+ 〈Luk,ui〉) uk,

and the system assumes a lower triangular form, readily solvable by forward substitution. (We
note that the summation index goes to i− 1 in (2.6), rather than r as in (2.4).)

The OTD modes have the appealing property that they span the same flow-invariant
subspace as the solutions {vi(t)}ri=1 of the variational equation (2.2), while preserving or-
thonormality for all times [4]. They thus provide a numerically stable means to computing
transient features associated with finite-time instabilities. In particular, it has been shown
that, under mildly restricting conditions, the OTD subspace converges exponentially fast to
the eigenspace of the left Cauchy–Green tensor associated with transient instabilities [3]. Be-
cause of these properties, the OTD modes can serve as indicators for predicting upcoming
bursts in a given trajectory [16]. This suggests possible connections to other methods capable
of identifying unstable directions in the phase space, such as bred vectors [37], covariant Lya-
punov vectors [20], or Gram–Schmidt vectors [5]. In what follows, we explore the relationship
between OTD modes and Gram–Schmidt vectors.

3. Relationship between OTD modes and Gram–Schmidt vectors.

3.1. Review of the Gram–Schmidt vectors. The Gram–Schmidt (GS) vectors are gen-
erally computed by a method referred to as the “standard approach” [6, 35], which consists
in evolving an initially orthonormal set of vectors with the variational equation (2.2), while
periodically reorthonormalizing the integrated vectors using the GS algorithm. Formally, we
begin by choosing r orthonormal vectors {êi(t0)}ri=1 as initial conditions for (2.2). These
vectors are integrated forward in time until some prescribed instant t = T , which yields a
new set of vectors {ei(T )}ri=1. The vectors ei have lost their orthonormality in the process,
so they are reorthonormalized by the classical GS algorithm as

(3.1) êi(T ) =

ei(T )−
i−1∑
k=1

〈êk(T ), ei(T )〉êk(T )∥∥∥∥∥ei(T )−
i−1∑
k=1

〈êk(T ), ei(T )〉êk(T )

∥∥∥∥∥
.
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The procedure is repeated using êi(T ) as initial conditions for (2.2). The reorthonormalization
time T must be chosen small enough so as to not compromise the accuracy of the GS algorithm
and avoid blowup of the solution.

Of the many results that have been established about GS vectors, we review a few relevant
to the present work. First, the first GS vector tends to seek the most rapidly growing direction
in the tangent space. The second GS vector is not free to seek the most rapidly growing
direction, nor the second most rapidly growing direction, because the second GS vector is
constrained to live in the orthogonal complement of the first GS vector. However, the subspace
spanned by the first two GS vectors continually seeks the two-dimensional subspace that is
most rapidly growing [39].

Second, for ergodic systems, the GS vectors converge to a well-defined basis that depends
only on the state z in the phase space, and not on the history of the trajectory [22, 15]. More
precisely, the GS vectors converge exponentially rapidly to the eigenvectors of the inverse-time
Oseledec matrix [28, 20] (sometimes referred to as the far-past operator [26]), defined as

(3.2) Θ(t) = lim
t1→−∞

[
M(t1, t)

−TM(t1, t)
−1]1/2(t−t1) ,

where M(t1, t) is the state-transition matrix associated with the variational equation (2.2)
over the time interval [t1, t]. We also mention that the GS vectors are not covariant with
the linearized dynamics; that is, the GS vectors at a given point in the phase space are not
mapped by the linearized dynamics (2.2) into the GS vectors at the forward image of that
point (they do, however, span the same subspace) [21]. An immediate consequence is that the
GS vectors are not invariant with respect to the time-reversed dynamics. This is in contrast
to covariant Lyapunov vectors, whose definition, properties, and relationship to GS vectors
are discussed in [21, 40, 7].

3.2. Equivalence between GS vectors and OTD modes. Here, we show that the GS
vectors and the OTD modes coincide in the limit T → 0, that is, when the GS vectors are
continuously orthonormalized.

We first consider an orthonormal basis {êi(t0)}ri=1 of an r-dimensional subspace in Rn.
We advance each of the êi(t0) with the variational equation (2.2) over an infinitesimal time
interval δt, from t0 to t0 + δt. To first order, we have

(3.3) ei(t0 + δt) = êi(t0) + L(t0)êi(t0)δt+O(δt2).

As discussed in subsection 3.1, the ei are no longer orthonormal at t0 + δt. We therefore
invoke the GS algorithm to reorthonormalize them.

The first GS vector at t0 + δt is given by

(3.4) ê1(t0 + δt) =
e1(t0 + δt)

‖e1(t0 + δt)‖
=

ê1(t0) + L(t0)ê1(t0)δt+O(δt2)

‖ê1(t0) + L(t0)ê1(t0)δt+O(δt2)‖
.

Taylor expanding the norm and recognizing that ‖êi(t0)‖ = 1, we obtain

(3.5)
∥∥ê1(t0) + L(t0)ê1(t0)δt+O(δt2)

∥∥ = 1 + 〈L(t0)ê1(t0), ê1(t0)〉δt+O(δt2),
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which, upon substitution into (3.4), leads to

(3.6) ê1(t0 + δt) = ê1(t0) + L(t0)ê1(t0)δt− 〈L(t0)ê1(t0), ê1(t0)〉ê1(t0)δt+O(δt2).

Proceeding to the limit δt→ 0 gives

(3.7) ˙̂e1 = Lê1 − 〈Lê1, ê1〉ê1,

which is identical to the first of (2.6).
Similarly, the second GS vector is written as

(3.8) ê2(t0 + δt) =
e2(t0 + δt)− [〈e2(t0 + δt), ê1(t0 + δt)〉] ê1(t0 + δt)

‖e2(t0 + δt)− [〈e2(t0 + δt), ê1(t0 + δt)〉] ê1(t0 + δt)‖
.

The above can be expanded as

(3.9) ê2(t0 + δt) =
ê2 + Lê2δt− 〈Lê1, ê2〉ê1δt− 〈Lê2, ê1〉ê1δt+O(δt2)

1 + 〈Lê2, ê2〉δt+O(δt2)
,

where all of the quantities on the right-hand side are evaluated at time t0. Taking the limit
δt→ 0 as before, we obtain

(3.10) ˙̂e2 = Lê2 − 〈Lê2, ê2〉ê2 − (〈Lê2, ê1〉+ 〈Lê1, ê2〉) ê1

as the differential equation for ê2. This equation is identical to the second of (2.6).
Proceeding in this manner, we show by induction that the ith GS vector êi obeys

(3.11) ˙̂ei = Lêi − 〈Lêi, êi〉êi −
i−1∑
k=1

(〈Lêi, êk〉+ 〈Lêk, êi〉) êk,

which is identical to (2.6). This shows that the GS vectors and the OTD modes obey the
same governing equations, and thus correspond to the same mathematical object. (This
result holds regardless of the choice of norm, and carries over to infinite-dimensional spaces.)
A direct consequence of this equivalence is that GS vectors and OTD modes share the same
mathematical properties. In particular, all of the properties pertaining to the GS vectors that
were stated in subsection 3.1 trivially apply to the OTD modes. To these, we add that the
OTD modes (i.e., continuously orthonormalized GS vectors) can be used as a numerically
stable tool to compute infinite-horizon Lyapunov exponents. The leading one-dimensional
Lyapunov exponents are given by

(3.12) λi = lim
t→∞

1

t− t0

∫ t

t0

〈ui,Lui〉 dτ,

which is nothing more than the time average of the diagonal Lagrange multipliers 〈ui,Lui〉
[22, 38, 24].

Another consequence of this equivalence is that the GS vectors, when continuously or-
thonormalized, are solutions of the minimization problem (2.3) from which the OTD equations
(2.6) were derived. The GS vectors can therefore be viewed as best approximating the lin-



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ANALYTICAL DESCRIPTION OF OTD MODES 1149

earized dynamics in the subspace that they span. It is not obvious that this conclusion could
have been readily drawn from the GS “standard approach.” We note, however, that others
had previously hinted at the idea of incorporating constraints in the variational equations to
compute Lyapunov exponents [32].

We finally mention that the OTD modes have been successfully used to construct dynami-
cally consistent reduced-order models of the linearized dynamics. This was done by projecting
L onto an r-dimensional OTD subspace, which yielded a reduced linear operator [16]. This
procedure is greatly advantageous in high-dimensional systems as it allows tracking of un-
stable directions at much lower computational cost than otherwise required by integration of
the full-order system. To the best of our knowledge, this idea had not been considered in the
context of GS vectors until now.

In all that follows, we make no distinction between GS vectors and OTD modes.

4. Analytical expansion of OTD modes associated with slow-fast dynamics. An impor-
tance consequence of the equivalence between GS vectors and OTD modes is the existence of
a graph z 7→ ui(z) that follows from the fact that the GS vectors, at long times, only depend
on the point of the attractor where they are computed [15]. In this section, we propose an
analytical description of this graph in cases where the vector field F can be written in terms
of slow and fast variables, with the ratio of the slow and fast time scales being governed by a
small parameter ε that explicitly appears in the governing equations. (Here, and in all that
follows, we use the standard inner product on Rn.)

4.1. Formulation of the slow-fast problem. We begin by assuming that (2.1) exhibits
slow-fast dynamics, and can be decomposed in terms of slow and fast variables as

εẋ = f(x,y; ε),(4.1a)

ẏ = g(x,y; ε),(4.1b)

where x ∈ Rp and y ∈ Rq are the fast and slow variables, respectively, ε ∈ R+ is a small
parameter, and p+ q = n. We assume that the vector fields f and g are equally smooth as the
original vector field F. It is possible to convert (4.1a) and (4.1b) into a regular perturbation
problem by introducing the fast time scale τ = t/ε, which leads to

x′ = f(x,y; ε),(4.2a)

y′ = εg(x,y; ε),(4.2b)

where prime denotes differentiation with respect to τ . In contrast to (4.1a) and (4.1b), the fast-
time system is amenable to regular perturbation theory. Invariant manifold theory guarantees
the existence of a limiting slow manifoldW0 corresponding to the fixed points of (4.2a) in the
limit ε→ 0. It is given by

(4.3) W0 = {(x,y) | f(x,y; 0) = 0}.

We further assume that the vector fields f and g are sufficiently smooth functions of ε and,
therefore, admit expansions of the form

(4.4) b(x,y; ε) =

∞∑
k=0

εk
∂(k)b(x,y; ε)

∂ε(k)

∣∣∣∣∣
ε=0

≡
∞∑
k=0

εkbk(x,y),
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where b is a placeholder for f and g. It should be clear that the manifold equation (4.3)
is equivalent to f0(x,y) = 0. Fenichel’s theorem states that for ε > 0, there exists a slow
invariant manifold (SIM) given by

(4.5) Wε = {(x,y) |x = x̄(y; ε)},

where x̄(y; ε) is a smooth graph over the slow variable y [18]. The graph x̄ smoothly deforms
with ε, and satisfies x = x̄(y; 0) ⇔ f0(x,y) = 0, a consequence of the implicit-function
theorem. An analytical expression for Wε can be derived by rewriting (4.1a) as

(4.6) ε∇yx̄(y; ε) g(x̄(y; ε),y; ε) = f(x̄(y; ε),y; ε),

and invoking the approximation theorem for SIMs [17, 33]. The latter states that an approx-
imation of the graph x̄ can be constructed as a power series x̄(y; ε) = x̄0(y) + εx̄1(y) + · · ·
that satisfies (4.6) at each order of approximation.

We now turn to the dynamics of the system resulting from linearizing (4.2a) and (4.2b)
around the trajectory, which obeys

(4.7)

[
v′

w′

]
=

[
∇xf(x,y; ε) ∇yf(x,y; ε)
ε∇xg(x,y; ε) ε∇yg(x,y; ε)

] [
v
w

]
≡ J

[
v
w

]
,

and likewise admits a limiting invariant manifold given by

(4.8) ∇xf0(x,y)v +∇yf0(x,y)w = 0.

The Jacobian J can be expanded as

(4.9) J =

[
∇xf0(x,y) ∇yf0(x,y)

0 0

]
+ ε

[
∇xf1(x,y) ∇yf1(x,y)
∇xg0(x,y) ∇yg0(x,y)

]
+O(ε2)

or, equivalently, J = J0 + εJ1 + O(ε2). The operator J0 corresponds to the zeroth-order
approximation of the original linearized operator J. We note that J0 has a nontrivial kernel
whose dimension equals the number of slow variables (that is, dim(Ker J0) = q). Thus, J0 has q
trivial eigenvectors associated with eigenvalue 0, and p nontrivial eigenvectors associated with
nonzero eigenvalues. Since J0 is an upper-triangular block matrix, the nontrivial eigenvectors
(and associated eigenvalues) coincide with those of∇xf0(x,y). In what follows, we assume that
the manifold defined by (4.3) is asymptotically stable, so that the eigenvalues of ∇xf0(x,y)
all have negative real parts. The center-manifold theorem then guarantees that Wε is locally
attractive [10].

We note that the eigenvalue problem Jr = λr associated with the slow-fast variational
equations (4.7) can be rewritten as a series of subproblems using asymptotic expansions in ε
for r and λ. Letting r = r0 + εr1 + · · · and λ = λ0 + ελ1 + · · · , we have

J0r0 = λ0r0,(4.10a)

J1r0 + J0r1 = λ0r1 + λ1r0(4.10b)

at O(1) and O(ε), respectively. This leads to

(4.11) λ = rT0 J0r0 +O(ε),

which shows that any eigenvalue of J associated with an eigenvector r such that r0 ∈ Ker J0

scales like O(ε).
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4.2. Slow invariant manifold for the OTD modes. We now examine the OTD equations,
and propose a manifold approach similar to the classical technique reviewed in subsection 4.1.
The goal is to show that for a trajectory (x,y) evolving on Wε, the OTD modes associated
with that trajectory evolve on a SIM of their own and, therefore, can be written as a power
series in ε whose coefficients depend only on the state (x,y) of the dynamical system. In other
words, we wish to find a graph from the physical space (x,y) to the OTD space in the form
of an asymptotic expansion in terms of the small parameter ε.

Here, we consider the case of a one-dimensional OTD subspace (r = 1). This does not
restrict the scope of the analysis because any OTD mode can be computed in a fashion similar
to the below, provided that the OTD modes with lower indices have been computed. For the
slow-fast system (4.1a) and (4.1b), the first OTD mode u1 obeys

(4.12) εu̇1 = Ju1 − u1(u
T
1 Ju1)

at the slow time scale, and

(4.13) u′1 = Ju1 − u1(u
T
1 Ju1)

at the fast time scale. We note that in (4.12), there is no slow-fast partition of the coordinates
for u1 because the linearized operator J appears in a bilinear form over u1. We discard the
numeral subscript for clarity, and manipulate (4.12) to obtain

(4.14) ε(∇xu ẋ +∇yu ẏ) = (I− uuT )Ju,

where we have invoked the chain rule on u̇. Using (4.1a) and (4.1b), the above leads to

(4.15) ∇xu f(x,y; ε) + ε∇yu g(x,y; ε) = (I− uuT )Ju.

Assuming that appropriate smoothness conditions are satisfied, we introduce the asymptotic
expansion u = u(0) + εu(1) + · · · , which we substitute in (4.15) to obtain a hierarchy of sub-
problems at each order of approximation in ε. We mention at this point that the normalization
property of u carries over to the above expansion, but only up to the highest order considered.
In other words, we require that ‖u(0) + · · ·+ εku(k)‖ = 1 +O(εk+1). In particular, this means
that u(0) ⊥ u(1), since

(4.16) ‖u(0) + εu(1)‖ = ‖u(0)‖+ ε
〈u(0),u(1)〉
‖u(0)‖

+O(ε2).

The O(1) subproblem reads

(4.17) ∇xu(0)f0(x,y) = (I− u(0)u(0)T )J0u
(0).

Because (4.3) demands that f0(x,y) = 0, we immediately obtain the equation defining the
limiting invariant manifold for the OTD mode,

(4.18) (I− u(0)u(0)T )J0u
(0) = 0.
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The limiting invariant manifold coincides with the fixed points of the fast-scale equation
(4.13). It is defined as the set of solutions of a nonlinear algebraic equation in u(0), in which
dependence on the state variables (x,y) appears through the linear operator J0. By virtue
of the implicit-function theorem, we conclude that u(0) can be expressed as a graph over the
state variables (x,y), and that this graph must solve the O(1) subproblem (4.18). Consistent
with [4], the limiting invariant manifold comprises any normalized u(0) ∈ Ker J0, as well as
any normalized nontrivial eigenvector of J0.

We proceed to consider the O(ε) subproblem, which is given by

∇xu(0)f1(x,y) +∇yu(0)g0(x,y) = (I− u(0)u(0)T )(J0u
(1) + J1u

(0))

− (u(1)u(0)T + u(0)u(1)T )J0u
(0).(4.19)

We note that the O(ε) subproblem is linear in u(1). (In fact, it is easy to see that all of the
O(εk) subproblems (for k > 0) are linear in u(k).) Recognizing that u(0) must be orthogonal
to u(1), the above can be simplified as

(4.20) ∇u(0) h1(x,y) = (I− u(0)u(0)T )(J0u
(1) + J1u

(0))− u(1)u(0)TJ0u
(0),

where we have introduced the compact notation

∇u(0) =
[
∇xu(0) ∇yu(0)

]
,(4.21a)

h1(x,y) =
[
f1(x,y) g0(x,y)

]T
.(4.21b)

For (4.20) to have solutions, the Fredholm alternative requires that

(4.22) ∇u(0) h1(x,y)− (I− u(0)u(0)T )J1u
(0) ⊥ Ker (I− u(0)u(0)T )J0 − (u(0)TJ0u

(0))I.

This condition provides m constraint equations, where m is the dimension of the kernel on
the right-hand side of (4.22). We note without proof that m = 0 when u(0) is a nontrivial
eigenvector of J0, and m = q when u(0) ∈ Ker J0. This means that if u(0) is a nontrivial
eigenvector of J0, then (4.20) is a well-posed problem and admits a unique (nonvanishing)
solution. On the other hand, if u(0) ∈ Ker J0, then u(0) can be written as a linear combination
of q basis vectors of Ker J0, and the unknown basis coefficients can be determined using the q
constraint equations from (4.22). Once the latter has been enforced, one can solve (4.20) for
u(1), and proceed to the next order in ε.

It is straightforward to show that the asymptotic OTD formulation is consistent with the
results of Babaee and Sapsis [4], who showed that for steady dynamics the OTD subspace
asymptotically coincides with the subspace spanned by the most unstable eigenvectors of the
linearized operator. With the notation introduced above, this means that u(i) = ri. We
illustrate this point below.

4.3. Examples. We apply the approach proposed in subsection 4.2 to two low-dimensional
systems featuring slow-fast dynamics. We note that low dimensionality is a prerequisite for
the SIM approach to be analytically tractable. (Systems with dimensionality greater than
three must generally be treated numerically.)
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4.3.1. Steady linear dynamics. We first consider the slow-fast system

εẋ = −x+ y,(4.23a)

ẏ = x/2− y,(4.23b)

for which

(4.24) J =

[
−1 1
ε/2 −ε

]
.

The linearized operator J is steady and nonnormal, leading initially to rapid growth of the
solution over short times, followed by a slow decay to steady state. The eigenvectors of J are
given by

r− =

[
−1 + (ε2/8) +O(ε3)

(ε/2) + (ε2/4) +O(ε3)

]
,(4.25a)

r+ = (1/
√

2)

[
1 + (ε/4)− (3ε2/32) +O(ε3)
1− (ε/4) + (ε2/32) +O(ε3)

]
,(4.25b)

associated with λ− = −1 − (ε/2) − (ε2/4) + O(ε3) and λ+ = −(ε/2) + (ε2/4) + O(ε3),
respectively. (It should be clear that λ+ > λ− for any ε ∈ R+.) We recall that for linear time-
invariant systems, the OTD subspace asymptotically coincides with the subspace spanned by
the most unstable eigenvectors of the linear operator [4]. In what follows, we show that the
manifold approach developed in subsection 4.2 recovers this feature.

We begin by solving the O(1) subproblem (I− u(0)u(0)T )J0u
(0) = 0, where

(4.26) J0 =

[
−1 1
0 0

]
.

We find two solutions in the limiting invariant manifold,

u(0) =
[
−1 0

]T ∈ (Ker J0)
c,(4.27a)

u(0) = α
[
1 1

]T ∈ Ker J0,(4.27b)

where α is a factor yet to be determined, and the superscript “c” denotes the complementary
set. We note that the solution belonging to Ker J0 is determined only up to a multiplicative
factor as a result of the singular nature of J0. Because the linear operator is steady, the
unknown multiplicative factor α does not depend on the state variables x and y. Another way
to see this is to invoke the implicit-function theorem in the O(1) subproblem since the latter
does not depend on the state variables. Here, we select α by simply requiring that ‖u(0)‖ = 1.

As discussed in subsection 4.2, the higher-order subproblems for the solution in (Ker J0)
c

admit a unique solution. The O(ε) and O(ε2) subproblems yield

u(1) =
[
0 1/2

]T
,(4.28a)

u(2) =
[
1/8 1/4

]T
.(4.28b)
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Collecting the expansion coefficients from (4.27a), (4.28a), and (4.28b), we obtain a solution
that coincides with r−. We note that, consistent with (4.11), the OTD solution with u(0) ∈
(Ker J0)

c is associated with the least unstable O(1) eigenvalue.
We now proceed with (4.27b), for which normalization requires that α = 1/

√
2. The O(ε)

subproblem has a line of solutions,

(4.29) u(1) =
[
β β − (

√
2/4)

]T
,

where β is an undetermined factor, which is selected so that ‖u(0) + εu(1)‖ = O(ε2) or,
equivalently, u(0) ⊥ u(1). This gives

(4.30) u(1) = 1/(4
√

2)
[
1 −1

]T
.

The O(ε2) subproblem also has a line of solutions, which we restrict by requiring that
‖u(0) + εu(1) + ε2u(2)‖ = O(ε3), giving

(4.31) u(2) = 1/(
√

2)
[
−3/32 1/32

]T
.

Proceeding in a similar fashion with higher orders, we conclude that the approximation of the
OTD mode for which u(0) ∈ Ker J0 coincides with r+.

We note that strictly speaking, the undetermined factors α and β should be computed with
the Fredholm alternative, as prescribed in subsection 4.2. The above example suggests that
in situations where dim(Ker J0) = 1, the Fredholm alternative is equivalent to normalizing
the OTD series expansion. In the next example, we illustrate application of the Fredholm
alternative in computation of the OTD manifold for a low-dimensional nonlinear system.

4.3.2. Unsteady nonlinear dynamics. We consider a classic model for enzyme kinetics,
the Michaelis–Menten equations,

εẋ = y − (y + κ)x,(4.32a)

ẏ = −y + (y + κ− λ)x,(4.32b)

where κ and λ are bounded, positive constants, and the state variables x and y represent
nondimensional chemical concentrations. As discussed in [30], this system exhibits general
phenomena commonly found in singularly perturbed systems. In particular, the linearized
operator associated with the vector field (4.32a) and (4.32b) is unsteady and nonnormal,
leading to significant transient growth of the solution. This is illustrated in Figure 1, where
we show time series for x and y computed using a third-order Adams–Bashforth integrator

with time-step size ∆t = 10−2, initial conditions z0 =
[
0.01 1

]T
, and parameters ε = 0.1,

λ = 0.5, and κ = 1. We also note that the system admits a normally hyperbolic limiting
invariant manifold

(4.33) W0 =

{
(x, y) |x =

y

y + κ

}
when ε = 0, and a locally stable SIM

(4.34) Wε =

{
(x, y) |x =

y

y + κ
+ ε

λκy

(y + κ)4
+O(ε2)

}
when 0 < ε� 1 [30].
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Figure 1. Time series of x (solid grey) and y (dashed black) for the Michaelis–Menten equations with
parameters ε = 0.1, λ = 0.5, and κ = 1, and initial conditions x(0) = 0.01 and y(0) = 1.

The limiting OTD manifold is found by solving (I− u(0)u(0)T )J0u
(0) = 0, leading to two

solutions,

u(0) =
[
1 0

]T ∈ (Ker J0)
c,(4.35a)

u(0) =
[
α(x, y)(1− x) α(x, y)(κ+ y)

]T ∈ Ker J0,(4.35b)

where α(x, y) is a factor yet to be determined. For u(0) ∈ (Ker J0)
c, the O(ε) subproblem is

well posed and gives a unique solution,

(4.36) u(1) =

[
0 −κ− λ+ y

κ+ y

]T
.

This solution corresponds to the least unstable direction, and is of little interest to us. We
therefore turn to (4.35b), for which the factor α(x, y) remains to be found. As discussed
earlier, it is straightforward to argue that α is nothing more than a normalization factor.
However, we will play along and blindly apply the recipe given in subsection 4.1; that is, we
determine α with the Fredholm alternative. We first construct a basis of Ker (I−u(0)u(0)T )J0.

Let s0 =
[
1− x κ+ y

]T
be such a basis vector. The Fredholm alternative then requires that

(4.37) 〈s0,∇u(0) h1(x,y)− (I− u(0)u(0)T )J1u
(0)〉 = 0,

leading to

∂α

∂y

[
(1− x)2 + (y + κ)2

]
+ (y + κ)α

+ α
λ(1− x)(y + κ)

(y + κ− λ)x− y
{
α2
[
(1− x)2 + (y + κ)2

]
− 1
}

= 0.(4.38)

Hence, we have

(4.39) α =
1√

(1− x)2 + (y + κ)2
,
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Figure 2. Time series for the two coordinates of the first OTD mode corresponding to the trajectory in
Figure 1: (a) zeroth-order approximation (dashed blue and dashed red) compared to numerical integration (solid
grey and solid black), and (b) first-order approximation (dashed blue and dashed red) compared to numerical
integration (solid grey and solid black).

which corresponds to the expected normalization factor. Now that u(0) has been fully deter-
mined, we may proceed to the next order of approximation. The O(ε) subproblem likewise
gives a line of solutions. The undetermined factor is found by invoking the Fredholm alterna-
tive in the O(ε2) subproblem. We obtain a unique solution for u(1), and write the OTD mode
as

u =
1√

(1− x)2 + (κ+ y)2

[
1− x κ+ y

]T
− ε(x− 1)[λ+ κx− 2λx+ y(x− 1)]

[(1− x)2 + (κ+ y)2]3/2

[
1

x− 1

κ+ y

]T
+O(ε2).(4.40)

The above is a representation of the first OTD mode as a function of the state variables
only; that is, a graph from the physical space to the OTD space in which the history of
the trajectory and the initial conditions do not appear. Such a representation allows for
immediate identification of the most unstable direction in the phase space with no need for
time integration of the governing equations.

Figure 2 shows a comparison between the zeroth-order and first-order asymptotic approx-
imations of the OTD mode (4.40), and numerical integration of (4.12) with initial conditions
u1(0) = 1 and u2(0) = 0. (The zeroth-order and first-order approximations of the OTD mode
are defined as u(0) and u(0) + εu(1), respectively.) Good agreement is found between the anal-
ysis and the numerics, even to leading order. In particular, the SIM approach captures the
early episode of nonnormal growth. We note that such good agreement (modulo a sign dif-
ference) has been found irrespective of the initial conditions selected for integration of (4.12).
We also note that at long times, the OTD mode behaves as

(4.41) lim
t→+∞

u =
1√

1 + κ2

[
1
κ

]
+ ε

λκ

(1 + κ2)3/2

[
κ
−1

]
+O(ε2),
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which coincides with the most unstable (normalized) eigenvector of the linearized operator
evaluated at the fixed point x = y = 0.

5. Extension to general dynamical systems without explicit time-scale separation. The
approach presented in section 4 assumes that slow-fast separation of time scales appears
explicitly in the equations of motion in the form of a small parameter ε. However, numerous
dynamical systems exhibit slow-fast dynamics despite no small parameter being present in
the governing equations. So it would be valuable to extend the approach in section 4 to
situations in which slow-fast dynamics are seen, although no small parameter is available
from the equations of motion. The objective is to find a similar mapping from physical space
to OTD space that would allow for prediction and possibly control of transient instabilities
without any knowledge of the history of the trajectory.

5.1. Methodology. We return to (2.1), and first note that recurring transient instabilities
are associated with the presence of multiple time scales that are well apart from one another.
It is thus natural to introduce a fast time scale, t̂ = t/ν, corresponding to the time scale at
which transient bursts occur. Here, ν is a small parameter (0 < ν � 1) that can be estimated
by examining the time series of some observable, but remains otherwise inaccessible. (In
particular, ν does not appear explicitly in the governing equations.) At this time scale, the
trajectory is governed by

(5.1a) νz† = F(z),

and the first OTD mode by

(5.1b) νu† =
(
I− uuT

)
Lu,

where the dagger denotes differentiation with respect to t̂.
The OTD equation (5.1b) lends itself to singular perturbation theory. Assuming that

ν � 1 (that is, bursting episodes are sufficiently pronounced), we expand u as a power series
in ν, u = u(0) + νu(1) + · · · . We emphasize that this expansion is valid (i.e., uniformly
convergent in ν) only in those time intervals during which an extreme event occurs. Hence,
we do not expect our approximate solution to agree with the numerical solution of (2.6) in
intervals during which no strong instability is seen.

Substituting the expansion in (5.1b) and equating terms of equal powers of ν leads to a
hierarchy of subproblems, the first two of which are given by

(I− u(0)u(0)T )Lu(0) = 0,(5.2a)

∇zu(0) F = (I− u(0)u(0)T )Lu(1) − (u(1)u(0)T + u(0)u(1)T )Lu(0),(5.2b)

at O(1) and O(ν), respectively. The above are similar to their respective counterparts (4.18)
and (4.20) found for slow-fast systems in section 4. In particular, the algebraic nature of the
O(1) subproblem shows that u(0) can be expressed as a graph over the state z. The O(ν)
subproblem is linear in u(1), which means that u(1) can likewise be expressed as a function
of z only. (It is straightforward to show that this holds for all higher-order subproblems.)
One notable difference, however, is that the linearized operator L generally has full rank, as
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opposed to J0 which had a nontrivial kernel. The O(νk) subproblems (k > 0) thus do not
require invoking the Fredholm alternative as they all admit a unique solution.

We note that in practice, it is convenient to solve for νu(1) as opposed to u(1) in (5.2).
This is because the term on the left-hand side of (5.2) then becomes νu(0)†. The latter can be
computed directly by solving (5.2) at two consecutive time instants t and t+δt, and proceeding
in the limit δt→ 0. (In discrete time, one can solve (5.2) at several consecutive time steps, and
approximate νu(0)† with any suitable discretization formula.) The advantage of this method
is that the power series expansion for u can be computed without ever assigning a value to ν.

5.2. Application to the Charney–DeVore equations. We apply the manifold approach
proposed in subsection 5.1 to a modified version of the classic Charney–DeVore model [11],
which describes atmospheric circulations at midlatitudes. We consider a six-dimensional trun-
cation of the original system, which models barotropic flow in a plane channel with topography
[13, 3]. The governing equations are given by

ż1 = γ∗1z3 − C(z1 − z∗1),(5.3a)

ż2 = −(α1z1 − β1)z3 − Cz2 − δ1z4z6,(5.3b)

ż3 = (α1z1 − β1)z2 − γ1z1 − Cz3 + δ1z4z5,(5.3c)

ż4 = γ∗2z6 − C(z4 − z∗4) + µ(z2z6 − z3z5),(5.3d)

ż5 = −(α2z1 − β2)z6 − Cz5 − δ2z4z3,(5.3e)

ż6 = (α2z1 − β2)z5 − γ2z4 − Cz6 + δ2z4z2.(5.3f)

The model parameters are given by αm = 8
√

2m2(b2 +m2 − 1)/[π(4m2 − 1)(b2 +m2)] and
δm = 64

√
2(b2 −m2 + 1)/[15π(b2 +m2)], representing zonal advection in the z1 and z4 di-

rections, respectively; βm = βb2/(b2 +m2), representing the so-called β effects; γm =
4
√

2m3γb/[π(4m2 − 1)(b2 + m2)] and γ∗m = 4
√

2mγb/[π(4m2 − 1)], representing topographic
interactions; and µ = 16

√
2/(5π). (Here, m = 1 or 2.) The parameters C, z∗1 , and z∗4 account

for Ekman damping, zonal forcing in the z1 direction, and zonal forcing in the z4 direction,
respectively. We set z∗1 = 0.95, z∗4 = −0.76095, C = 0.1, β = 1.25, γ = 0.2, and b = 0.5.
As discussed in [13, 3], these values of the parameters give rise to significant transitions be-
tween “zonal” and “blocked” flow regimes, resulting from a nonlinear interaction between
barotropic and topographic instabilities. These severe transitions are the manifestation of
significant time-scale separation, despite the fact that there is no explicit small parameter in
(5.3a)–(5.3f). Equations (5.3a)–(5.3f) are integrated using a third-order Adams–Bashforth
scheme with time-step size ∆t = 10−3, and zero initial conditions, except for z1(0) = 1.14 and
z4(0) = −0.91.

Figure 3 shows time series for the six coordinates of the trajectory, with several clear tran-
sitions between zonal and blocked regimes. The intervals of blocked flow (e.g., 725 ≤ t ≤ 980
and 1575 ≤ t ≤ 1804) are associated with transient instabilities, and are of main interest to
us. It is in those intervals that we assess the accuracy of our asymptotic expansion. For the
regime transition occurring in the interval 725 ≤ t ≤ 980, Figure 4 shows the first OTD mode
computed by numerically integrating (2.6), along with its zeroth- and first-order approxima-
tions computed with the approach described in subsection 5.1. We note that the leading-order
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Figure 3. Time series for the six-dimensional Charney–DeVore model with parameters and initial condi-
tions given in the text. The shaded interval 725 ≤ t ≤ 980 corresponds to a regime of blocked flow.

term u(0) is already a good approximation to u, and the first-order term νu(1) merely adds
small corrections to u(0). We also note that our approximation performs poorly outside the
regime of interest, as anticipated.

6. Conclusions. The present work focused on prediction of transient instabilities in finite-
dimensional dynamical systems. We considered a recently introduced framework, the OTD
modes, consisting of an evolving reduced-order set of orthonormal vectors that had been
shown to track the most unstable directions along a given trajectory. Although it had become
clear that the OTD modes could be used to characterize transient instabilities at relatively
low computational cost, little had been known about their intrinsic properties and how they
relate to other existing techniques, such as covariant Lyapunov vectors, GS vectors, or singular
vectors, which, too, claim to quantify stable and unstable directions in tangent space. One of
the main contributions of the present paper is a proof of equivalence between the OTD modes
and the GS vectors when the latter are continuously orthonormalized along the trajectory.
This important result established a link between OTD modes and covariant Lyapunov vectors
and, perhaps more importantly, implied that the OTD modes, at long times, converge to a
well-defined basis that depends only on the state of the system in the phase space and not
on the history of the trajectory prior to reaching the attractor. This feature had long been
surmised based on numerical evidence in previous studies (it was even rigorously proven in
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Figure 4. Detail of the coordinates of the first OTD mode in an interval including the regime of blocked
flow highlighted in Figure 3 (black: numerical integration; red: zeroth-order approximation; grey: first-order
approximation).

the special case of hyperbolic fixed points). The equivalence between GS vectors and OTD
modes provided a definitive answer to the question.

The fact that the OTD modes converge to a set of vectors defined at every point of
the attractor called for developing approximate solutions of the OTD modes, very much
like those based on invariant manifold theory in slow-fast systems. We considered a generic
finite-dimensional slow-fast system in which time-scale separation appeared explicitly in the
equations of motion in the form of a small parameter ε. Assuming that the trajectory of
the system was attracted to a slow manifold (with transient instabilities and growth of the
fast variables occurring along the unstable manifold of the slow manifold), we proposed an
analytical description of the OTD modes that took the form of an asymptotic expansion in
terms of ε. We obtained a map from the phase space (or, equivalently, the slow manifold of the
trajectory) to the OTD space, thus providing approximations for the directions of instability
at every point in the phase space. We then extended the method to systems in which clear
transient instabilities arise despite the fact that no small parameter appears in the governing
equations. In both situations, we found good agreement between the analytical approach and
the numerical solutions.
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The present results strongly suggest that the proposed analytical formulation could be
applied to more complex dynamical systems with a view to mitigating transient instabili-
ties. A particularly attractive feature of the manifold approach is that it requires solving a
limited number of algebraic equations (with no more than one being nonlinear), possibly at
selected points along the trajectory, as opposed to solving multiple initial-value problems to
obtain the temporal evolution of each OTD mode. This points to the possibility of using the
OTD manifold framework to identify directions responsible for transient instability at any
given point along a trajectory, and to design a controller that acts locally in the phase space
(independently of the history of the trajectory) in order to suppress those instabilities.
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