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a b s t r a c t

Reciprocity is a fundamental property of linear time-invariant (LTI) acoustic waveguides gov-

erned by self-adjoint operators with symmetric Green’s functions. The break of reciprocity

in LTI elastodynamics is only possible through the break of time reversal symmetry on the

micro-level, and this can be achieved by imposing external biases, adding nonlinearities or

allowing for time-varying system properties. We present a Volterra-series based asymp-

totic analysis for studying spatial non-reciprocity in a class of one-dimensional (1D), time-

invariant elastic systems with weak stiffness nonlinearities. We show that nonlinearity is

neither necessary nor sufficient for breaking reciprocity in this class of systems; rather, it

depends on the boundary conditions, the symmetries of the governing linear and nonlinear

operators, and the choice of the spatial points where the non-reciprocity criterion is tested.

Extension of the analysis to higher dimensions and time-varying systems is straightforward

from a mathematical point of view (but not in terms of new non-reciprocal physical phe-

nomena), whereas the connection of non-reciprocity and time irreversibility can be studied

as well. Finally, we show that suitably defined non-reciprocity measures enable optimization,

and can provide physical understanding of the nonlinear effects in the dynamics, enabling one

to establish regimes of “maximum nonlinearity.” We highlight the theoretical developments

by means of a numerical example.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Reciprocity is a well-known and fundamental property of linear time-invariant (LTI) acoustic waveguides [1,2], going back

to the work of Lord Rayleigh on the theory of sound. In structural acoustics, reciprocity is a fundamental property of LTI elastic

systems governed by self-adjoint operators, leading to symmetric Green’s functions [3]. For these media (but also, more gen-

erally, in linear or linearized mechanics) the Betti-Maxwell reciprocity theorem applies. In a broader context, in LTI (possibly

inhomogeneous) waveguides, reciprocity is directly related to time-reversal symmetry through the Onsager-Casimir principle

of microscopic reversibility [4–6]. Accordingly, the break of reciprocity in LTI elastodynamics is only possible through the break

of time reversal symmetry on the micro-level [7], but not necessarily on the macro-level. For example, in linear absorbing media

with linear viscous dissipation, although time reversal symmetry is broken on the macro-level, reciprocity is still preserved since

time reversibility holds on the micro-level.

One way to break reciprocity in LTI elastic systems is by introducing an odd-symmetric external bias, for example, a uni-

directional static magnetic field, or a unidirectional fluid circulation. An example was given by Fleury et al. [8], where an
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acoustic analog of the Zeeman electromagnetic non-reciprocal phenomenon was applied to a resonant ring acoustic cav-

ity biased by a circulating fluid with a constant direction of rotation. This led to giant non-reciprocity (that is, to complete

elimination of reciprocity), and resulted in preferential sound transmission [9]. Tsakmakidis et al. [10] proposed a broadband

high-Q optical cavity connected to a semiconductor-dielectric-metal waveguide by breaking reciprocity of light propagation

by means of an external unidirectional magnetic field. This changes the widely-held view that any type of system having a

given bandwidth can interact with an incident wave only over a restricted time period which is inversely proportional to the

bandwidth.

Alternative ways to break the conditions of the Onsager-Casimir principle and induce non-reciprocity is by introducing non-

linearities or time-variant properties. An example of the latter approach was given by Fleury et al. [11] with coupled acous-

tic cavities whose volumes were harmonically modulated, imparting an effective angular momentum bias. Another approach

employed nonlinear active metamaterials [12]. Regarding nonlinear acoustic non-reciprocity [13], Liang et al. [14,15] proposed

an acoustic diode by coupling a superlattice with a nonlinear medium, whereas Boechler et al. [16] and Li et al. [17] used gran-

ular media for nonlinear acoustic switching, rectification and logic. Finally, Zhang et al. [18] studied nonlinear non-reciprocity

phenomena in a geometrically nonlinear lattice in the plane which, in the limit of low-energy, behaved as a “sonic vacuum”

(i.e., it had zero linearized speed of sound). Non-reciprocal dynamics was in the form of targeted energy transfers from large to

small length scales, whereas non-reciprocal acoustics involved irreversible nonlinear wave interactions between predominantly

transverse propagating localized pulses and axial (sonic) traveling waves.

To date there is no general theoretical framework for nonlinear non-reciprocity in nonlinear elastic systems. Accordingly,

the main goal of the present work is to develop a theoretical framework for non-reciprocity in nonlinear elastodynamics

that is applicable to a broad class of nonlinear time-invariant systems. Focusing on elastic systems with smooth stiffness

nonlinearities, we develop conditions for non-reciprocal response based on multi-harmonic Volterra series expansions and

asymptotic analysis. Apart from formulating necessary and sufficient conditions for nonlinear acoustic and dynamic non-

reciprocity, we aim to develop quantitative non-reciprocity measures based on which optimization procedures can be devel-

oped, and, in the process, to reveal the passively self-tuning nature of non-reciprocal nonlinear elastic systems. Then, we

provide an example that highlights the theoretical results and conclude by providing a synopsis of the main findings of this

work.

2. Asymptotic analysis based on Volterra series (VS) expansions

Our task to develop a general theoretical framework for acoustic non-reciprocity in broad classes of discrete and con-

tinuous systems with localized or spatially extended nonlinearities is based on multi-harmonic Volterra series (VS) expan-

sions. The use of VS in nonlinear systems is not new [19–22], and it enables the construction of higher-order transfer func-

tions and spectra [23,24] to generalize the linear concept of single-frequency transfer function. In particular, a VS expan-

sion represents the response of a nonlinear dynamical system in a functional series of multi-convolution integrals which

are considered as higher-order impulse response functions or Volterra kernels. The higher-order spectra are defined as the

multi-dimensional Fourier transforms of the Volterra kernels. Convergence criteria for VS were studied for weakly non-

linear systems [25–28], and, in general, are met provided that the dynamical systems under consideration possess suffi-

ciently smooth nonlinearities. In the following analysis we will assume that the developed VS representations are conver-

gent. This clearly holds for the systems with polynomial-type stiffness nonlinearities (e.g., cubic stiffness terms) considered

herein, whereas non-smooth nonlinearities such as clearances, vibro-impacts or friction are omitted from consideration in this

work.

We consider the general one-dimensional (1D), undamped elastic waveguide governed by the following nonlinear partial

differential equation,

utt(x, t) = [u(x, t)] + [u(x, t)] + 𝜗f (x, t), (x, t) ∈ Ω ×ℝ+ (1)

defined over the spatial domain Ω, and subject to the homogeneous LTI boundary conditions [u] = 0 on 𝜕Ω. In (1), the quantity

u(x, t) is a scalar response (displacement) field with x and t being the spatial and temporal variables, respectively, [⋅] a self-

adjoint LTI operator,  [⋅] an essentially nonlinear (i.e., non-linearizable) time-invariant operator, f (x, t) the external forcing

function defined in Ω for t ≥ 0, and 𝜗 is a small parameter (|𝜗| ≪ 1) which will be used in the following asymptotic analysis.

Linear viscous damping can be included in this formulation but we omit it in order to more clearly study the connection between

stiffness nonlinearity and non-reciprocity; moreover, extension of the analysis to higher dimensions is straightforward from a

mathematical point of view, but we refer to our comments in §4 for the new non-reciprocal physical wave phenomena that

are expected in higher dimensions. We aim to study conditions for acoustic non-reciprocity in system (1) by applying a punctual

excitation at a given position and studying the symmetry (reciprocity) properties of the response with respect to the points of excitation

and measurement. To this end, we assume that the nonlinear operator in Eq. (1) is sufficiently smooth that it may be Taylor-

expanded in the form  [u] = a2u2 + a3u3 + (u4), ai ∈ ℝ.

To proceed, we consider an impulsive excitation applied at position x = x0 and express the forcing function as f (x, t; x0) = 𝛿(x

− x0)𝜙(t), with the system initially at rest. Assuming small responses (so that we confine our attention to the weakly nonlinear

regime), expressing the resulting response in power series in terms of the small parameter, u =
∑N

m=1
𝜗mum, substituting into

Eq. (1), and matching terms of same powers of 𝜗, we obtain a hierarchy of sub-problems at different orders of approximation.
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At the leading order of approximation we obtain,

(𝜗) ∶ u1,tt − [u1] = 𝛿(x − x0)𝜙(t) ⇒ u1(x, t; x0) =  ∗ f (2)

where (x, t; x0) ≡ x,x0 (t) denotes the Green’s function of the operator (𝜕2∕𝜕t2 − )[⋅] in Ω × ℝ+ for a unit impulse applied at

x = x0, at t = 0. Moreover, the convolution operation over space and time is denoted by ∗ and defined as:

 ∗ f ≡ ( ∗ f )(x, t; x0) = ∫
t

0 ∫Ω
x,𝜉(𝜏)f (𝜉, t − 𝜏; x0) d𝜉 d𝜏 = ∫

t

0

x,x0 (𝜏)𝜙(t − 𝜏)d𝜏.

This compact notation will be used throughout the following analysis. The first-order approximation u1(x, t; x0) is reciprocal

since the Green’s function x,𝜉(t) is symmetric due to the self-adjointness of the operator (𝜕2∕𝜕t2 − )[⋅]. Considering the next

orders of approximation we obtain the following sub-problems,

(𝜗2) ∶ u2,tt − [u2] = a2u2
1
⇒ u2(x, t; x0) = a2  ∗ u2

1
(3a)

(𝜗3) ∶ u3,tt − [u3] = 2a2u1u2 + a3u3
1
⇒ u3(x, t; x0) = a3  ∗ u3

1
+ 2a2  ∗ (u1u2) (3b)

whereas higher-order terms can be computed similarly. If 𝜗 is sufficiently small and the nonlinearity sufficiently smooth, the

Volterra series converges [25,26]. Considering the mathematical structure of the higher-order responses we note that in general,

the higher-order approximations (3a), (3b),… are not necessarily reciprocal due to the non-commutative nature of the variables x

and x0 in the nested products of the powers of the Green’s functions. In fact, as shown in the following analysis, the symme-

try of the higher-order approximations [and, hence, the non-reciprocity of the original system (1) in space] depends on factors

such as the boundary conditions, the possible symmetries between the excitation and measurement positions, and the type

and spatial distribution of the nonlinearity. These conditions, however, can be rigorously studied by analyzing the structure

of the VS terms (2)–(3a, 3b, …), so a direct relation between nonlinearity and non-reciprocity can be established. To study ana-

lytically in more detail the non-reciprocity in Eq. (1) and highlight its dependence on nonlinearity, the boundary conditions

and the domain of definition of the system, we will consider the specific example of the wave equation with cubic stiffness

nonlinearity.

Before proceeding with the analysis, we note that the same VS-based approach can be applied also to the case of linear time-

varying (LTV) systems (since time-variation of system properties is an alternative way to break acoustic reciprocity). This is

performed by replacing the LTI operator in Eq. (1) by the LTV operator 1[u, t] (depending explicitly on time), setting  [u] ≡ 0,

and following the previous asymptotic expansion in terms of the small parameter𝜗. This, however, is not pursued further in the

proposed work, since its exclusive focus is on nonlinear systems.

To study in more detail the efficacy of the proposed methodology to relate nonlinearity with non-reciprocity in the elas-

todynamic system (1), we restrict the analysis by considering the case of cubic stiffness nonlinearity, i.e.,  [u] ≡ u3 in Eq.

(1), and by assuming that a2 = 0 and ai = 0 for i ≥ 4 in the previous Taylor-series expansion of  [u]. We note at this point

that, whereas our formulation, analysis, and results extend to other types of stiffness or damping nonlinearities (e.g., quadratic

ones), the following exposition centers exclusively around cubic stiffness nonlinearities since these typically arise in acoustic

waveguides supported by linear springs but possessing geometric nonlinear effects – see Ref. [18]. It follows that system (1)

becomes

utt = [u] + u3 + 𝜗f , f (x, t; x0) = 𝛿(x − x0)𝜙(t). (4)

Next, we consider two different types of boundary conditions. In particular, we consider the case of an unbounded elastic contin-

uum, where Eq. (4) is defined on the infinite spatial domain Ω = {x ∈ ℝ,−∞ ≤ x ≤ +∞} with |u| integrable; this we designate

as Case I. Alternatively, we consider Eq. (4) on the finite domain Ω = {x ∈ ℝ, 0 ≤ x ≤ 2𝜋} with boundary conditions u = 0 on

𝜕Ω = {x ∈ ℝ, x = 0, x = 2𝜋}, and this we designate as Case II. Moreover, we set [u] = uxx so that system (4) becomes the 1D

nonlinear Klein-Gordon system [29–31].

Under these assumptions, applying the previous asymptotic expansions renders the response of Eq. (4) in the form

u(x, t; x0) = 𝜗  ∗ f + 𝜗3  ∗ ( ∗ f )3 + 𝜗5
[
3 ∗

{
[ ∗ f ]2

[ ∗ ( ∗ f )3
]}]

+(𝜗7) (5)

where the Green’s function assumes different forms for the infinite and finite systems as follows:

Case I. System of infinite spatial extent

x,𝜉(t) = (1∕2)H(t − |x − 𝜉|), Ω = {x ∈ ℝ,−∞ ≤ x ≤ +∞} (6a)

Case II. Finite system

x,𝜉(t) = 1

2

+∞∑
n=−∞

[H(t − |x − 𝜉 − 2𝜋n|)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Source at x=2𝜋n+𝜉

− H(t − |x + 𝜉 − 2𝜋n|)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Sink at x=2𝜋n−𝜉

=
∞∑

k=1

2

k𝜋
sin

kt

2
sin

kx

2
sin

k𝜉
2
,

Ω = {x ∈ ℝ, 0 ≤ x ≤ 2𝜋}. (6b)
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In the above, H(⋅) is the Heaviside function. The differences between the mathematical structures of the Green’s functions (6a)

and (6b) have important implications on non-reciprocity.

2.1. Case I: Boundless nonlinear system in the infinite spatial domain

Considering first Case I, and noting that the leading-order term in Eq. (5) is reciprocal due to the symmetry of the Green’s

function, we examine the next-order term and show that the nonlinear system (4) on the infinite domain Ω with the Green’s

function x,𝜉(t) given by (6a) is reciprocal in space. To this end, we can show that in this case the terms ( ∗ f )p, where p = 2,

3, …, are reciprocal in space, and so are their convolutions with the Green’s function,  ∗ ( ∗ f )p. For the latter case (the former

case is proven using similar arguments) the proof is as follows:

 ∗ ( ∗ f )p(x, t; x0) = ∫
t

0 ∫
+∞

−∞
x,𝜉(𝜏)

[
∫

t−𝜏

0

𝜉,x0(t − 𝜏 − 𝜎)𝜙(𝜎) d𝜎

]p

d𝜉d𝜏

= ∫
t

0 ∫
+∞

−∞

1

2
H(𝜏 − |x − 𝜉|)[∫ t−𝜏

0

1

2
H(t − 𝜏 − 𝜎 − |𝜉 − x0|)𝜙(𝜎) d𝜎

]p

d𝜉d𝜏

= ∫
t

0 ∫
+∞

−∞

1

2
H(𝜏 − |𝜂 − x0|)[∫ t−𝜏

0

1

2
H(t − 𝜏 − 𝜎 − |x − 𝜂|)𝜙(𝜎) d𝜎

]p

d𝜂d𝜏

= ∫
t

0 ∫
+∞

−∞

1

2
H(𝜏 − |x0 − 𝜂|)[∫ t−𝜏

0

1

2
H(t − 𝜏 − 𝜎 − |𝜂 − x|)𝜙(𝜎) d𝜎

]p

d𝜂d𝜏

= ∫
t

0 ∫
+∞

−∞
x0 ,𝜂(𝜏)

[
∫

t−𝜏

0

𝜂,x(t − 𝜏 − 𝜎)𝜙(𝜎) d𝜎

]p

d𝜂d𝜏

=  ∗ ( ∗ f )p(x0, t; x). (7)

In the proof above, the change of variables 𝜂 = x0 + x − 𝜉 was introduced. It follows that by setting p = 3 we prove that the

(𝜗3) leading-order nonlinear approximation in Eq. (5) is reciprocal. We can show similarly that, for any function F(⋅) such that

 ∗ F( ∗ f ) exists and is bounded for all x, x0 and t, the combined function  ∗ F( ∗ f ) is reciprocal in space on the infinite

domain Ω. Based on these results, we prove that products of the form [ ∗ f ]q[ ∗ ( ∗ f )p] are reciprocal in space as well,

which, in turn proves that the (𝜗5) term and the higher-order terms of the asymptotic expansion (5) are reciprocal in space.

Combining the previous results, we prove that the response (5) for Case I is reciprocal, so the nonlinear system (4) defined in the

infinite domain (Case I) does not violate reciprocity in space. This result proves that nonlinearity does not necessarily imply non-

reciprocity, and additional conditions should be met for non-reciprocal response. This is proved in the following analysis for

Case II.

2.2. Case II: Finite nonlinear system

Considering now Case II of the finite nonlinear system (4) with [u] = uxx and Green’s function defined by (6b), we will prove

that, provided that x = 2𝜋 − x0, terms of the form ( ∗ f )p and  ∗ ( ∗ f )p, where p = 2, 3,…, are reciprocal in Ω. This is shown

as follows:

 ∗ ( ∗ f )p(x, t; x0) = ∫
t

0 ∫
2𝜋

0

[ ∞∑
k=1

2

k𝜋
sin

k𝜏
2

sin
kx

2
sin

k𝜉
2

]

×

[
∫

t−𝜏

0

∞∑
m=1

2

m𝜋
sin

m(t − 𝜏 − 𝜎)
2

sin
m𝜉
2

sin
mx0

2
𝜙(𝜎) d𝜎

]p

d𝜉d𝜏. (8a)

Assuming that x = 2𝜋 − x0, the above expression yields

 ∗ ( ∗ f )p(x = 2𝜋 − x0, t; x0) = ∫
t

0 ∫
2𝜋

0

[ ∞∑
k=1

2

k𝜋
(−1)k+1 sin

k𝜏
2

sin
kx0

2
sin

k𝜉
2

]

×

[
∫

t−𝜏

0

∞∑
m=1

2

m𝜋
(−1)m+1 sin

m(t − 𝜏 − 𝜎)
2

sin
m𝜉
2

sin
mx

2
𝜙(𝜎) d𝜎

]p

d𝜉d𝜏.

(8b)

Finally, introducing the change of variables 𝜂 = 2𝜋 − 𝜉 in Eq. (8b) yields
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 ∗ ( ∗ f )p(x = 2𝜋 − x0, t; x0) = ∫
t

0 ∫
2𝜋

0

[ ∞∑
k=1

2

k𝜋
(−1)2(k+1) sin

k𝜏
2

sin
kx0

2
sin

k𝜂
2

]

×

[
∫

t−𝜏

0

∞∑
m=1

2

m𝜋
(−1)2(m+1) sin

m(t − 𝜏 − 𝜎)
2

sin
m𝜂
2

sin
mx

2
𝜙(𝜎) d𝜎

]p

d𝜂d𝜏

= ∫
t

0 ∫
2𝜋

0

[ ∞∑
k=1

2

k𝜋
sin

k𝜏
2

sin
kx0

2
sin

k𝜂
2

]

×

[
∫

t−𝜏

0

∞∑
m=1

2

m𝜋
sin

m(t − 𝜏 − 𝜎)
2

sin
m𝜂
2

sin
mx

2
𝜙(𝜎) d𝜎

]p

d𝜂d𝜏

= ∫
t

0 ∫
2𝜋

0

x0 ,𝜂(𝜏)
[
∫

t−𝜏

0

𝜂,x(t − 𝜏 − 𝜎)𝜙(𝜎) d𝜎

]p

d𝜂d𝜏

=  ∗ ( ∗ f )p(x0, t; x = 2𝜋 − x0). (8c)

This proves that in Case II, provided that x = 2𝜋 − x0 ∈ Ω, the (𝜗3) approximation in Eq. (5) is reciprocal in space. Using

similar ideas any higher-order approximations can be shown to be reciprocal in this case, i.e., successive changes of variables

of the form 𝜉 i = 2𝜋 − 𝜉 j in the convolution operations in order to interchange x and x0. This proves that for x = 2𝜋 − x0 ∈ Ω,

the nonlinear system (4) defined in the finite domain (Case II) does not violate reciprocity in space. However, any small perturbation

x = 2𝜋 − x0 + 𝜀 ∈ Ω with 0 < 𝜀 ≪ 1, i.e., any small perturbation in the symmetric choice of x and x0 in Ω, would lead to non-

reciprocity in space for Case II. This is proven following the previous analytical derivation and substituting x = 2𝜋 − x0 + 𝜖 in

Eq. (8a) to yield

 ∗ ( ∗ f )p(x = 2𝜋 − x0 + 𝜀, t; x0) = ∫
t

0 ∫
2𝜋

0

{ ∞∑
k=1

[
2

k𝜋
sin

kx0

2
+ 𝜀
𝜋

cos
kx0

2
+ (𝜀2)

]
(−1)k+1 sin

k𝜏
2

sin
k𝜉
2

}

×

{
∫

t−𝜏

0

∞∑
m=1

[
2

m𝜋
sin

mx

2
+ 𝜀
𝜋

cos
mx

2
+ (𝜀2)

]

× (−1)m+1 sin
m(t − 𝜏 − 𝜎)

2
sin

m𝜉
2
𝜙(𝜎) d𝜎

}p

d𝜉d𝜏. (9a)

Letting 𝜂 = 2𝜋 − 𝜉 in (9a) yields

 ∗ ( ∗ f )p(x = 2𝜋 − x0 + 𝜀, t; x0) = ∫
t

0 ∫
2𝜋

0

{ ∞∑
k=1

[
2

k𝜋
sin

kx0

2
+ 𝜀
𝜋

cos
kx0

2
+ (𝜀2)

]
sin

k𝜏
2

sin
k𝜂
2

}

×

{
∫

t−𝜏

0

∞∑
m=1

[
2

m𝜋
sin

mx

2
+ 𝜀
𝜋

cos
mx

2
+ (𝜀2)

]

× sin
m(t − 𝜏 − 𝜎)

2
sin

m𝜂
2
𝜙(𝜎) d𝜎

}p

d𝜂d𝜏. (9b)

We recall at this point the definition (6b) of the Green’s function for Case II, yielding:

x,𝜂(t) =
∞∑

k=1

2

k𝜋
sin

kt

2
sin

kx

2
sin

k𝜂
2
, (10a)

𝜕x,𝜂(t)
𝜕x

≡ x,𝜂
x (t) =

∞∑
k=1

1

𝜋
sin

kt

2
cos

kx

2
sin

k𝜂
2
. (10b)

We note that the series x,𝜂
x (t) diverges in the classical sense but converges in the sense of the theory of distributions [32]. We

note also that, whereas x,𝜂(t) is reciprocal in Ω [since x,𝜂(t) = 𝜂,x(t) for x, 𝜂 ∈ Ω = {y ∈ ℝ, 0 ≤ y ≤ 2𝜋}], a simple computa-

tion shows that x,𝜂
x (t) is non-reciprocal. Hence, (9b) can be expressed as follows:
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 ∗ ( ∗ f )p(x = 2𝜋 − x0 + 𝜀, t; x0) = ∫
t

0 ∫
2𝜋

0

{x0,𝜂(𝜏) + 𝜀 x0 ,𝜂
x (𝜏) + (𝜀2)

}
×
{
∫

t−𝜏

0

[x,𝜂(t − 𝜏 − 𝜎) + 𝜀 x,𝜂
x (t − 𝜏 − 𝜎) + (𝜀2)

]
𝜙(𝜎) d𝜎

}p

d𝜂d𝜏.

(11)

If we assume for the moment that p = 1 (no nonlinearity) in Eq. (11), and collect powers of 𝜖, we obtain

 ∗ ( ∗ f )(x = 2𝜋 − x0 + 𝜀, t; x0) = ∫
t

0 ∫
2𝜋

0

x0 ,𝜂(𝜏)
[
∫

t−𝜏

0

𝜂,x(t − 𝜏 − 𝜎)𝜙(𝜎) d𝜎

]
d𝜂d𝜏

+ 𝜀

{
∫

t

0 ∫
2𝜋

0

[
x0 ,𝜂

x (𝜏)∫
t−𝜏

0

𝜂,x(t − 𝜏 − 𝜎)𝜙(𝜎) d𝜎

+ x0,𝜂(𝜏)∫
t−𝜏

0

x,𝜂
x (t − 𝜏 − 𝜎)𝜙(𝜎) d𝜎

]
d𝜂d𝜏

}
+ (𝜀2), (12)

which is reciprocal for all powers of 𝜖 by virtue of the commutativity of the convolution in time and space symmetry of G.

Reciprocity is expected in this case since  ∗ ( ∗ f ) is reciprocal for any choice of x, x0 ∈ Ω. In particular, we note that the two

nonreciprocal cross-convolutions between x and  add up to yield a reciprocal term at order 𝜖. In what follows, we show how

the nonlinearity breaks this pattern, and therefore destroys reciprocity.

Considering again Eq. (11) with p ≥ 2, we collect powers of 𝜖 and derive the expression

 ∗ ( ∗ f )p(x = 2𝜋 − x0 + 𝜀, t; x0) = ∫
t

0 ∫
2𝜋

0

x0 ,𝜂(𝜏)
[
∫

t−𝜏

0

𝜂,x(t − 𝜏 − 𝜎)𝜙(𝜎) d𝜎

]p

d𝜂d𝜏

+ 𝜀

{
∫

t

0 ∫
2𝜋

0

[
∫

t−𝜏

0

𝜂,x(t − 𝜏 − 𝜎)𝜙(𝜎) d𝜎

]p−1

×
[
x0,𝜂

x (𝜏)∫
t−𝜏

0

𝜂,x(t − 𝜏 − 𝜎)𝜙(𝜎) d𝜎

+ p x0,𝜂(𝜏)∫
t−𝜏

0

x,𝜂
x (t − 𝜏 − 𝜎)𝜙(𝜎) d𝜎

]
d𝜂d𝜏

}
+ (𝜀2). (13)

The leading-order term in Eq. (13) was shown to be reciprocal earlier (it corresponds to the symmetric case x = 2𝜋 − x0 ∈ Ω for

which 𝜖 = 0). The (𝜀) term in Eq. (13), however, is non-reciprocal for p > 1. Indeed, only if p = 1 does the term raised to the

(p − 1) power out-front become equal to unity, and we recover Eq. (12), which is reciprocal. From the previous derivations it

is proven that if, x = 2𝜋 − x0 + 𝜀 ∈ Ω with 0 < 𝜀 ≪ 1, then  ∗ ( ∗ f )p(x, t; x0) ≠  ∗ ( ∗ f )p(x0, t; x), i.e., that any asymmetric

choice of x and x0 in Ω breaks spatial reciprocity in Case II.

It follows that the symmetry (or lack thereof) of the boundary conditions with respect to sensing positions in a finite acoustic

waveguide plays an important role in the nonlinear case, but not in the linear one. The reason is the amplitude (or, equivalently,

energy) dependence of the dispersion relationship in the nonlinear acoustic medium, and the absence of a similar amplitude

dependence in the linear case (in the linear case the dispersion relationship is between the frequency and the wavenumber or

phase speed). As a result, asymmetrically placed boundary conditions in a nonlinear acoustic waveguide affects the speed and

phase of right- and left-going waves in the waveguide as these waves encounter and are reflected by the boundaries. In turn,

reflections from asymmetrically placed boundaries affect the positive or negative interference patterns of left- and right-going

waves at the sensing positions in the nonlinear acoustic medium, since these patterns are significantly influenced by the distance

of the sensing positions from the boundaries, as well as the amplitudes of the propagating waves as they are reflected at the

boundaries, and/or are dispersed by the nonlinear medium. It follows that in the nonlinear acoustic waveguide, the responses at

the sensing positions are critically affected by the relative placements of the sensing positions with respect to the boundaries,

whereas there are no such effects in boundless nonlinear waveguides. This generates nonlinear acoustic non-reciprocity, as

shown formally in this section. In the corresponding linear waveguides, there is no amplitude dependence of the dispersion

relation, so the aforementioned wave interference patterns are not affected by the asymmetry of the boundaries, and linear

acoustic reciprocity is a direct result of the symmetry of the Green’s function, which, in turn, is the result of the self-adjointness

of the governing LTI differential operator.

2.3. Non-reciprocity quantification measures

The previous analytical findings show that nonlinearity is neither necessary nor sufficient for breaking reciprocity in the 1D

nonlinear system (4). Rather, non-reciprocity in this nonlinear system depends on the boundary conditions and on the choice

of the spatial points where reciprocity is tested. More specifically, based on our findings we conjecture that 1D nonlinear elastic
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systems defined over boundless domains (e.g., Case I studied herein) are in general reciprocal; whereas finite elastodynamic

systems (e.g., Case II considered here) may or may not be reciprocal, depending on certain symmetry conditions satisfied by the

boundary conditions and the spatial points where reciprocity is tested. Generalization of the mathematical analysis to higher

dimensional elastodynamics is straightforward.

Considering again systems (1) or (4), the non-reciprocity of the nonlinear response can be defined through appropriate

quantification measures to perform non-reciprocity quantification. A possible non-reciprocity quantification measure can be

defined by separating the reciprocal and non-reciprocal parts of a measured time series response according to the following

expressions,

𝜌r(t; x, x0) = |u(x0, t; x) + u(x, t; x0)|∕2 (Reciprocal part) (14a)

𝜌nr(t; x, x0) = |u(x0, t; x) − u(x, t; x0)|∕2 (Non-reciprocal part) (14b)

where in the notation for the response u(y, t; z), y and z denote the measurement and excitation locations, respectively. We can

eliminate the time dependencies from the non-reciprocity measures by introducing the following two alternative expressions

for two specific interchangeable measurement/excitation positions:

M1(x, x0) = RMS
{|u(x0, t; x) − u(x, t; x0)|} (15a)

M2(x, x0) =
1

T ∫
T

0

|u(x0, 𝜏; x) − u(x, 𝜏; x0)| d𝜏. (15b)

Based on these non-reciprocity quantification measures, optimization can be performed to study the effects of the type and

distribution of the nonlinearity, the energy level, the types of boundary conditions, the possible symmetries, and of other factors

on non-reciprocity. To this end, numerical optimization tools previously used in the optimal design and system identification

of strongly nonlinear structures [33,34] can be adapted to refine parameter values toward this end, using the non-reciprocity

measure as an objective function. Experience has shown both gradient-based and genetic-algorithm optimizers to be effective

for this work. Such an approach can lead to a better physical understanding of non-reciprocity in a broad class of systems, and

can provide important insight that will facilitate its effective and robust implementation.

In addition, the outlined perturbation methodology is especially suitable for studying the effects of nonlinear inhomo-

geneities on non-reciprocity. For example, assuming that the Green’s function x,𝜉(t) has a discrete spectrum (e.g., Case II),

the response of (1) or (4) can be projected onto the eigenbasis of the operator (𝜕2∕𝜕t2 − )[⋅], leading to reduced-order mod-

eling. Such an order reduction can shed further physical insight, as it can enable the investigation of the role of irreversible

multi-scale nonlinear targeted energy transfers in non-reciprocity. In that context, the influence of the spectral composition of

the Green’s functions on acoustic non-reciprocity would be worth examining. Especially in the case of nonlinear phononic

structures [35] the influence of their energy-dependent pass- and stop-bands on non-reciprocity would be an interesting topic

of further study. Finally, it is straightforward to extend the previous VS-based asymptotic framework (which was focused on

spatial non-reciprocity) to the study of time irreversibility of the nonlinear responses of (1) or (4). To address this task, we will

need to introduce an extended Green’s function of the form ̃(x, t; 𝜉, 𝜏) subject to the combined spatio-temporal unit excitation

𝛿(x − 𝜉)𝛿(t − 𝜏). Then, a similar VS analysis based on ̃ can be performed to study time irreversibility.

3. Numerical example

A numerical application is provided with the system of Fig. 1 consisting of a linear finite non-dispersive string with (normal-

ized) unit length, fixed boundary conditions and a strongly nonlinear local stiffness at position x = x0. Assuming the nonlinear

characteristic f (u) = −(k1u + k3u3) for the local stiffness, the nonlinear elastodynamics of this system is governed by the follow-

ing normalized equation of motion and boundary conditions:

utt = uxx − (k1u + k3u3)𝛿(x − x0), u(0, t) = u(1, t) = 0. (16)

We consider the response of this system for a unit impulse applied at t = 0+, at location x= ximp, subject to zero initial conditions,

u(x, 0−) = 0 and ut(x, 0−) = 0. This amounts to the following initial conditions for the string immediately after the application of
Fig. 1. Finite string with strongly nonlinear stiffness.
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the impulse,

u(x, 0+) = 0, ut(x, 0+) = exp

[
−
(x − ximp)2

2𝜎2

]
(17)

which is normalized according to E0 = (1∕2) ∫ 1

0
u2

t
(x, 0+) dx.

To test reciprocity for this system we consider parameters x0 = 1/2, E0 = 5, 𝜎 = 0.005, k1 = 1, and nonlinear stiffness coeffi-

cient in the range 10−2 ≤ k3 ≤ 105. Moreover, the following two scenarios are considered, corresponding to the interchange of

two forcing and measurement positions:

Scenario 1

Forcing location: ximp ≡ xA = 0.3

Measurement location: xmeas ≡ xB = 0.4

Scenario 2

Forcing location: ximp ≡ xA′ = 0.4

Measurement location: xmeas ≡ xB′ = 0.3

In Fig. 2 we depict representative responses of this system for the linear case (k3 = 0) and a strongly nonlinear case (k3 = 104).

Nonlinear non-reciprocity is clear in the latter case. In Fig. 3 we depict the time-independent non-reciprocity measures M1 and

M2 defined by expressions (15a) and (15b), respectively. Both measures predict exact and negligible non-reciprocity for k3 = 0

and 0 < k3 ≪ 1, as expected. For increasing k3, the non-reciprocity in this system becomes evident, reaching a maximum value

at k3,max ≈ 102 for both non-reciprocity measures. This leads to the interesting conclusion that there is a specific value of the

nonlinear stiffness coefficient that maximizes non-reciprocity in this system. Physically, the point of maximum non-reciprocity

denotes the point of transition of the nonlinear elastodynamics between two limiting linear systems, namely the system with
Fig. 2. Responses u(xB , t; xA) (solid line) and u(xB′ , t; xA′ ) (dashed line) for (a) k3 = 0, and (b) k3 = 104.

Fig. 3. Non-reciprocity measures (a) M1 and (b) M2 for k1 = 1 and E0 = 5 for forcing/measurement Scenarios 1 and 2.
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linear stiffness attachment corresponding to k3 = 0 and the system with rigid attachment (i.e., a fixed boundary condition)

corresponding to k3 → ∞. This indicates that for 0 < k3 < k3,max the nonlinear dynamics could be regarded as perturbation of

the linear limiting system with k3 = 0, whereas for k3,max < k3 < ∞, as perturbation of the other linear limiting system with

k3 → ∞; viewed in that context, the transition point could be considered heuristically as the point of equidistance between the

two aforementioned linear limiting systems, or equivalently, as the point of “maximum nonlinearity” in the elastodynamics.

However, we note that the previous discussion is valid only for the specific pair of interchangeable excitation/measurement

positions considered in the previous example (i.e., Scenarios 1 and 2), so for a more complete picture of non-reciprocity of the

elastodynamics, one would need to vary continuously these positions to “scan” the entire length of the string. Nevertheless,

this discussion highlights the potential of the presented theoretical analysis and the associated non-reciprocity measures for

physically understanding and accurately quantifying the nonreciprocal elastodynamics of systems with local or distributed

nonlinearities.

4. Conclusions

Using Volterra-series based asymptotic analysis, we studied non-reciprocity in space for a class of 1D continuous, time-

invariant systems with stiffness nonlinearities. Nonlinearity is neither necessary nor sufficient for breaking reciprocity in this

class of systems; rather, non-reciprocity depends on the boundary conditions, the symmetries (or disorder) of the governing

linear and nonlinear operators, and the choice of the spatial points where non-reciprocity is tested. Generalization of the anal-

ysis to higher dimensional elastodynamics might be straightforward from a mathematical point of view since the developed

asymptotic methodology can conveniently incorporate higher spatial dimensions (albeit with increased analytical complexity);

however, from a physical point of view, the study of nonlinear acoustic non-reciprocity in higher dimensions is expected to

reveal new interesting wave phenomena. For example, in higher dimensions, we expect nonlinear wave interactions that would

couple waves propagating in different directions or corresponding to different modes of wave propagation (e.g., transverse ver-

sus axial – for an example of such nonlinear wave interactions in a two-dimensional geometrically nonlinear chain, we refer

to [18]); possible nonlinear targeted energy transfers between different types of waves [18]; or the possibility of nonlinear

complex wave modes (such wave modes appear already in higher dimensional linear acoustics). In fact, the interplay of non-

linearity and wave complexity, and their combined effects on acoustic non-reciprocity in higher dimensions is an interesting

topic for further research; the effects of the boundary conditions on different types of waves, and their non-reciprocal influence

on non-reciprocal wave propagation depending not only on the direction of wave propagation (as one of the reviewers of this

work indicated), but also on the type of wave mode (e.g., shear versus axial waves), etc. Nevertheless, the developed Volterra-

based asymptotic methodology of this work can be a basis for studying analytically such non-reciprocal wave phenomena in

dimensions higher than one.

Furthermore, the developed non-reciprocity measures enable optimization studies leading to predictive design of systems

with optimal non-reciprocity measures. In addition, they can provide better physical understanding on the nonlinear effects,

helping one establish regimes of “maximum nonlinearity” or near-linear reciprocal behavior. Finally, the presented analytical

developments can be conveniently extended to understanding non-reciprocity in systems with time-varying properties (this

is another possibility for breaking non-reciprocity), to studying time irreversibility in the dynamics, and to analyzing the non-

reciprocal dynamics of elastic systems with combined local or extended stiffness and damping nonlinearities.
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