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Abstract Identification and control of transient insta-
bilities in high-dimensional dynamical systems remain
a challenge because transient (non-normal) growth can-
not be accurately captured by reduced-order modal
analysis. Eigenvalue-based methods classify systems
as stable or unstable on the sole basis of the asymptotic
behavior of perturbations and therefore fail to predict
any short-term characteristics of disturbances, includ-
ing transient growth. In this paper, we leverage the
power of the optimally time-dependent (OTD) modes,
a set of time-evolving, orthonormal modes that cap-
ture directions in phase space associated with transient
and persistent instabilities, to formulate a control law
capable of suppressing transient and asymptotic growth
around any fixed point of the governing equations.
The control law is derived from a reduced-order sys-
tem resulting from projecting the evolving linearized
dynamics onto the OTD modes and enforces that the
instantaneous growth of perturbations in the OTD-
reduced tangent space be nil. We apply the proposed
reduced-order control algorithm to several infinite-
dimensional systems, including fluid flows dominated
by normal and non-normal instabilities, and demon-
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strate unequivocal superiority of OTD control over
classical modal control.
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1 Introduction

The concept of instability in dynamical systems is gen-
erally associated with the spectrum of the linearized
operator: a fixed point of the governing equations is sta-
ble if and only if all the eigenvalues are confined to the
stable part of the complex plane [21]. This approach,
referred to as modal stability theory, has led to a num-
ber of fundamental results in fluidmechanics pertaining
to parallel shear flows [27,28], compressible boundary
layers [25], elliptical instabilities [6,31], bluff body
flows [34,47], and many more. But it took the sci-
entific community several decades to realize that the
modal perspective provides information on stability of
a base flow only in the asymptotic limit and therefore
fails to capture features associated with transient (non-
normal) growth of perturbations. Episodes of transient
growth are attributable to the non-normality of the lin-
earized operator andmay occur evenwhen the latter has
no unstable eigenvalues. For example, in many wall-
bounded shear flows, eigenvalue analysis predicts a
critical value of theReynolds number for transitionwell
above that observed experimentally [41]. The recog-
nition that short-term instabilities play a critical role
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in fluid dynamical systems [38], but also in climate
dynamics [14,29] and thermoacoustics [5], has then
led to a large number of studies focused on finding
disturbances that maximize energy amplification over
a finite-time horizon [17,35]. These “optimal” distur-
bances, which grow the most over a short timescale,
differ significantly from the least stable eigenvectors of
the system, so much so that even in simple situations
involving transition to turbulence, non-modal stability
analysis paints amuchmore complete picture than con-
ventional modal analysis.

By now, the theory of non-normal instability has
matured to the point where it can be incorporated into
control algorithms. Flow control is a rapidly expanding
field, and one of the challenges it faces is that of dimen-
sionality. Controlling high-dimensional systems such
as fluid flows is often prohibitively expensive as many
control strategies do not scale well with the dimen-
sion of the system [2]. With machine learning control
still in an embryonic stage [12], order reduction tech-
niques have become customary, because they allow
construction of low-dimensional subspaces in which
design and implementation of controllers are com-
putationally tractable [44]. Some methods have been
around for decades, such as proper orthogonal decom-
position (POD) [24], and others have been developed
more recently, such as balanced truncation [26], bal-
anced proper orthogonal decomposition (BPOD) [36],
the eigensystem realization algorithm (ERA) [23], and
dynamic mode decomposition (DMD) [33,39], often
with a view tomaking themethod data-driven. But even
the most sophisticated reduced-order models struggle
with capturing non-normal instabilities. POD performs
extremely poorly for systems exhibiting large transient
growth [11], while DMD, BPOD, and ERA, or combi-
nations thereof, often require subspaces with double-
digit dimension to achieve acceptable errors, even in
configurations as simple as plane Poiseuille flow [37].

In this work, we elect the optimally time-dependent
(OTD) modes, recently introduced by Babaee and Sap-
sis [4], to reduce the system dimensionality in a dynam-
ically consistent fashion, that is, one that preserves fea-
tures of the full-order system associated with transient
and persistent instabilities. The OTD modes are a set
of orthonormal vectors that adaptively track directions
in phase space responsible for transient growth and
instabilities [3,4]. The results of Babaee and Sapsis [4]
showed that a very small number of OTD modes are
capable of capturing transient and asymptotic insta-

bilities, which led the authors to surmise that the
OTD framework is particularly appropriate to design
reduced-order control algorithms toward suppression
of transient instabilities. The purpose of the present
work is precisely to develop a control strategy cen-
tered around the OTD modes. To this end, we design
a feedback control law that suppresses instantaneous
growth of perturbations in the OTD-reduced tangent
space of the linearized dynamics. The end result is a
control algorithm that fulfills all of the aforementioned
requirements related to low dimensionality and non-
normality.

The paper is structured as follows. We present the
problem and review the concept of OTD modes in
Sect. 2, formulate an OTD-based control law in Sect. 3,
apply the proposed control strategy to several dynam-
ical systems in Sect. 4, and offer some conclusions in
Sect. 5.

2 Preliminaries

2.1 Formulation of the problem

We consider a generic dynamical system whose evolu-
tion obeys

ż = F (z), (2.1)

where z belongs to an appropriate function spaceX ,F
is a nonlinear differential operator, and overdot denotes
partial differentiation with respect to the time variable
t .We specify the initial condition at time t0 as z(·, t0) =
z0.We assume that (2.1) admits at least one fixed point,
that is, the set {z ∈ X : F (z) = 0} is not empty.
We denote by ze any fixed point of (2.1), regardless of
how many there are. Infinitesimal perturbations about
a trajectory obey the variational equations

v̇ = L (z; v), (2.2)

where v ∈ X , andL (z; v) = dF (z; v) is the Gâteaux
derivative of F evaluated at z along the direction v.
We will find it useful, and sometimes more intuitive, to
consider (2.1) and (2.2) in a finite-dimensional setting,
that is,

ż = F(z), z ∈ R
d (2.3a)

and

v̇ = L(z)v, v ∈ R
d , (2.3b)
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where F : R
d → R

d is a smooth vector field and
L(z) = ∇zF(z) ∈ R

d×d is the Jacobian matrix associ-
ated with F evaluated at z. The finite-dimensional for-
mulation may be viewed as the result of projecting the
infinite-dimensional system onto a finite-dimensional
set of complete functions and for our purposes does not
restrict the scope of the analysis.

Here, we consider situations in which infinitesi-
mal perturbations from a fixed point of the governing
equations experience significant transient (and possi-
bly asymptotic) growth, which we wish to suppress by
a suitably designed control algorithm. The challenge
is to formulate a control strategy that is low dimen-
sional and capable of suppressing instabilities result-
ing from normal and non-normal behavior. The first
requirement may be satisfied by projecting the dynam-
ics onto a carefully selected subspace with dimension
much smaller than that of the phase space and applying
the control algorithm in the reduced-order subspace.
One candidate subspace is the unstable eigenspace Eu
of Le = L (ze; ·), whose eigenvalues dictate linear
stability of ze. However, the subspace Eu provides an
indication regarding exponential growth of perturba-
tions about ze only in the asymptotic limit t → +∞
and therefore fails to capture any short-term features
of the trajectory. In particular, eigenvalues of Le may
predict linear stability for ze, even when significant
transient growth occurs. A well-known example of
such behavior is found in fluid mechanics with plane
Poiseuille flow (parallel flow between two plates; see
Sect. 4.2.2). For this flow, a “naive” eigenvalue calcu-
lation around the base state predicts a critical value of
the Reynolds number (based on the centerline veloc-
ity of the undisturbed flow and the channel half-width)
for transition well above that observed experimentally.
This is because the eigenvalue approach is unable to
capture the non-normal nature of the linearized opera-
tor, which is responsible for the significant transient
growth seen in experiments and computations. This
result is significant, because non-normal growth can
activate nonlinear mechanisms triggering turbulence,
and a mere inspection of the spectrum of Le cannot
explain that outcome.

Therefore, it is clear that suppression of transient
growth and instabilities cannot be achieved by a control
algorithm solely based on eigenvalue considerations of
Le. Data-driven approaches, such as proper orthogonal
decomposition [22,24,43] and dynamic mode decom-
position [39], may look like attractive alternatives, but

the modes produced by such decompositions are time
independent and intrinsically “biased” toward the data
thatwere used to generate them, so they cannot adapt to
directions associated with transient instabilities as the
trajectory wanders about in the phase space and expe-
riences various dynamical regimes. On the other hand,
the optimally time-dependent (OTD) modes, recently
introduced by Babaee and Sapsis [4], provide a promis-
ing framework for our control problem. We review the
reasons why below.

2.2 Review of the optimally time-dependent (OTD)
modes

The concept of OTD modes was first introduced in
Babaee and Sapsis [4] in the form of a constrained
minimization problem,

min
u̇i

r∑

i=1

‖u̇i − L (z; ui )‖2 subject to 〈ui , u j 〉 = δi j ,

(2.4)

where 〈· , ·〉 is a suitable inner product and ‖ · ‖ the
induced norm, δi j is the Kronecker delta, and ui ∈ X
is the i th OTD mode. The r -dimensional subspace
spanned by the collection {ui }ri=1 is referred to as
the OTD subspace. Because of the orthonormality
constraint in (2.4), the set {ui }ri=1 trivially forms an
orthonormal basis of the OTD subspace. We note that
the optimization in (2.4) is performed with respect to
u̇i and not ui , so the OTD modes are by construction
the best approximation of the linearized dynamics in
the subspace that they span.

As discussed in Babaee and Sapsis [4], the mini-
mization problem (2.4) is equivalent to a set of coupled
partial differential equations governing the evolution of
each OTD mode. For the dynamical system (2.1) and
an r -dimensional OTD subspace, the i th OTD mode
obeys

u̇i = L (z; ui )

−
r∑

k=1

[〈L (z; ui ), uk〉 uk − Φikuk ] , 1 ≤ i ≤ r,

(2.5)

where � = (Φik)
r
i,k=1 ∈ R

r×r is any skew-symmetric
tensor (i.e., such thatΦik = −Φki for all 1 ≤ i, k ≤ r ).
The choice of � does not affect the OTD subspace,
since any two initially equivalent subspaces propagated
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with (2.5), each with a different choice of �, remain
equivalent for all times [4]. A natural candidate for� is
the zero tensor, but that leads to a fully coupled system
of OTD equations in which all r modes appear in each
equation of (2.5). In contrast, choosing � such that

Φik =

⎧
⎪⎨

⎪⎩

−〈L (z; uk), ui 〉, k < i

0, k = i

〈L (z; ui ), uk〉, k > i

(2.6)

leads to a system inwhich the equation for the i th mode
depends only on the previous modes u j with index 1 ≤
j ≤ i . With this choice of �, the equation for the i th
OTD mode reads

u̇i = L (z; ui ) − 〈L (z; ui ), ui 〉 ui

−
i−1∑

k=1

[〈L (z; ui ), uk〉

+ 〈L (z; uk), ui 〉] uk, 1 ≤ i ≤ r, (2.7)

and the system assumes a lower triangular form, read-
ily solvable by forward substitution. [We note that the
summation index goes to i −1 in (2.7), rather than r as
in (2.5)]. In finite dimension, we introduce the matrix
U ∈ R

d×r whose i th column is ui and write the finite-
dimensional counterpart of (2.5) in compact form as

U̇ = L(z)U − U
[
UᵀL(z)U − �

]
, (2.8)

where ᵀ denotes the Hermitian transpose operator.
Of the numerous properties that have been estab-

lished for the OTD modes, we review a few rel-
evant to the present work. First, the OTD modes
span the same flow-invariant subspace as the solutions
{vi (t)}ri=1 of the variational equations (2.2), while pre-
serving orthonormality for all times [16]. Second, for a
hyperbolic fixed point ze, the OTD subspace is asymp-
totically equivalent to the most unstable eigenspace
of the linearized operator Le [4]. Third, for a time-
dependent trajectory, the OTD subspace aligns expo-
nentially rapidly with the eigendirections of the left
Cauchy–Green tensor associated with transient insta-
bilities [3].

The above properties imply that an r -dimensional
OTD subspace continually seeks out the r -dimensional
subspace that is most rapidly growing in the tan-
gent space (i.e., the space where perturbations “live”).
Therefore, because of the orthonormality constraint,
the OTDmodes provide a numerically stable and inex-

pensive tool for computingfinite- and infinite-timeLya-
punov exponents along a given trajectory. We also note
that the OTD modes coincide with the backward Lya-
punov vectors (also known as Gram–Schmidt vectors)
and hence converge at long times to awell-defined basis
that depends only on the state of the system in the phase
space, and not on the history of the trajectory prior to
reaching the attractor [8]. But perhaps the most appeal-
ing property of the OTD modes is their unique ability
to capture transient episodes of intense growth, regard-
less of the exponential or non-normal origin of the latter
[4]. Because of their time-dependent nature, the OTD
modes are able to “track” the most unstable directions
in the phase space along a given trajectory and there-
fore are a natural candidate for the formulation of a
reduced-order control algorithm.

3 Formulation of an OTD-based control law

In this section, we formulate a control law based on
the OTD framework in order to suppress episodes of
transient growth around a fixed point of the governing
equations. The analytical exposition is done in finite
dimension, but carries over to the infinite-dimensional
case.

3.1 Formulation of the control problem

Weconsider the system (2.3a) subject to a control force,

ż = F(z) + Bc, (3.1)

where c ∈ R
p is the control variable and B ∈ R

d×p

is the control action matrix. The control force fc = Bc
may be seen as a body force acting on the system. Since
we are interested in steering the trajectory z toward a
fixed point ze, we introduce the quantity z′ = z − ze
describing the deviation of the current state from the
target state. The controlled perturbation z′ then obeys

ż′ = L(z)z′ + Bc + O
(
‖z′‖2

)
, (3.2)

where we have used the fact that L(ze) = L(z) +
O(‖z′‖). Assuming that the higher-order terms in (3.2)
are sufficiently small that they may be neglected, we
arrive at the controlled variational equation

ż′ = L(z)z′ + Bc, (3.3)

which will be the basis for our analysis. In the major-
ity of industrial applications, the dimension of equa-
tion (3.3) is very large (typically, millions of degrees of
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freedom), and designing a controller for awide range of
parameters often is a computationally onerous task. A
promising approach is to proceed to an order reduction
of the dynamics, which is generally done by a Galerkin
projection of the governing equations onto an appro-
priate basis; for example, POD modes computed from
a collection of snapshots of the trajectory, or eigen-
functions of the linear operator Le = L(ze). In the
following, we give arguments in favor of projecting the
dynamics onto OTD modes, rather than any other can-
didate basis.

3.2 Order reduction of the dynamics by OTD modes

As discussed in Sect. 2.2, the OTD modes span flow-
invariant subspaces of the tangent space, so they can be
used to reduce the dimensionality of the linear operator
L in a dynamically consistent fashion [16]. To see this,
we consider a solution v ∈ R

d of the original varia-
tional equation (2.3b), and its projection η ∈ R

r onto
the OTD basis U,

η(t) = U(t)ᵀv(t), v ∈ span(U). (3.4)

Here, the OTD basis U evolves according to the OTD
equation (2.8) along the trajectory z(t) of the system.
(The dependence on time is shown explicitly to empha-
size this point). The vector η represents the solution v
expressed in the OTD basis. We also have that v = Uη

as a result of the orthonormality of the OTD modes.
Substituting in (2.3b) yields the reduced linear equa-
tion

η̇ = (
UᵀLU − �

)
η. (3.5)

Conversely, ifη solves the reduced equation (3.5), then
v = Uη solves the original equation (2.3b),which is the
other prerequisite for dynamically consistent reduction.
We note that the condition v ∈ span(U) implies that
any direction orthogonal to U is left out by the order
reduction. This point is discussed in greater detail in
Sect. 3.4. The linear map Lr : Rr → R

r defined as

Lr = UᵀLU − � (3.6)

is referred to as the reduced linear operator. As dis-
cussed in Farazmand and Sapsis [16], the OTD order
reduction carries over to the infinite-dimensional case,
since projection of the infinite-dimensional operatorL
to an r -dimensional OTD subspace {ui }ri=1 yields a
reduced linear operator that is finite-dimensional (i.e.,
an r × r matrix), whose entries are given by

[Lr ]i j = 〈ui ,L (z; u j )〉 − Φi j , 1 ≤ i, j ≤ r. (3.7)

A great advantage of the OTD order reduction is that
it retains the information of the full-order solution
associated with transient instabilities, irrespective of
the modal or non-modal character of the latter. This
is because the OTD modes capture the most unstable
directions in phase space, and since they are computed
along an evolving trajectory, they are able to adapt to
the various regions visited by the system. Therefore,
the OTD modes establish themselves as a natural and
relevant candidate for the projection basis.

Wenow return to the control problem (3.3) and apply
the order reduction ideas described above. We define a
reduced control matrix Br ∈ R

r×p as

Br = UᵀB, (3.8)

and obtain the reduced controlled variational equation,

η̇ = Lr (z)η + Brc, (3.9)

where we have letη = Uᵀz′. Equation (3.9) is a set of r
ordinarydifferential equations,making itmuch cheaper
to compute an appropriate reduced action matrix Br .
We emphasize that we have thus far made no assump-
tion regarding the form of the reduced control force
fr,c = Uᵀfc. To guarantee dynamic consistency of the
order reduction, we only require that fc ∈ span(U), that
is, fc = Ufr,c, but the choice of fr,c remains arbitrary.
So here, the OTD modes have been used merely to
reduce the dimensionality of the system in a consistent
fashion (i.e., by preserving instability properties of the
full-order system), and this gives us complete freedom
in the choice of the control scheme inside the OTD sub-
space (e.g., linear quadratic regulator or proportional–
integral-derivative controller).We now explore how the
OTD modes may be incorporated in a control scheme
to suppress transient instabilities in the reduced-order
system.

3.3 Formulation of a control law

Inspired by the theory of proportional control, in which
the controller output is proportional to the error, we
seek a closed-loop feedback control law in the form
c = Krη, where Kr ∈ R

p×r is the reduced feedback
gain matrix. We recall that η = Uᵀz′ = Uᵀ(z − ze) is
nothingmore than the deviation of the trajectory z from
the fixed point ze expressed in the OTD basisU, so our
goal is to find an appropriateKr that drives the reduced
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perturbation η to 0. With this in hand, the controlled
reduced system (3.9) becomes

η̇ = Lr,cη, (3.10)

where Lr,c = Lr + BrKr is the closed-loop reduced
linear operator. (We will sometimes refer to Lr as the
open-loop reduced linear operator). The operator Lr,c

(and Lr for that matter) depends on time, so its eigen-
valuesmay not be used to determine growth or decay of
the solution η. Instead, we consider the instantaneous
growth of the perturbation in the OTD subspace,

1

2

d

dt
‖η‖2 = 〈Lr,cη,η〉 + 〈η,Lr,cη〉

2
= 〈η,Sr,cη〉,

(3.11)

where Sr,c is the symmetric part of Lr,c. We note that
Sr,c may be expressed in terms of the symmetric part
Sr of Lr , because

Sr,c = Lr,c + Lᵀ
r,c

2
= Lr + Lᵀ

r

2
+ BrKr + Kᵀ

r B
ᵀ
r

2

= Sr + BrKr + Kᵀ
r B

ᵀ
r

2
. (3.12)

For the norm of the perturbation to become vanishingly
small,we require the yet undetermined feedbackmatrix
Kr to be such that

∀η �= 0,
1

2

d

dt
‖η‖2 < 0, (3.13)

so Sr,c must be negative definite by virtue of (3.11).
Since negative definiteness is a condition on the spec-
trum of the operator, it is convenient to introduce the
eigendecomposition Sr = R�rRᵀ, where R ∈ R

r×r

is a unitary rotation matrix containing the eigenvec-
tors of Sr , and �r = diag(λi ) ∈ R

r×r is a diagonal
matrix containing the real eigenvalues of Sr , ordered
from most (λ1) to least (λr ) unstable. We may use the
eigenbasis of Sr to define a rotated closed-loop sym-
metric operator as

Ŝr,c = �r + RᵀBrKrR + RᵀKᵀ
r B

ᵀ
r R

2
, (3.14)

where it is understood that Ŝr,c = RᵀSr,cR. The control
problem may now be formulated as finding a feedback
matrix Kr such that Ŝr,c is negative definite.

Control problem Given a time-dependent diagonal
reduced matrix �r ∈ R

r×r , a reduced control matrix
Br ∈ R

r×p, and a unitary rotation matrix R ∈ R
r×r ,

find a reduced feedback matrix Kr ∈ R
p×r such that

the rotated closed-loop symmetric operator Ŝr,c is neg-
ative definite.

To minimize the cost of the control scheme, we addi-
tionally require that the norm of the matrixKr be min-
imized. We also note that at this point still, we have
used the OTD modes for nothing other than the order
reduction of the linearized dynamics.

The next step in the analysis is to solve the above
control problem and find an expression for the matrix
Kr . We now make two critical assumptions. First, we
assume that the control matrixB is equal to the identity
matrix, so the control vector c has as many inputs as
there are state variables (i.e., p = d). In words, this
means that the control can act everywhere on the state
of the system. With this assumption, we immediately
see that Br = Uᵀ, and the matrix Ŝr,c becomes

Ŝr,c = �r + RᵀUᵀKrR + RᵀKᵀ
r UR

2
, (3.15)

withKr now inRd×r . Second, as discussed in Sect. 3.2,
we require that the control vector c belongs to the OTD
subspace,meaning that there exists amatrixAr ∈ R

r×r

such that Kr = UAr . The matrix Ar ∈ R
r×r may

be chosen arbitrarily. Any symmetric matrix is a good
choice for Ar , because it considerably simplifies the
expression for Ŝr,c,

Ŝr,c = �r + RᵀArR, Ar = Aᵀ
r . (3.16)

Now that Ŝr,c has been expressed as the sum of a diago-
nal open-loop component �r and a symmetric rotated
feedback component RᵀArR, the control problem is
straightforward to solve. Indeed, since �r is diagonal,
it is easy to design RᵀArR and, hence, Kr so that Ŝr,c
is negative definite while minimizing the cost ‖Kr‖. (It
should be clear that ‖Kr‖ = ‖Ar‖ = ‖RᵀArR‖). The
optimal solution is given by

Ar = Rdiag[−(λi + ζ )H (λi )]Rᵀ, (3.17)

where H is the Heaviside function and ζ ∈ R
+ is a

damping parameter. TheHeaviside function guarantees
that the control acts only on directions associated with
positive instantaneous growth (those with λi ≥ 0), and
the parameter ζ governs the intensity with which each
of these directions is damped. With Ar chosen accord-
ing to (3.17), the rate of change in the perturbation
magnitude in closed loop is simply
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1

2

d

dt
‖η‖2 =

〈
η,RŜr,cRᵀη

〉

= −ζ
∑

λi≥0

η̂2i +
∑

λi<0

λi η̂
2
i , (3.18)

where we have defined the rotated perturbation η̂ =
Rᵀη = η̂iei . It should be clear from (3.18) that
d‖η‖2/dt < 0 for all η �= 0, ensuring that z tends
to ze at long times.

Collecting the pieces, we arrive at the final expres-
sion for the control force,

fc = URdiag[−(λi + ζ )H (λi )]RᵀUᵀ(z − ze),

(3.19)

which may be substituted in place of Bc in the original
full-order nonlinear system (3.1). The control force fc
is defined for all z ∈ R

d and all times t ≥ t0, that is,
it acts as a body force on every state variable of the
system. We address the issue of restricting the range of
the OTD controller in [9].

3.4 Properties of the OTD control scheme

We now discuss several issues related to the proposed
OTD control scheme. Three key questions arise. First,
how should the OTD subspace be initialized? Second,
how should the dimension of theOTD subspace be cho-
sen? Third, what is the scope of validity of the proposed
control algorithm?

3.4.1 Initialization of the OTD subspace

For the OTD reduction z′ = Uη to be consistent, it
is critical that the initial deviation z′(t0) = z(t0) −
ze have a nonzero projection on the OTD subspace,
that is, U(t0)ᵀz′(t0) �= 0. This can be realized in
a number of ways. One option is to let U(t0) =
{z̃′(t0), w̃1, . . . , w̃r−1}, where z̃′(t0) = z′(t0)/‖z′(t0)‖
is the normalized initial perturbation, and w̃i is the i th
leading eigenvector of (Le + Lᵀ

e )/2 orthonormalized
against the set {z̃′(t0), w̃1, . . . , w̃i−1}. In this way, the
OTD subspace initially contains the initial perturba-
tion, as well as the directions associated with largest
instantaneous growth for the steady operator Le.

Another option is given by Babaee and Sapsis [4],
who suggested to use the r leading right singular vec-
tors of the propagator M(t0, tmax). Those vectors are
essentially a set of r optimal initial conditions that reach
maximum possible amplification at a given time tmax.

This is a good choice because the right singular vec-
tors of M(t0, tmax) are real and orthonormal, and they
are associated with maximum amplification over the
finite-time horizon [t0, tmax].

We note that in the above two approaches, the OTD
modes satisfy the boundary conditions at t = t0, as
well as any constraint appearing in the linearized equa-
tions such as incompressibility. In practice, however,
this need not be the case, and the OTD subspace may
be initialized arbitrarily. For example, wemay choose a
Fourier basis, or a set of Legendre polynomials, which
we are careful to orthonormalize. The key point with
such initialization is to make sure that the OTD sub-
space contains the directions of instantaneous growthof
the initial perturbation, which is generally true except
in pathological cases.

3.4.2 Dimension of the OTD subspace

To determine what the dimension r of the OTD sub-
space should be for the control to be efficient, we first
note that r governs how faithful the order reduction
of the linear operator L is to the full-order dynamics,
or in other words, how much information is lost upon
projection onto the OTD subspace. So r must be cho-
sen on the basis of the information we wish to retain
in the reduced-order equation. In the present context
of controlling instabilities, we must select r so that the
reduced system (3.5) encapsulates all the information
related to transient and asymptotic growth. Should r
be too small, the OTD reduction would leave out direc-
tions associated with instabilities, which the control
law would in turn be unable to suppress.

For normal (i.e., modal) operators, it is sufficient to
capture directions associated with exponential growth,
that is, the unstable eigendirections of the operator Le.
This means that we must choose r ≥ dim Eu . In doing
so, we guarantee that the unstable eigenspaces of Le

and UᵀLeU coincide, by virtue of the following theo-
rem.

Theorem 1 Let Q ∈ R
d×d , and let � ∈ R

r×d be a
projector such that ��ᵀ = Ir . Then, the following
holds.

1. If (μ,ψ) is an eigenpair of�Q�ᵀ, and range(�ᵀ)

is an eigenspace of Q, then (μ,�ᵀψ) is an eigen-
pair of Q.

2. If (μ,θ) is an eigenpair of Q, and θ is in
range(�ᵀ), then (μ,�θ) is an eigenpair of�Q�ᵀ.
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Proof The proof of the above two items is as follows.

1. Since range(�ᵀ) is an eigenspace of Q, we have
that for any a ∈ R

r , there exists b ∈ R
r such that

Q�ᵀa = �ᵀb. This means that �Q�ᵀa = b.
Suppose now that a = ψ is an eigenvector of
�Q�ᵀ, and let μ be the associated eigenvalue.
Then, by definition, �Q�ᵀψ = μψ, and so
b = μψ. We thus obtainQ�ᵀψ = μ�ᵀψ, which
completes the proof of item 1.

2. Sinceθ ∈ range(�ᵀ), there existsb ∈ R
r such that

θ = �ᵀb. Also, since by definition Qθ = μθ, we
have Q�ᵀb = μ�ᵀb. Pre-multiplying by �, we
obtain�Q�ᵀb = μb. Equivalently, we may write
�Q�ᵀ�θ = μ�θ, which completes the proof of
item 2. ��

We note that for �ᵀ = U, the assumptions related to
range(�ᵀ) are trivially satisfied asymptotically when
the linearized operator is steady.We also note that The-
orem 1 provides an illustration of the fact that the OTD
reduction is dynamically consistent, that is, projection
of a steady operator on the OTD modes does not alter
the spectral content of the operator in the asymptotic
limit.

For non-normal (i.e., non-modal) operators, it is
not sufficient to consider dim Eu because non-normal
growth does not necessarily take place along the unsta-
ble eigendirections. For a simple example, we consider
the matrix

Le =
[− 1 5

0 − 2

]
, (3.20)

whose eigenvalues indicate asymptotic stability,
whereas those of its symmetric part reveal signifi-
cant non-normal growth along the direction ((1 −√
26)/5, 1)ᵀ. So to capture (and later suppress) tran-

sient growth, the dimension of the OTD subspace must
be such that r ≥ dim E s

u , where E s
u is the unstable

eigenspace of (Le + Lᵀ
e )/2.

If we now consider the matrix (3.20) in which the
signs of the diagonal elements have been changed, the
eigenvalues of the resulting operator are positive (1 and
2), but the eigenvalues of its symmetric part have oppo-
site signs (about− 2.01 and 8.01). In this case, there are
one direction associated with non-normal growth and
two with exponential growth. These examples suggest
that to capture both normal and non-normal instabili-
ties, we must choose

r ≥ max
(
dim Eu, dim E s

u

)
, (3.21)

where we emphasize that Eu and E s
u pertain to the

full-order operators. The above criterion is necessary
and sufficient, provided that the OTD subspace is not
orthogonal to Eu and E s

u .
In light of this, it should be clear that the choice of

r should not be dictated solely by the number of unsta-
ble eigenvalues of the symmetric operator (Le+Lᵀ

e )/2,
despite what the criterion (3.11) used in the control law
might suggest. In fact, the two issues are not related,
since the criterion (3.11) appears after the order reduc-
tion step, so it operates using information about the
reduced-order system only. As discussed in Sect. 3.2,
we could adopt any scheme of our liking to control
the reduced system (3.9). We chose to focus on the
eigenvalues of the symmetric part of the reduced oper-
ator because it is relatively straightforward, and more
importantly because in our quest to suppress non-
normal instabilities such criterion is much more strin-
gent than one based on the eigenvalues of the reduced
operator, as evidenced by the following theorem.

Theorem 2 LetQ ∈ R
r×r be a steady operator acting

in the reduced space. If all eigenvalues of (Q+Qᵀ)/2
have negative real part, then so do all eigenvalues of
Q.

Proof SupposeQ has at least one unstable eigenvalue.
For a reduced-order dynamical system ẋ = Qx and
a Lyapunov function xᵀx, the quadratic form xᵀ(Q +
Qᵀ)x describes the derivative of the Lyapunov function
along trajectories. If xᵀ(Q + Qᵀ)x is negative semi-
definite, then the Euclidean norm of all trajectories is
non-increasing. This contradicts the assumption thatQ
has at least one unstable eigenvalue. Thus, at least one
eigenvalue of (Q + Qᵀ)/2 is unstable. ��

3.4.3 Validity of the control strategy

As discussed in Sect. 3.3, the final form of the con-
trol law (3.19) was derived on the basis of several key
assumptions. We now discuss the extent to which these
assumptions might restrict the scope of the proposed
algorithm. First, the control law was designed to act on
the variational equation (3.3), butwe decided to apply it
to the original nonlinear equation (3.1). This is valid as
long as the norm of the perturbation z− ze is relatively
small, so that the original dynamics may be described
by the linearized equations. In (3.2), we also used the
operator L(z) as a proxy for Le, which likewise holds
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only when ‖z− ze‖ is small. This step was taken in an
effort to guarantee consistency with the OTD frame-
work, since the OTD modes are computed along an
evolving trajectory, rather than at the fixed point. In
doing so, we take full advantage of the fact that the
OTD modes adaptively track directions of instability,
rather than being “static” like eigenfunctions.

Second, by letting B = I, we assumed that the con-
trol can act on every state variable of the system, and
the linearized system (3.3) is trivially controllable [45].
This is not a bad assumption to make in theory, but
it rarely holds in experiments because the range and
number of actuators are generally limited. Similarly,
we have assumed complete knowledge of the state z of
the system at every time instant, thereby implying full
observability. While the assumption of full controlla-
bility may presumably be relaxed, we note that there is
no avoiding the full observability assumption, simply
because complete knowledge of the state is required
to evolve the OTD equations (2.5). There is currently
no general framework to compute or approximate the
OTDmodeswith limited knowledge of the system state
or the associated linearized operator.

The other assumptions, namely that the control vec-
tor belongs to the OTD subspace and the matrix Ar is
symmetric, are deemed to be minor. The former was
introduced to arrive at a relatively simple form of the
control force without having to develop an entirely new
theory to solve the control problem, and the latter was
made to guarantee dynamical consistency of the order
reduction. We note that a large part of feedback con-
trol theory focuses on pole placement for the linearized
operator itself, and we are aware of no previous attempt
made to find an optimal solution to the control problem
in which the controller is designed to force the eigen-
values of the symmetric part of the linearized operator
to the stable portion of the complex plane. A rigorous
treatment of this problem could allow us to formulate
a control law in which the two assumptions mentioned
above would no longer be needed, but such endeavor
is beyond the scope of the present work.

4 Results

In this section, we present evidence of the efficacy of
the control strategy introduced in Sect. 3. We consider
examples dominated by normal and non-normal insta-
bilities and demonstrate the superiority of OTD control

in situations exhibiting significant transient growth. In
all that follows, we assume that the control is activated
at t = 0 and remains active for all t > 0.

4.1 Suppression of normal instability by OTD control

For normal instability, themain advantage of OTD con-
trol over modal control is that it eliminates the need for
computing the eigenfunctions of the linearized operator
Le beforehand, since asymptotically theOTD subspace
aligns by itself with themost unstable eigenspace ofLe.
As discussed in Sect. 3.4.2, there is no gain related to
the dimension of the projection subspace, because the
dimension of theOTD control subspacemust be at least
as large as that of the unstable eigenspace. So for nor-
mal instability, and because we have assumed that the
deviation z−ze remains small, we expect that a control
based on the eigenmodes of Le should be just as effi-
cient as one based on OTD modes computed along the
trajectory. (This may be viewed as a validation step.)
We confirm that that is the case in two classical exam-
ples from fluid mechanics, namely flow past a cylinder
and Kolmogorov flow.

4.1.1 Flow past a cylinder

We consider the two-dimensional flow of a Newtonian
fluid with constant density ρ and kinematic viscosity
ν past a circular cylinder of diameter D with uniform
free-stream velocityUex , for which the Navier–Stokes
equations can be written in dimensionless form as

∂tw + w · ∇w = −∇ p + 1

Re
∇2w, (4.1a)

∇ · w = 0, (4.1b)

with no-slip boundary condition

w|Γcyl = 0 (4.2a)

on the cylinder surface Γcyl, and uniform flow

lim
x,y→∞w = ex (4.2b)

in the far field. In the above, velocity, time, and length
have been scaled with cylinder diameter D and free-
stream velocity U , and the Reynolds number is Re =
UD/ν. The i th OTD mode obeys
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u̇i = LNS(w;ui ) − 〈LNS(w;ui ),ui 〉 ui

−
i−1∑

k=1

[〈LNS(w;ui ),uk〉 + 〈LNS(w;uk),ui 〉]uk,

(4.3a)

∇ · ui = 0, (4.3b)

with boundary conditions

ui |Γcyl = 0 (4.4a)

and

lim
x,y→∞ ui = 0, (4.4b)

where the inner product is chosen to be the usual L2

inner product. The linearized Navier–Stokes operator
at the current state w is given by

LNS(w;ui ) = −w · ∇ui

−ui · ∇w + 1

Re
∇2ui − ∇ pi , (4.5)

where pi is the pressure field that guarantees incom-
pressibility of the OTD mode ui . The reduced linear
operator is given by (3.7), withLNS in place of L .

The computational solution is effected using the
open-source, spectral element Navier–Stokes solver
nek5000 [18]. The computational domain extends
24D cylinder diameters in the cross-stream direction
and 32.4D in the streamwise direction, with the cylin-
der center located 8.4D away from the inlet boundary
and equidistantly from the sidewalls. Our production
runs use ameshwith 316 spectral elements, polynomial
degree N = 9, and time-step size Δτ = 2× 10−3. We
specify a no-penetration (“symmetry”) boundary con-
dition on the sidewalls and a stress-free condition at
the outlet for the main flow and the OTD modes. At
the inlet, we prescribe a non-homogeneous Dirichlet
condition (w = ex ) for the main flow and a homoge-
neousDirichlet condition for theOTDmodes. Here and
in what follows, we compute the OTD modes with �

given by (2.6), rather than � = 0, because the former
allows use of the “standard approach” of Benettin et
al. [7] and Shimada and Nagashima [42] in the limit of
continuous orthonormalization (i.e., when the Gram–
Schmidt procedure is applied at every time step). We
refer the reader to Blanchard and Sapsis [8] for further
details.

It is well known that for any value of Re, (4.1a, b–
4.2a, b) admit a steady solution we symmetric about

(a)

(b)

(c)

Fig. 1 For flow past a cylinder at Re = 50, a most unsta-
ble eigenvalues of the linear operator visualized in the complex
plane, b spanwise vorticity distribution of the steady symmetric
solution, and c snapshot of the spanwise vorticity distribution of
the solution on the limit cycle in the absence of control

the midplane y = 0. The steady solution we loses sta-
bility at Rec ≈ 47 through a Hopf bifurcation resulting
from a pair of complex conjugate eigenvalues cross-
ing the imaginary axis. It has also been shown that
in a range of Re values slightly above Rec, there is
exactly one pair of unstable complex conjugate eigen-
values [13,20]. Here, we consider the case Re = 50,
which falls within that range, and for which the long-
time attractor is a limit cycle. We compute the steady
(unstable) base flowwe by a selective frequency damp-
ing (SFD) approach [1], and the spectrum ofLNS,e by
an Arnoldi algorithm [30]. Figure 1a–c shows the most
unstable eigenvalues of LNS,e, along with the vortic-
ity distribution of we, and a snapshot of the vorticity
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distribution of w on the limit cycle (in the absence of
any control). Consistent with previous studies [30,40],
Fig. 1a shows that there is only one pair of unstable
complex conjugate eigenvalues, so we expect that a
control based on two or more OTD modes should sta-
bilize the steady symmetric solution.

We now use the OTD control law introduced in
Sect. 3 to suppress linear instability of we. We initial-
ize the flow on the steady symmetric solution, to which
we superimpose a small-amplitude inlet perturbation,
so that

winlet(y, t = 0) =
(
1 + 10−5y

)
ex . (4.6)

The condition that ‖w − we‖ be small is thus sat-
isfied at t = 0. To initialize the OTD modes, we
apply Gram–Schmidt orthonormalization to the sub-
space {sin(my)ex + cos(mx)ey}rm=1. The resulting
modes satisfy the divergence-free constraint. That they
do not satisfy the boundary conditions is not an issue,
because theOTD subspace aligns exponentially rapidly
with Eu regardless of the initial conditions.

We first perform a computation with a single OTD
mode. Figure 2a shows time series for themagnitude of
the lift coefficient CL and makes it clear that a control
law based on one OTD mode cannot counteract linear
instability of the steadyflow.Asdiscussed inSect. 3, the
reason is that order reductionof the linearizeddynamics
onto a one-dimensional OTD subspace leaves out the
second linearly unstable direction. In contrast, Fig. 2b
shows that a control law based on two OTD modes is
able to stabilize we. In Fig. 2b, we also introduced a
stronger disturbance at t = 600, in the form of an inlet
perturbation,

winlet(y, t = 600) =
(
1 + 10−3y

)
ex . (4.7)

The amplitude of the inlet disturbance in (4.7) is small,
yet two orders of magnitude larger than that imposed
at t = 0. Figure 2b shows that the OTD control rapidly
suppresses the imposed disturbance. We have verified
that OTD subspaces with dimension larger than two
lead to an identical outcome.

4.1.2 Kolmogorov flow

For a second example of normal instability, we con-
sider Kolmogorov flow on the torusΩ = [0, 2π ]2. The
flow obeys the incompressible Navier–Stokes equa-
tions subject sinusoidal forcing, written in dimension-
less form as

(a)

(b)

Fig. 2 For flow past a cylinder at Re = 50 with OTD control
(with ζ = 0.1), time series of |CL | for a r = 1, and b r = 2. In
b, an inlet perturbation in the form of (4.7) is applied at t = 600

∂tw + w · ∇w = −∇ p + 1

Re
∇2w + sin(ky)ex ,

(4.8a)

∇ · w = 0, (4.8b)

where k is a positive integer and the Reynolds num-
ber Re is the inverse of a dimensionless fluid viscosity
ν. The OTD equations are identical to (4.3a, b), with
LNS given by (4.5). (We note that the external forc-
ing does not appear in the expression for the linearized
operatorLNS.) The main flow and the OTDmodes sat-
isfy periodic conditions. The computational solution is
effected usingnek5000with amesh composed of 256
elements (16 elements in each direction), polynomial
order N = 5, and time-step size Δt = 10−3.

The Kolmogorov flow admits a laminar solution,

we = Re

k2
sin(ky)ex , (4.9)

which is asymptotically stable for forcingwave number
k = 1 and any value of Re [19]. For k > 1 and large
enough Re values, the laminar solution we is unstable.
As discussed in Platt et al. [32] and Chandler and Ker-
swell [10], it is believed that for k = 4 and sufficiently
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(a) (b) (c)

Fig. 3 For Kolmogorov flow with Re = 40 and k = 4, a 50
most unstable eigenvalues of the linear operator visualized in the
complex plane, b spanwise vorticity distribution of the laminar

solution, and c snapshot of the spanwise vorticity distribution of
the solution in the chaotic regime in the absence of control

large Re, all fixed points of the Kolmogorov flow are
unstable, and the long-time solution is chaotic.We note
that other invariant solutions besides (4.9) are known to
exist for this flow. For k = 4 and Re = 40, Farazmand
[15] reported no fewer than 16 different steady (unsta-
ble) solutions, with dim Eu ranging from 5 to 38. Here,
we use OTD control to stabilize the laminar solution
(4.9), for which an analytical expression is available.
We emphasize that OTD control may be used to stabi-
lize any of the 16 solutions found by Farazmand [15],
provided that the dimension of the OTD subspace is
chosen according to (3.21).

In what follows, we set k = 4 and Re = 40, along
the lines of Farazmand and Sapsis [16]. We first deter-
mine the dimension of the unstable eigenspace for the
laminar solution (4.9). An Arnoldi calculation shows
that dim Eu = 38, consistent with Farazmand [15]. Fig-
ure 3a–c shows the 50most unstable eigenvalues ofLe,
along with vorticity distributions of the laminar solu-
tion, and a snapshot of the solution in the chaotic regime
(in the absence of feedback control). The Arnoldi algo-
rithm reveals that among the 19 pairs of unstable com-
plex conjugate eigenvalues, only 3 have multiplicity
one (Fig. 3a). There is a possibility that such a high
multiplicity might affect the rate at which alignment of
the OTD subspace with Eu takes place, as the conver-
gence result established byBabaee et al. [3] holdswhen
there is a spectral gap between the r th and (r+1)thmost
unstable eigenvalues ofLe. Fortunately, criterion (3.21)
guarantees that the spectral gap assumption holds, so
multiplicity will not be an issue in the cases considered
hereinafter.

We perform two computations in which the control
is active, one with r = 36 and the other with r = 38.
For the case r = 36, we expect to see growth of the
solution, as one pair of unstable eigenvalues is left out
by the OTD order reduction and therefore not acted
upon by the control. For the case r = 38, however, the
dimension of the OTD subspace satisfies (3.21), so the
feedback control should be able to stabilize the laminar
solution. In both computations, the initial condition for
the main flow is w(t = 0) = we, so linear instability
is triggered by numerical noise. (A calculation without
control shows that this mechanism is available.) Noise-
induced disturbances may be considered infinitesimal,
so the condition that ‖w − we‖ be small is trivially
satisfied at t = 0. To initialize the OTD modes, we
apply Gram–Schmidt orthonormalization to the sub-
space {cos(mx) sin(my)ex − sin(mx) cos(my)ey}rm=1.
The resulting modes thus satisfy the divergence-free
constraint and the periodic boundary conditions.

Figure 4 shows time series for the energy dissipation

Ed(t) = 1

Re|Ω|
∫

Ω

|∇w|2dΩ (4.10)

for the uncontrolled and the two controlled cases.When
no control is applied, the trajectory rapidly leaves the
vicinity of the laminar solution we (for which Ed =
1.25) as a result of linear instability and, after a brief
transient regime, settles into a chaotic attractor. Figure 4
also shows that with a 36-dimensional OTD subspace,
the control cannot do better than to delay repeal of
the trajectory from we. With a 38-dimensional OTD
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Fig. 4 Energy dissipation for trajectories with OTD control
(with ζ = 0.1) and without control. For the case with OTD
control and r = 38, the calculation was terminated at t = 2000
to ascertain stability

(a)

(b)

Fig. 5 Eigenvalues of the symmetric part of the open-loop
reduced linear operator for the OTD-controlled trajectories
shown in Fig. 4: a r = 36 and b r = 38

subspace, however, the control is able to suppress linear
instability and stabilize the fixed point.

Figure 5a, b shows the eigenvalues of the symmetric
part of the open-loop reduced linear operator for r = 36
and 38. In both cases, the OTD subspace aligns with

the most unstable eigenspace of Le quite rapidly (in
about 10 time units), despite the fact that a large num-
ber of eigenvalues have multiplicity greater than one.
The plateau beginning after alignment corresponds to
a state in which the solution is infinitesimally close to
the fixed point, and the OTD subspace is aligned with
the most unstable eigenspace of Le. But it is only for
r = 38, when all of the 38 unstable eigendirections
of Le are accounted for in the reduced-order system,
that the control is able to suppress linear instability and
exponential growth.

4.2 Suppression of non-normal instability by OTD
control

As discussed in Sect. 2, the great value of the OTD
framework has to dowith control of instabilities caused
by non-normal behavior. The OTD modes have a sig-
nificant advantage over eigenfunctions, as the latter
are not able to capture non-normal growth. While in
Sect. 4.1 we took advantage of the asymptotic behav-
ior of the OTD subspace (it coincides with the most
unstable eigenspace) to suppress normal instabilities,
here we wish to leverage their ability to track direc-
tions of greater transient growth along a trajectory. So to
demonstrate the superiority of OTD control over modal
control, we focus primarily on situations in which the
fixed point is linearly (asymptotically) stable, but sig-
nificant growth of the solution occurs as a result of
transient non-normal instability.

Comparison of OTD and modal control is only fair
if the same control law is used in both approaches.
To apply (3.19) to modal control, we proceed as fol-
lows. From the leading r eigenvectors of Le, we con-
struct an orthonormal basisψ using theGram–Schmidt
algorithm. We then use ψ in lieu of the OTD modes
U. Furthermore, we consider the reduced linear oper-
ator ψᵀLeψ, rather than ψᵀLψ. Since the concept of
eigenvectors is fundamentally tied to that of a fixed
point, we argue that projecting Le on ψ is the only
sensible option. It makes little sense to consider situa-
tions in which L is projected onto an eigenspace of L,
because eigenvectors of a time-dependent operator are
meaningless. The remaining variations (projecting Le

on an eigenspace of L, and vice versa) are inconsistent
for the same reason. In contrast, the OTD modes are
computed along time-dependent trajectories, and the
projection of L on an OTD subspace is dynamically
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(a) (b) (c)

(d) (e)

Fig. 6 For the 2 × 2 non-normal system (4.11a, b), norm of
trajectories subject to a no control, b OTD control with r = 1,
c OTD control with r = 2, d modal control based on the most
unstable eigenvector of C, and e modal control based on the

two eigenvectors of C. Initial conditions for the trajectories are
(0, c)ᵀ, where c = 10−7, 10−6, 10−5, 10−4, 4×10−4, 5×10−4,
10−3, 10−2, from darker to lighter

consistent andmeaningful. (For an uncontrolled trajec-
tory exhibiting significant non-normal growth, theOTD
subspace significantly departs from the most unstable
eigenspace Le). Finally, we use the same value of the
damping parameter ζ for OTD and modal control.

4.2.1 Unsteady low-dimensional nonlinear system

As discussed in Sect. 1, a critical application of OTD
control to non-normal systems is to prevent transition to
turbulence. Sowe beginwith a simple low-dimensional
nonlinear problem introduced by Trefethen et al. [46],

ż = Cz + ‖z‖Dz, (4.11a)

where

C =
[− 1/R 1

0 − 2/R

]
, D =

[
0 − 1
1 0

]
, (4.11b)

and R is a large parameter (here, R = 25). The lin-
ear term involving the non-normal matrix C amplifies
energy transiently, while the nonlinear term involving

the skew-symmetric matrixD redistributes, but neither
creates nor destroy, energy. A remarkable feature of
this system is that, despite the fact that the trivial fixed
point ze = 0 is asymptotically stable (the eigenval-
ues of C are negative), it is possible for a perturbation
to be sufficiently amplified that it activates the nonlin-
ear terms, leading to transition to “turbulence.” This
particular behavior (non-normal amplification coupled
with energy-preserving nonlinear mixing) is common
in fluid mechanics, which makes this system a good
testbed for our control algorithm. We illustrate the
potential of this system in Fig. 6a, where we show the
norm of uncontrolled trajectories integrated forward in
timewith initial condition (0, c)ᵀ, where c is a constant.
(Integration is performed with a third-order Adams–
Bashforth method with time-step size Δt = 0.1.) Fig-
ure 6a makes it clear that large enough non-normal
growth leads to transition to “turbulence.” (For this sim-
ple 2× 2 system, the long-time “turbulent” attractor is
actually another fixed point.)
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Here, the mechanism responsible for transient
growth is well understood. The culprit is the principal
right singular vector ofC, as it finds itself on the receiv-
ing end of a self-sustained transfer of energy facilitated
by the nonlinear terms. Thus, there is only one direc-
tion responsible for non-normal growth, and that direc-
tion coincides with neither of the eigenvectors ofC. So
modal control should work only when all the eigen-
vectors of C are included in the control space, since
neither of them can individually track the direction of
non-normal growth. On the other hand, OTD control
with r = 1 should be able to suppress non-normal
growth and, in turn, prevent transition to “turbulence.”
This is confirmed in Fig. 6b–e. (In Fig. 6b, c, initial
conditions for the OTD modes are selected randomly.)

4.2.2 Plane Poiseuille flow

There is no geometry simpler than that of plane
Poiseuille flow to study the effects of non-normality
in the Navier–Stokes equations. Plane Poiseuille flow
consists of pressure-driven flow confined between two
rigid, infinitely long, parallel plates. TheNavier–Stokes
equations can be written in dimensionless form as

∂tw + w · ∇w = −∇ p + 1

Re
∇2w + 2

Re
, (4.12a)

∇ · w = 0, (4.12b)

with boundary conditions

w(x, y = ±1, z, t) = 0 (4.12c)

at the rigid walls. Velocity, time, and length have been
scaled with the channel half-width h and the centerline
velocityU of the undisturbed flow. The Reynolds num-
ber is Re = Uh/ν, where ν is the kinematic viscosity
of the fluid. The undisturbed base flow

we(x, y, z) = W (y)ex , W (y) = 1 − y2 (4.13)

is a fixed point of (4.12a–c) and is known to become
linearly unstable at Rec ≈ 5772.2. However, exper-
iments suggest another value for Rec (on the order
of 1000), drastically different from that predicted by
modal stability analysis. This is due to the strongly
non-normal nature of the dynamics, whereby perturba-
tions may experience significant transient growth, even
in the spectrally stable regime. For sufficiently small
perturbations, this transient growth does not persist at
long times, and the system asymptotically returns to
the laminar solution. For sufficiently strong perturba-
tions, however, non-normal growth is so large that the

path to steadiness is blocked by nonlinear effects, ulti-
mately leading to turbulence by triggering secondary
three-dimensional instabilities.

Wefirst consider the linearizeddynamics of infinites-
imal perturbations around the base flow (4.13). Because
of the infinite extent of the domain in the x and z direc-
tions, the infinitesimal disturbance is assumed to have
the form

q′(x, y, z, t) = q(y, t)exp(iαx + iβz), (4.14)

where α and β denote the streamwise and spanwise
wavenumbers, respectively, and the vectors q and q′
contain the wall-normal velocity (v and v′, respec-
tively) and the wall-normal vorticity (η and η′, respec-
tively) in lieu of the primitive variables [40]. This leads
to the classical Orr–Sommerfeld/Squire (OS/SQ) equa-
tion

∂tq = Le(q), (4.15)

with boundary conditions v = D(v) = η = 0 at the
rigid walls y = ± 1, where

Le =
[
LOS 0
LC LSQ

]
, (4.16a)

LOS = −
(
k2 − D2

)−1
[
iαW (k2 − D2)

+ iαD2(W ) + 1

Re

(
k2 − D2

)2]
, (4.16b)

LC = − iβD(W ), (4.16c)

LSQ = − iαW − 1

Re

(
k2 − D2

)
, (4.16d)

and we have defined D = ∂y and k = √
α2 + β2. (For

further details regarding the derivation of the OS/SQ,
we refer the reader to Schmid and Brandt [40]). The
OTD equations are identical to (2.7), with L sub-
stituted for Le as defined in (4.16a–d). The natural
choice for the inner product is the energy inner prod-
uct, defined as

〈q1,q2〉E =
∫ 1

−1
qᵀ
1M (q2)dy, (4.17)

where

M = 1

k2

[(
k2 − D2

)
0

0 1

]
. (4.18)

We emphasize that for now, we only consider the
evolution of perturbations described by (4.15), so the
dynamics are linear, and the operator Le used in the
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OTD equations is steady. (The full nonlinear initial-
boundary-value problem (4.12a–c) will be considered
shortly). Equation (4.15) is discretized in space using a
spectral method based on Chebyshev polynomials and
integrated forward in time with a third-order backward
differentiation (BDF) scheme. We use 128 collocation
points in space and a time-step size of Δt = 0.02.

We pause here to make several comments on the
OS/SQ operator and the various flow regimes that it
may lead to as a function of the Reynolds number. For
two-dimensional waves propagating in the streamwise
direction (β = 0), three regimes may be identified.
For Re < 49.6, the OS/SQ operator is normal and
asymptotically stable, so the amplitude of perturba-
tions monotonically decays. For 49.6 < Re < 5772.2,
the OS/SQ operator is non-normal and asymptotically
stable, so perturbations experience significant transient
growth before dying out. For Re > 5772.2, the OS/SQ
operator is non-normal and asymptotically unstable, so
transient growth of perturbations is followed by expo-
nential growth. Tomake this point visually clear, Fig. 7a
shows time series of the optimal energy amplification

G(t) = max
q0

‖q(t)‖2E
‖q0‖2E

(4.19)

for β = 0 and α = 1.02 (the most unstable stream-
wise wavenumber for β = 0). For Re = 2000, it is
clear that substantial transient growth occurs, with per-
turbation energy growing by more than one order of
magnitude, despite the fact that all the eigenvalues of
the OS/SQ operator are confined to the stable portion
of the complex plane (Fig. 7b).

We are now in a position to apply the control strategy
described in Sect. 3 to the linearOS/SQproblem (4.15).
We consider streamwise and spanwise wavenumbers
α = 1.02 and β = 0, respectively, and two values
of the Reynolds number, Re = 2000 and 10,000 (cf.
Fig. 7a). The former Re value is such that in the OS/SQ
linearized dynamics, non-normal growth is followed by
exponential decay, so transition to turbulence would
occur in direct numerical simulations (DNS) of the
full nonlinear problem (4.12a–c) only if the energy of
the perturbation is sufficiently amplified. The latter Re
value is such that in the OS/SQ linearized dynamics,
non-normal growth is followed by exponential (asymp-
totic) growth, so transition to turbulence would invari-
ably occur in DNS of the nonlinear initial-boundary-
value problem.

(a)

(b)

Fig. 7 For linearized plane Poiseuille flow with α = 1.02 and
β = 0, a optimal energy amplification, and b spectrum of the
OS/SQ operator at Re = 2000

The initial condition for (4.15) is taken to be the
optimal initial condition

qopt0 = argmax
q0

‖q(t∗)‖2E
‖q0‖2E

(4.20)

that leads to maximal transient growth over the time
interval [0, t∗], where t∗ is the time at which maxi-
mum energy amplification over all initial conditions is
attained. Figure 7a shows that t∗ ≈ 13.3 for Re =
2000 and t∗ ≈ 21.9 for Re = 10,000. (In the lat-
ter case, we consider only the transient portion of
the time series, since exponential growth necessarily
means t∗ = +∞.) As discussed in Schmid and Brandt
[40], the optimal initial condition qopt0 is the leading
right singular vector of the propagator exp(Let∗). The
OTD modes are initialized against the leading r right
singular vectors of exp(Let∗). We note that due to the
strongly non-normal nature of Le at Re = 2000 and
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(a)

(b)

Fig. 8 For linearized plane Poiseuille flow with α = 1.02 and
β = 0, energy amplification of the optimal perturbation with
OTD control (r = 1 and ζ = 0.1), modal control based on the
most unstable eigenvector of the OS/SQ operator, and no control,
for a Re = 2000, and b Re = 10,000

10,000, a large number of eigenvectors are required to
accurately represent the optimal condition.

Figure 8a, b shows time series for the energy ampli-
fication

Ea(t) = ‖q(t)‖2E
‖q0‖2E

(4.21)

of qopt0 with and without modal and OTD control at
Re = 2000 and 10,000. In all cases, there is only one
direction associatedwith transient growth (that ofqopt0 ).
Figure 8a shows that OTD control with a single OTD
mode is able to suppress non-normal growth of qopt0
for Re = 2000 and 10,000. For Re = 10,000, OTD
control also suppresses normal instability and prevents
exponential growth at long times. On the other hand,
Fig. 8a, b shows that modal control with one eigenvec-
tor (here, themost unstable one) does not suppress non-
normal growth at Re = 2000 and 10,000, although for
Re = 10,000 it is able to eliminate asymptotic expo-

nential growth. (There is only one unstable eigenvalue
at Re = 10,000.)

As discussed earlier, transient growth may have
severe repercussions on the long-time dynamics, even
in cases where modal stability theory predicts asymp-
totic decay of disturbances. For a clear manifestation
of this mechanism, we must consider the full nonlinear
problem (4.12a–c), which we solve numerically using
nek5000 in a computational domain extending 2π/α

and 2π/β in the streamwise and spanwise directions,
respectively. The mesh is composed of 96 elements
with polynomial order N = 9, and the time-step size
is Δt = 4× 10−3. The main flow and the OTD modes
satisfy no-slip boundary conditions on the rigid walls
and periodic boundary conditions in the x and z direc-
tions. The OTD equations are given by (4.3a, b), where
the linear operator is identical to (4.5). We emphasize
that the linear operator appearing in the OTD equations
is now unsteady and computed along the evolving tra-
jectory.

For three-dimensional turbulence to develop, the
spanwise wavenumber β should not be zero, so we
choose β = 2, along with α = 0.5 and Re = 7000. For
these values of the parameters, linear theory predicts
significant non-normal growth of the optimal initial
condition (on the order of 1000), followed by asymp-
totic decay.However, in the full nonlinear problem, suf-
ficiently large non-normal growth triggers transition to
turbulence. To confirm that this mechanism is available
in our numerical experiments, we select initial condi-
tions for the main flow as

w(x, y, z, t = 0) = we(x, y, z) + εwopt
0 (x, y, z),

(4.22)

where the parameter ε governs the strength of the initial
disturbance. (We compute wopt

0 by expressing qopt0 in
terms of the primitive variables.) Figure 9a shows that
transient growth occurs for a range of ε values, but ulti-
mately leads to turbulence only when ε is large enough.
As discussed in Sect. 4.2.1, the physical mechanism for
transition is that sufficiently large energy amplification
activates the nonlinearity of the Navier–Stokes equa-
tions, which in turn redistributes energy to directions
associated with transient growth.

We apply our OTD control strategy to the full non-
linear system in an attempt to suppress transition to
turbulence. As in the linearized problem, we consider
a control based on a single OTD mode initialized in
the direction of the optimal disturbancewopt

0 . Figure 9b
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(a)

(b)

Fig. 9 For nonlinear plane Poiseuille flow with α = 0.5, β =
2, and Re = 7000, a energy of uncontrolled perturbation for
various disturbance amplitudes, and b for ε = 10−3, energy of
perturbation with OTD control (r = 1 and ζ = 0.1), modal
control based on the most unstable eigenvector of the OS/SQ
operator, and no control

shows that OTD control suppresses non-normal growth
and, in turn, transition to turbulence. In contrast, modal
control based on the most unstable eigenvector of Le

fails at both. This completes demonstration of the supe-
riority of OTD control over modal control.

5 Conclusions

The purpose of the present work was to develop a
reduced-order control algorithm capable of suppress-
ing transient and long-time linear instabilities of a
fixed point for a generic (high-dimensional, nonlinear)
dynamical system. The challenge was to find an appro-
priate set of complete functions (i.e., modes) such that
projection of the governing equations onto thesemodes
retained the critical features of the full-order dynam-
ics related to transient and asymptotic instabilities as
the system evolves in phase space. The optimally time-
dependent (OTD)modes presented themselves as a nat-
ural candidate for order reduction because they had

been shown to adaptively capture and track directions
in phase space associated with transient and persistent
instabilities.

We used OTD modes to derive a dynamically con-
sistent reduced-order system and formulated a con-
trol law in the reduced space that targets instantaneous
growth of perturbations in order to suppress transient
and asymptotic instabilities of a fixed point of the full-
order governing equations. We derived conditions on
the OTD subspace for the control to be efficient and
applied the proposed strategy to complex fluid flows
exhibiting normal (exponential) and non-normal (tran-
sient) growth. For systems featuring normal instabil-
ities, we showed that our control strategy reduces to
classical modal control, as the OTD subspace aligns
asymptoticallywith themost unstable eigenspace of the
linearized operator. For systemswith non-normal insta-
bilities, however, we showed that OTD control vastly
outperforms modal control, as the OTDmodes are able
to track directions of most intense transient growth,
which is far beyond the reach of eigenfunctions. This
result was significant because it established the poten-
tial of theOTD framework to prevent regime transitions
caused by non-normal growth, such as transition to tur-
bulence in fluid flows.

Finally, wemention twoways inwhich the proposed
control strategy may be improved. First, it would be
desirable to design a feedback control law that acts only
in part of the physical domain, say, a confined area in
the near wake for flow past a cylinder, or the immedi-
ate vicinity of the rigid walls for Poiseuille flow. This
would make the proposed approach considerably more
attractive from the standpoint of conducting experi-
ments. Second, along the same lines, it would be valu-
able to make the OTD control approach data-driven;
for example, formulate a method for computing the
OTD modes from sparse measurement data or develop
a machine learning algorithm that help identify and
control transient instabilities in complex flows.
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