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Numerous efforts have been devoted to the derivation of equations describing the
kinematics of finite-size spherical particles in arbitrary fluid flows. These approaches
rely on asymptotic arguments to obtain a description of the particle motion in terms
of a slow manifold. Here we present a novel approach that results in kinematic
models with unprecedented accuracy compared with traditional methods. We apply a
recently developed machine learning framework that relies on (i) an imperfect model,
obtained through analytical arguments, and (ii) a long short-term memory recurrent
neural network. The latter learns the mismatch between the analytical model and the
exact velocity of the finite-size particle as a function of the fluid velocity that the
particle has encountered along its trajectory. We show that training the model for
one flow is sufficient to generate accurate predictions for any other arbitrary flow
field. In particular, using as an exact model for trajectories of spherical particles,
the Maxey–Riley equation, we first train the proposed machine learning framework
using trajectories from a cellular flow. We are then able to accurately reproduce the
trajectories of particles having the same inertial parameters for completely different
fluid flows: the von Kármán vortex street as well as a two-dimensional turbulent
fluid flow. For the second example we also demonstrate that the machine learned
kinematic model successfully captures the spectrum of the particle velocity, as well as
the extreme event statistics. The proposed scheme paves the way for machine learning
kinematic models for bubbles and aerosols using high-fidelity DNS simulations and
experiments.
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1. Introduction

Finite-size or inertial particle dynamics are often encountered in nature and
technological applications either in the form of bubbles or aerosols. Their motion
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differs markedly from infinitesimal particle dynamics as they exhibit clustering and
dispersive behaviours, which are absent for infinitesimal fluid elements. Several studies
(Tang et al. 1992; Tio et al. 1993; Martin & Meiburg 1994; Vasiliev & Neishtadt
1994; Marcu, Meiburg & Newton 1995; Crowe, Troutt & Chung 1996) have analysed
inertial particle dynamics in either analytically defined or numerically generated fluid
flows. These studies are based on the Maxey–Riley (MR) equation (Maxey & Riley
1983), the equation of motion for small spherical particles in an unsteady non-uniform
flow velocity field.

In Haller & Sapsis (2008) the authors performed a singular perturbation analysis
of the MR equation and derived a slow manifold that governs the dynamics of
sufficiently small particles. This low-dimensional manifold has the form of a modified
velocity field, expressed in terms of the underlying flow velocity field and the particle
parameters. The result is a reduced-order inertial equation that describes the particle
kinematics. This analysis allows one to perform accurate time inversion, as the
full MR equation becomes numerically unstable when integrated backwards due to
its singular character. Moreover, due to the purely kinematic character, the inertial
equation facilitates study of clustering properties (Sapsis & Haller 2010) and the
computation of attractive manifolds for finite-size particles (see Sapsis & Haller 2009;
Sapsis, Haller & Peng 2010; Sudharsan, Brunton & Riley 2016).

Despite the favourable properties of the inertial equation its use can be limited
due to several reasons. First, the inertial equation is an asymptotic equation with
respect to the particle size, and higher-order corrections require higher-order material
derivatives of the flow field (Haller & Sapsis 2008), which can be hard to obtain
reliably, especially for experimental data. Even for smaller particles, the MR equation
may not be valid, depending on the characteristics of the flow. In fact, for the case of
neutrally buoyant particles, Sapsis et al. (2011) revealed via a direct comparison with
experiments that particles can have velocities different from those of the underlying
flow field. Other studies (e.g. Daitche & Tél 2014) have suggested that the inclusion
of the Basset–Boussinesq memory term can improve the performance of the MR
equation, but in this case the derivation of a slow manifold approximation proves to
be a formidable task.

Here we present a novel approach for the derivation of a kinematic equation for
finite-size particles that relies on utilizing machine learning methods in combination
with a basic physical model for the particle motion, in this case the standard MR
equation. We employ the blended machine learning framework that was formulated in
Wan et al. (2018). The basic idea of this method is to machine learn the mismatch
between data and an imperfect model that captures some of the underlying physics of
the problem. Learning is performed using a long short-term memory (LSTM) recurrent
neural network (RNN). The choice of an LSTM-RNN is important as it naturally
incorporates memory into the resulting model. As a basic model for the underlying
physics we use the first-order approximation of the slow manifold that is associated
with the standard MR equation.

Note that while a purely data-driven approach using LSTM-RNN (e.g. Vlachas
et al. 2018) could have been employed, here we choose to maintain as much as
possible of the underlying basic physics through the derived inertial equation from
the MR model. This strategy has certain advantages, primarily related to the fact that
the mismatch between the two models has much smaller variance and can be learned
more efficiently. On the other hand learning the full model would require more data
points and would ignore the MR equation, which may not be perfect but still captures
some important aspects of the particle motion.
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Therefore, in the present context, the combination of a basic physical model and a
machine learning framework has the following favourable properties: (i) the resulting
model is not limited by the particle size, as is the case in the asymptotic model – at
least to the extent that finite-size particles are small enough that they can be described
as points, (ii) we can directly employ data from experiments or high-fidelity DNS
models, (iii) the model utilizes all the available physics for regions where data are
not available, (iv) we have direct modelling of memory effects. We present our results
for the case of spherical bubbles, but the extension of the analysis for aerosols is
straightforward. Specifically, we train the blended model using data from the full (non-
reduced) MR equation for a simple cellular flow. We then assess the learned model
for different flows, a flow behind a cylinder and a two-dimensional turbulent flow, and
compare the performance with the inertial equation. We perform this comparison both
at the trajectory and the statistics level.

2. Kinematics of spherical particles

Let u(x, t) be the velocity field of a two-dimensional incompressible flow field of
density ρf . We denote by x(t) the path of a finite-size particle of density ρp immersed
in a fluid field with characteristic length L. For spherical particles of radius a�L, the
Lagrangian particle velocity v(t) is assumed to satisfy the Maxey–Riley (MR) equation
of motion (Maxey & Riley 1983; Haller & Sapsis 2008):

ẋ= v, (2.1)

v̇ =−
1
ε
(v − u)+

3R
2

Du
Dt
, (2.2)

where D/Dt ≡ ∂/∂t + u · ∇ denotes the material derivative and ε = 1/µ� 1 with
inertial parameter µ defined as

µ=
R
St
, R=

2ρf

ρf + 2ρp
, St=

2
9

(a
L

)2
Re. (2.3a−c)

Here Re and St denotes the Reynolds and particle Stokes number respectively. The
density ratio R distinguishes neutrally buoyant particles (R = 2/3) from aerosols
(R< 2/3) and bubbles (2/3<R< 2). Note that the larger the inertia parameter µ, the
less significant the effect of inertia; in the µ→∞ limit, this equation describes the
motion of a passive ideal tracer particle.

2.1. Slow manifold approach
For all ε > 0, the MR equation (2.2) admits an invariant slow manifold (Haller &
Sapsis 2008) which has the asymptotic form

Mε =

{
(x, v) : v ≡ ũ(x, t)= u(x, t)+ ε

[
3R
2
− 1
]

Du
Dt
+O(ε2)

}
. (2.4)

Moreover, as shown in Sapsis & Haller (2008), although Mε exists for all values of ε,
it globally attracts all trajectories, in O(ε) time, if and only if the following condition
is satisfied:

λmin[S(x, t)+µI]> 0, where S(x, t)=
∇ũε(x, t)+∇ũε(x, t)T

2
. (2.5)
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Here it is important to note that for a fixed ε, whether Mε is globally attracting or not
depends entirely on properties of the flow local to the particle and is unaffected by
the velocity of the particle itself. Correspondingly, when a particle passes by a region
where condition (2.5) is violated, its motion would diverge from Mε , which repels all
close-by trajectories.

Therefore, under the premise that (2.5) is satisfied along a particle trajectory and
M(t) is globally attracting for all t > 0, (2.4) provides an alternative description of
the particle kinematics at all times. Keeping the leading-order terms, we obtain the
inertial equation:

ẋ(t)≡ v∗(t)= u(x, t)+ ε
[

3R
2
− 1
]

Du
Dt
+O(ε2). (2.6)

Compared to the full MR equation (2.2), the inertial equation offers great modelling
advantages as it has only half the dimension but non-zero divergence, which allows it
to capture the clustering and dispersion of non-neutrally buoyant particles arising from
finite-size effects. However, the accuracy of this approximation will be significantly
compromised if (i) ε becomes larger and (ii) the local flow field is fast-changing
either in space or time (u(x, t) has large partial derivatives). When either condition is
satisfied, higher-order effects become non-negligible. Although closed-form analytical
expressions for these high-order terms are available, they involve calculating high-
order material derivatives which are difficult to obtain for arbitrary flow fields. Hence,
we plan to utilize the first approximation of the inertial equation and combine this
with available data in order to machine learn the higher-order corrections.

3. Blended slow manifold model

We aim to develop a new kinematic model blending the leading-order slow manifold
approximation with a machine learning (ML) complement. The main purpose of the
ML component is to identify when higher-order effects become important based on
the local flow states encountered by the particle, and provide an accurate numerical
estimate for the resulting kinematics. At the same time, this additional component
does not raise the system dimensionality and keeps the model computationally
efficient. More specifically, our proposed model follows the blended strategy in Wan
et al. (2018) and has the form

ẋ(t)= u(x, t)+ ε
(

3R
2
− 1
)

Du(x, t)
Dt︸ ︷︷ ︸

leading-order approx. v∗(t)

+G(ξ(t), ξ(t− τ), ξ(t− 2τ), . . .)︸ ︷︷ ︸
data-driven model vd(t)

, (3.1)

which is a direct sum of the inertial model kinematics v∗ and output of a data-driven
model vd. Here τ is a time lag parameter and ξ is a four-dimensional vector of flow
states experienced by the particle along its own path at time t:

ξ(t)=
[

u(x, t),
Du(x, t)

Dt

]
. (3.2)

These flow states are closely associated with the force exerted on the particle by the
surrounding fluid. With the proposed model form, we aim to deduce the velocity
of the particle from the forces it perceives by learning a data-driven function

857 R2-4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

IT
 L

ib
ra

ri
es

, o
n 

25
 O

ct
 2

01
8 

at
 1

4:
53

:2
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
79

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.797


Machine learning the kinematics of particles

G(·) that maps the time series in ξ to the corresponding series in vd – velocity
difference between the particle and the leading-order inertial model. Time history/delay
coordinates are included in the model to compensate for the fact that ξ(t) alone does
not contain the full information required to evaluate the velocity on the slow manifold
at time t. Note that the choice for the components of ξ is by no means unique and
will likely affect the number of delays required for an accurate G mapping.

We utilize RNNs as our learning method for G. RNNs are a special type of
neural network that provides a sequence-to-sequence mapping. The network reads
input one at a time and computes the output from a running hidden state that is
updated at every step based on the previous hidden state and the new input values,
thus respecting the order of the input sequence. In particular, we utilize the LSTM
(Hochreiter & Schmidhueber 1997), a special RNN unit, to map between discrete-time
ξ and vd sequences. We use one LSTM layer with 128 hidden units, followed by one
dense/fully connected layer with 64 hidden units and a rectified linear unit (ReLU)
activation function to connect the input and output. The resulting model has a total
of 76 032 degrees of freedom (DOFs).

The model DOFs are optimized with respect to the mean squared error loss on
the output vd. For our studies, training data are generated by directly integrating
the original MR equation (2.2) and recording the model-required quantities (particle,
flow velocities and material derivatives) along the path at some small uniform time
step τ . We treat these trajectories as the ground truth from which the model learns
to predict the discrepancy between particle velocity and the leading-order manifold
approximation. Predictions made in this way are single step because model output is
not used to update the position of the particle and thus does not impact the model
inputs in the future, regardless of any error made in the process.

In a more practical prediction scenario, we often wish to forecast the trajectory of a
particle for more than a single step. In this case, the predicted velocity fully dictates
the particle position at the next time instant, which in turn determines the next model
input. As a result, the model interacts with a flow database and queries for the next
input based on the predicted particle position. Furthermore, an initial spin-up input
sequence (typically of a few steps only) is needed such that zero initializations to the
hidden states do not compromise performance. Figure 1 shows the overall multistep
prediction algorithm with first-order time integration and the corresponding flow chart.
We combine two such model instances, staggered in time, to achieve fourth-order
integration accuracy. Finally, although it is possible to train the model by minimizing
its multistep error (see Wan et al. 2018), we do not consider this option, mainly
because the model would otherwise start to ‘anticipate’ future flow state based on
training data, which is undesirable as we generalize the model to predict in time-
dependent flows not encountered during training.

4. Applications

We demonstrate the proposed modelling methodology using three different flow
problems. The first example consists of a simple two-dimensional flow with a simple
periodic structure. We assume access to an excess amount of data (more than sufficient
to accurately establish the functional approximation) and train the blended model to
illustrate the main ideas of the proposed method. The second and third examples
involve more complex flow structures – flow around a cylinder and turbulence in
a periodic domain, respectively. We directly apply the models learned in the first
example with no additional training and showcase the generalization capabilities of
the proposed method to more realistic scenarios.
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LSTM
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Flow
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√ x
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t = t + †

Data-driven model(a) (b) Base
model

Post-process

≈

FIGURE 1. (a) Multistep trajectory prediction algorithm with first-order accurate time
integration and (b) corresponding flow chart.

4.1. Cellular flow
We first consider the two-dimensional cellular flow model (Babiano et al. 2000;
Cartwright et al. 2010) representing a lattice of oscillating vortices or roll cells. The
flow is defined by the stream function

ψ(x, y, t)= A cos(x+ B sin(ωt)) cos(y) (4.1)

in the x, y∈ [−π/2,π/2] domain with periodic boundary conditions. The fluid velocity
field can be derived by letting u = (−ψy, ψx). Note that the time dependence in
this flow can be suppressed by setting B = 0. Parameter A determines the strength
of the vortices involved. Figure 2(a) shows the instantaneous velocity field at t = 0
and contours of λmin, the minimum eigenvalue defined in (2.5). Figure 2(b) shows
the time series for the velocity difference between the particle and flow velocities, as
well as between the particle and the leading-order approximation, of a bubble (ε =
0.01, R = 1.55) in a cellular flow with A = 47, B = 4.4 and ω = 11.5. These flow
parameters result in large spatial and temporal derivatives in the velocity field, which
leads to a large difference between the particle and flow velocities despite a small ε.
In consequence, the effects of higher-order terms become prominent.

We apply the proposed method to learn a hybrid model for the slow manifold at
fixed particle parameters ε = 0.01 and R = 1.55. Data are simulated by integrating
(2.2) in cellular flow prescribed by (4.1) with random parameters drawn from uniform
distributions: A∼ U [30, 50], B∼ U [0, 5] and ω∼ U [0, 4π]. The randomization serves
to inject more variety into the flow patterns seen by the model during training, and
thus improve generalization. 1000 trajectories are generated at 1500 time steps of
0.002. 80% of the data are used for training and the remainder is divided equally for
validation and testing. After 300 epochs, the model is able to achieve a single-step
mean squared error (MSE) of 3 × 10−3, averaged over all time steps and validation
cases. This is almost perfect prediction, especially considering the fact that the leading-
order approximation v∗ has a MSE of 14.61 and the mean L2-norm of v− u is 25.18.

In figure 2(c–e) we compare the multistep prediction skill of the proposed RNN-
blended model with the leading-order approximation v∗ through an example test case.
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FIGURE 2. Cellular flow. (a) Velocity field at t = 0 and magnitude of λmin (background
shading: lighter is higher λmin). (b) Velocity difference between the particle and flow, and
between the particle and leading-order approximation against time for a sample trajectory.
(c–e) 300-step predictions made using the blended slow manifold model (— · —) and
the leading-order approximation alone (· · · · · ·). (c) Trajectory in (x, y) space (ending flow
field shown in the background; solid circles mark the ending positions). (d,e) Predicted
velocity time series in the x and y directions, respectively. Truth (——) from integration
of (2.2) is plotted for comparison. Flow parameters are A = 32, B = 3.2 and ω = 9.2.
Plotted trajectories start from (x, y)= (3.20, 1.88) at t= 0.

Due to much smaller single-step errors, the trajectory predicted by the blended model
is able to remain close to the truth for a significant amount of time, despite being in
a rapidly changing and unstable flow environment.

4.2. von Kármán vortex street
In a second example we consider particle motion in the von Kármán vortex street
model first studied in Jung, Tél & Ziemniak (1993). Finite-size particle motion in
this flow has been studied in Benczik, Toroczkai & Tél (2002) and Haller & Sapsis
(2008), who showed the existence of attractors for certain parameter values. The flow
is governed by a stream function, and for simulation the system parameters are chosen
such that the model approximates the Navier–Stokes solution for this geometry at
Re≈ 250 with a flow period of Tc = 1.107.

We apply the model learned from the cellular flow trajectories in the previous
example directly to the von Kármán vortex flow, since the learned slow manifold
dynamics should be applicable regardless of the flow field encountered. In practice,
we have found that this is indeed the case, demonstrating the robustness of the
proposed approach. We have found that it is important to ensure that the model is
never asked to extrapolate significantly, both in terms of the input and target. A
rough way to check is to plot and compare the marginal density of each input and
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FIGURE 3. (a) 500-step trajectory predicted using the blended model for a von Kármán
vortex flow trajectory compared with (b) the leading-order approximation. (c,d) Show
predicted velocity versus time in the x and y directions. (Legend: truth ——; blended
model — · —; leading-order slow manifold · · · · · ·).

target dimension for training and test flows. For the trained model to perform well,
regions where the test flow has non-negligible probability density should also have
high density in the training flow.

For single-step predictions, we generate reference trajectories from (2.2) under
the same particle parameters (ε = 0.01, R = 1.55) and time step (0.002). These
trajectories are randomly initiated in a rectangular box upstream of the cylinder:
x0 ∼ U [−2.1, −1.9], y0 ∼ U [−1, 1]. The model is able to achieve a single-step
MSE of 0.08, averaged over 50 test cases consisting of 550 time steps each. The
performance is significantly better than the leading-order approximation alone, which
records a MSE of 1.89 for the same data set. This result shows that the model we
have obtained indeed generalizes well to new flow fields.

As for multistep predictions, we use a 50-step spin-up and predict for the 500
steps that immediately follow. Figure 3 shows an example prediction in terms of the
resulting phase trajectory and velocity time series, compared with those given by the
leading-order approximation. We observe that our blended model makes the biggest
improvement in predicting how the particle travels with a shed vortex. It successfully
captures the oscillation in the particle velocity as a result of the strong vorticity, which
is not reflected in the leading-order approximations.

4.3. Two-dimensional turbulent flow
In the final application, we apply the blended model to an even more complex
turbulent flow. The velocity field u for this flow is obtained as the numerical solution
to the Navier–Stokes equation,

∂tu+ u · ∇u=−∇p+ ν1u+ f , ∇ · u= 0 (4.2a,b)

by a pseudo-spectral method with 1282 Fourier modes. We use an explicit Runge–
Kutta method for temporal integration. ν = 1/Re is the non-dimensional viscosity.
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FIGURE 4. (a) Pdf for v − u, i.e. the velocity difference between the particle and flow,
(b) autocorrelation function and (c) power spectral density for v as predicted by the
true Maxey–Riley equation, multistep blended model and leading-order slow manifold
approximations. Plotted quantities do not distinguish between x and y directions as the
particle kinematics is roughly isotropic.

The time-independent forcing f has constant amplitude fa and random phase, but only
active for wavenumbers k on a circular ring, i.e. satisfying k2

min 6 |k|2 < k2
max, where

kmin and kmax are the inner and outer radii respectively. Equation (4.2) is solved on a
spatial domain (x, y)∈ [0, 2π] × [0, 2π] prescribed with periodic boundary conditions.
We choose to validate the blended model for flow parameters Re= 250, fa= 1 kmin= 4
and kmax = 5. Snapshots of the flow at the grid points are recorded every 2 × 103

time units. A linear interpolation scheme is employed to compute the flow velocities
between the grid points.

For this flow we model trajectories of particles with ε = 0.05 and R = 1.55. The
particle inertia is increased from previous examples to raise higher-order effects. We
train a model using data collected from the much simpler cellular flow with random
coefficients: A ∼ U [10, 20], B ∼ U [0, 3] and ω ∼ U [0, 4π]. These parameters are
slightly different from the values used in the previous examples to ensure the global
attractiveness of the underlying slow manifold. After training, the blended model
achieves a single-step prediction MSE of 0.09, averaged over 1200 steps and 1000
test trajectories randomly initialized in the spatial domain. In contrast, MSE of the
leading-order slow manifold approximation is 9.88.

For multistep prediction we use a 200-step spin-up stage. Computing the multistep
prediction error for this turbulent flow is not meaningful because any small errors
made would grow exponentially with time due to the presence of chaos. However,
we may still use the model to calculate long-time statistics. Running with 5000
realizations for 1000 steps, the empirical probability density function (pdf) of the
difference between particle and flow velocities (in both directions, as the flow
turbulence is isotropic) is shown in figure 4(a). We observe that the blended
model provides a much more improved estimation compared to the leading-order
approximation in both the bulk and tail regions. In figure 4(b,c) we compare the
autocorrelation function and power spectral density estimations, respectively, for
particle velocities. The blended model is better, primarily due to its ability to capture
correlation patterns in the presence of vortices, although it tends to predict longer
times for particles to be drawn to vortex centres and results in slightly stronger
oscillation in the autocorrelation function. Figure 5 shows snapshots of the true
and model-predicted particle positions at t = 0.8 (end of spin-up period), 1.2 and
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FIGURE 5. Particle position (marked by red dots) predicted by the Maxey–Riley equation
(truth) and multistep blended model at time 0.8 (end of spin-up phase, zero error), 1.2 and
2.8, respectively. The flow vorticity field ωz=∇×u is shown in the background. Particles
are drawn towards vortices. Distributions of their positions are captured to good accuracy.

2.8, respectively. Similar characteristics are observed for both methods. In general,
particles are drawn towards vortex centres because they are lighter than infinitesimal
fluid elements (R> 2/3), as suggested by both the true MR and prediction models.

5. Conclusions

We have developed a blended, model-based, machine learning approach for
describing the motion of small spherical particles in fluid flows. The proposed
method takes advantage of the existence of an analytical model: a low-dimensional,
globally attracting slow manifold of the Maxey–Riley equation. It also employs
delay coordinates through a machine learning strategy to complement the analytical
leading-order approximation of the manifold and improve the overall accuracy. We
have demonstrated the applicability through three different flow scenarios. We showed
that a kinematical model constructed from particle trajectories in a flow with relatively
simple structures can successfully generalize to more complex – and even turbulent –
flows with no additional readjustment. The resulting single-step velocity predictions
are significantly improved from the leading-order estimates. More impressively, the
multistep implementation of the model is able to provide decent estimates for velocity
statistics, as well as the autocorrelation and power spectrum. Our future endeavours
will focus on the learning of the bubble dynamics directly from DNS simulations.
In this case we expect that more variables will be utilized in the machine learning
model, including the bubble size and fluid field pressure.
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