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We discuss extreme events as random occurrences
of strongly transient dynamics that lead to nonlinear
energy transfers within a chaotic attractor. These
transient events are the result of finite-time
instabilities and therefore are inherently connected
with both statistical and dynamical properties of the
system. We consider two classes of problems related
to extreme events and nonlinear energy transfers,
namely (i) the derivation of precursors for the short-
term prediction of extreme events, and (ii) the efficient
sampling of random realizations for the fastest
convergence of the probability density function in the
tail region. We summarize recent methods on these
problems that rely on the simultaneous consideration
of the statistical and dynamical characteristics of the
system. This is achieved by combining available data,
in the form of second-order statistics, with dynamical
equations that provide information for the transient
events that lead to extreme responses. We present
these methods through two high-dimensional,
prototype systems that exhibit strongly chaotic
dynamics and extreme responses due to transient
instabilities, the Kolmogorov flow and unidirectional
nonlinear water waves.

This article is part of the theme issue ‘Nonlinear
energy transfer in dynamical and acoustical systems’.

1. Introduction
A plethora of dynamical systems in nature and
engineering exhibit intermittent behaviour in the form of

2018 The Author(s) Published by the Royal Society. All rights reserved.
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extreme events. These large excursions have significant consequences and are important to
predict and characterize statistically. Extreme events are quantified through certain observables
of the dynamical system, which exhibit sporadic bursts with values as large as several standard
deviations and nonlinear transfers between different scales or modes. In addition, the existence
of extreme events is inherently connected with the associated probability density function (PDF) of
the observable, which is characterized by heavy-tail properties.

Extreme events are low probability realizations, but is every rare event also an extreme event?
We start by making an informal distinction between the two. A rare event is, by definition, a very
low-probability realization of a random experiment. Getting the same number from a fair dice six
times in a row has very low probability. However, there is no special dynamical mechanism that
is associated with its occurrence. It is the result of pure randomness. Such rare events have to be
separated from the more special notion of extreme events, which, in the context of this work, will
be considered as rare realizations caused by the synergistic action of randomness and dynamical
instabilities. In particular, in our set-up, extreme events will be caused by finite-time instabilities
triggered by the effects of randomness and characterized by nonlinear energy transfers between
scales or modes. Finite-time instabilities refer to the case where a finite-time Lyapunov exponent
of the system becomes positive but only for a finite-time interval [1]. In this sense, extreme
events are a special case of rare events and therefore it is important to emphasize their special
properties:

1. The fact that there is a dynamical mechanism involved often increases substantially
the intensity of extreme events compared with rare events caused by a purely random
process. This is manifested by the heavy tail characteristics of the corresponding
probability distribution.

2. Extreme events are usually associated with complex tails in the PDF. This complexity
reflects the fact that there is an underlying dynamical mechanism having the form of
nonlinear energy transfer, which may not act uniformly for all intensities of the extreme
event. For example, in an energy conserving system, such as nonlinear waves, although
instabilities can lead to extreme events, these cannot obtain arbitrarily large magnitudes
due to finite energy. Therefore, although nonlinearity can induce spatially localized
extremes, which are reflected as heavy-tailed regimes in the PDF, the latter have bounded
extent because of bounded energy. See figure 1b for an example.

3. Extreme events are often associated with a specific time scale over which they develop.
This time scale is imposed by the Lyapunov exponent of the associated instability,
the time scale related to the nonlinear energy transfer. By identifying the nature of
the instability, one can track the corresponding Laypunov exponent and use this as a
precursor for the upcoming extreme event. Therefore, for extreme events one may be
able to search for appropriate precursors. This is not the case for rare events caused by a
purely random process.

4. From an analysis point of view, rare events can be effectively studied using statistical
tools. However, for extreme events such an analysis may not be able to capture the
statistical complexity due to the presence of non-trivial dynamical phenomena. A
blended analysis considering the dynamics and statistics is essential for this case.

In figure 1, we present a typical system exhibiting extreme events due to internal instabilities.
The first component is a stochastic attractor or more generally a set where the system state lies
most of the time, represented as the brown-shaded region. This can be formed due to persistent
instabilities (chaotic dynamics), stochastic parameters or stochastic excitation of the system. The
second component is an instability region, represented with green colour. When the dynamical
system enters this neighbourhood, we have the rapid growth of certain observables, i.e. the
formation of extreme events, due to nonlinear effects. These large excursions are manifested in
the PDF of the observable as heavy-tailed regimes (figure 1b). Note that the instability domain
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Figure 1. (a) Extreme events are associated with large excursions due to the random triggering of dynamical instabilities. The
shaded region indicates the PDF associated with the attractor of the system or more generally the set where the system lies
most of the time. The instability region is in green. (b) A typical heavy-tailed distribution for extreme events. The heavy-tail
region has finite extent because instabilities cannot lead to arbitrarily large magnitude. On the other hand, for rare events the
PDF has often a uniform tail behaviour. (Online version in colour.)

may have a finite extent in phase space and this will be reflected as a finite extent of the heavy-tail
regime in the PDF.

A large number of dynamical systems exhibit extreme events due to transient instabilities,
which are randomly triggered while the system evolves in its chaotic attractor. Such a chaotic
attractor is formed, for example in turbulent fluid flows, due to persistent instabilities (i.e. positive
Lyapunov exponents) and dissipation. For this case, a possible reason for the formation of extreme
events is the random triggering of non-normal dynamics [2–4]. In nonlinear waves, we do not
have a chaotic attractor but rather a set of possible states formed by the randomness induced
by the dispersive mixing of phases (random superposition) and it can trigger nonlinear focusing
phenomena that lead to extreme events [5,6]. Complex networks, such as networked populations
[7] or communication networks, are another area where we have random perturbations that
can trigger large changes in the pattern of the network, e.g. extinction diseases [8] or internal
propagation of malware [9]. Similar phenomena can be observed in the mechanical systems
excited by stochastic noise, such as parametric instabilities in ship rolling motions [10,11] or
buckling of nonlinear beams under combined axial and transverse loads [12].

Numerous efforts have focused on the quantification of heavy tail characteristics through
purely statistical approaches. Extreme value theory [13,14] deals with large deviations related
to random variables exceeding a given threshold. The theory provides representations for
the asymptotic distribution of extreme values from a set of ordered samples given by a
random variable and the problem is transformed to estimation of the distribution parameters
through maximum-likelihood methods. However, the complexity of the heavy tail characteristics
associated with the dynamical mechanism does not always fit within the context of purely
statistical approaches (such as statistical extrapolation techniques). In particular, a major
limitation is the non-uniform behaviour of the tail due to the complex nature of the instabilities
that cause the extreme events. Indeed, for many of the systems mentioned, the PDF has several
regimes with different behaviour. Moreover, the application of extreme value theorems often
requires a large number of samples which are hard to obtain.

On the other hand, we have large deviations theory (LDT) [15–18], a powerful method for the
probabilistic quantification of extreme events in sequences of probability distributions. LDT has
also been applied in the context of stochastic differential equations, known as Freidlin–Wentzell
theory [19], as well as for stochastic partial differential equations [20–23]. LDT uses the dynamical
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equations to approximate the asymptotic behaviour of the tail for any given up-crossing level
by identifying the most probably initial condition that corresponds to a trajectory that crosses
this level. This involves the solution of an optimization problem in the high-dimensional phase
space of the dynamical system, which can be expensive to solve. Moreover, the method provides
information only for the tail of the PDF and not its full form.

In this work, we rely on a blended data-equations perspective that uses a small amount of data as
well as the equations of the dynamical system. This is motivated by the very nature of extreme
events as described above, i.e. the fact that they form due to the synergistic action of randomness
and dynamics and to this end we need information for both. The data information represents a
rough description of the underlying stochastic attractor or set where the system lies most of the
time (brown-shaded region in figure 1a) and is expressed as a small number of samples or second-
order statistics. The equations, on the other hand, are used to collect information for the instability
regions (green-shaded region in figure 1a), such as growth rate or trajectory information for these
domains of the phase space, associated with strongly transient dynamics. Note that data-driven
approaches may also be used to recover the dynamics for extreme event regions, allowing for the
formulation of purely data-driven (equation-free) approaches that use the presented ideas. This
is a very important topic that will be treated in the future.

Here, we consider two problems related to extreme events: (i) the short-term prediction
problem given current information for the system state, and (ii) the determination of the PDF
(including its tails) for quantities of interest given low-order statistics describing the system state.
The structure of the paper is as follows. In §2, we present the mathematical formulation of the
problem and discuss two prototype systems exhibiting extreme events, which we will use for
the demonstration and assessment of the methods presented. In §3, we discuss the prediction
problem through the derivation of appropriate precursors which signal the occurrence of an
upcoming extreme event. Section 4 deals with the problem of quantification of PDF statistics
with emphasis on the form of the tails in connection with the dynamics. In §5, we discuss future
directions and conclusion.

2. Prototype systems for extreme events
We consider dynamical systems described by

u̇ = f (u, t), u ∈ R
n, (2.1)

where f : U × I → R
n is a sufficiently smooth vector field. Let u(t; t0, u0) be the trajectory of

system (2.1) with the initial condition u0. The linearized system around any given trajectory
satisfies the variational equation,

v̇ = L(u(t), t)v, v(t) ∈ R
n, (2.2)

where L(u, t) := ∇uf (u, t). The scalar observable associated with extreme events has the form, q(t) =
T(u(t)), where T is a functional of the system state.

We consider two prototype systems exhibiting extreme events (figure 2). The first is the
Kolmogorov flow, a dissipative, chaotic dynamical system described by the two-dimensional
Navier–Stokes equation driven by a monochromatic body forcing. At sufficiently high Reynolds
numbers, this flow is known to exhibit intermittent bursts of energy dissipation rate [2,4], which
are due to the internal transfers of energy through nonlinearities as opposed to phase locking with
the external forcing [24] (figure 1). These extreme events are also manifested by the non-trivial
behaviour of the tail for the PDF of the energy dissipation rate. The second prototype system
is unidirectional nonlinear water waves described by a modified nonlinear Schrodinger (MNLS)
equation [25]. Dispersion leads to the continuous mixing of phases between harmonics and the
random accumulation of energy in space [5,6]. When energy localized over specific length scales
exceeds a certain threshold, nonlinearity leads to the formation of extreme events, which are also
demonstrated by the heavy tails in the PDF of the wave elevation (figure 1).
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Figure 2. (a) Time series and PDF for the dissipation rate in the Kolmogorov flow. The dashed line shows the best Rayleigh PDF
approximation. (b) Spatial profile associated with an extreme event in nonlinear water waves and the associated PDF for the
local maxima.

In this work, we are interested in two problems related to the occurrence of extreme
events:

1. Prediction problem: We aim to derive functionals of the state of the system, α(t) = α(u(t)),
that probe future extreme occurrences of the quantity of interest, q(t), over a given
prediction time window.

2. Quantification problem: Develop efficient sampling algorithms that provide the statistics of
the quantity of interest, q(t), with an emphasis on the tail region using a small number of
samples.

3. Prediction problem: precursors of extreme events
A critical step towards the understanding and prediction of extreme events is the description
of the subspace of associated modes. Knowing what modes are related to the extreme event
dynamics and the associated energy transfers allows for the formulation of efficient strategies for
their prediction and control. This is a challenging task, however, as this subspace is not necessarily
connected to the modes that obtain important energy during the occurrence of an extreme event,
but primarily with the modes that trigger the extreme event. Here, we give an overview of two
approaches that accomplish this goal.

The first one, the optimally time-dependent (OTD) mode [1,26,27] aims to describe, along
a trajectory of an infinite-dimensional dynamical system, the directions associated with the
strongest growth, i.e. the largest Lyapunov exponent over finite-time intervals. The result is
a time-dependent subspace that reveals at every time instant the most unstable directions of
the system over finite-times. These are the modes associated with the transient instabilities
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and subsequent nonlinear energy transfers that lead to the formation of extreme events. The
advantage of the method is that the resulting modes inherently depend on the system state. In this
way, the method not only provides the modes associated with the largest growth over finite-times,
but it gives only the relevant ones for the current state of the system.

On the other hand, an important drawback of OTD modes is their computational cost as these
are time-dependent modes and they have to be resolved as the system evolves. To this end, it is
important to formulate a method that maintains the attractive features of the OTD modes, namely
to describe state-relevant modes associated with finite-time instabilities, but to circumvent the
time-dependent character of the OTD modes. This led us to the adoption of a probabilistic
approach, the high-likelihood unstable modes, where, instead of computing the modes associated
with the most unstable directions for the current system state, we compute the most unstable
directions over finite-times for a constrained set of states associated with important probability of
occurrence [24]. The result is a set of modes that describe the most unstable directions for states
that have important probability of occurrence. Tracking just these modes provides an effective
strategy for the prediction of extreme events [24].

(a) Optimally time-dependent modes
The OTD modes represent a reduced-order set of r time-dependent orthonormal modes, U(t) =
[u1(t), u2(t), . . . , ur(t)], that minimize the difference between the action of the linearized operator
L(u(t), t) on ui(t) and the rate of change of ui(t). More specifically, the functional that is minimized
is given by

F (u̇1, u̇2, . . . , u̇r) =
r∑

i=1

∥∥∥∥∂ui(t)
∂t

− L(u(t), t)ui(t)
∥∥∥∥

2
, (3.1)

with the constraint that the time-dependent basis is orthonormal, 〈ui(t), uj(t)〉 = δij, i, j = 1, . . . , r.
We emphasize that the minimization of the function (3.1) is considered only with respect to the
time-derivative (rate of change) of the basis, U̇(t), instead of the basis U(t) itself. This is because we
do not want to optimize the subspace that the operator is acting on, but rather find an optimal set
of vectors, U̇(t), that best approximates the linearized dynamics in the subspace U. We then solve
the resulting equations and compute U(t). We will refer to these modes as the OTD modes, and
the space that these modes span as the OTD subspace. By using the minimization principle and
taking into account the orthonormality constraint, it can be shown [26] that the OTD subspace is
described by the following evolution equations:

∂U
∂t

= LU − UUTLU. (3.2)

The OTD modes possess the following favourable properties for the description of extreme
events.

1. For the case of a time-independent operator L, the subspace spanned by the columns of
U(t) converges asymptotically to the modes associated with the most unstable directions
of the operator L [26].

2. For the general case of a time-dependent operator L(t), under mild conditions, the
subspace U(t) aligns with the r most dominant left CauchyGreen strain eigenvectors
exponentially fast. To this end, the OTD subspace captures the r largest finite-time
Lyapunov exponents [1].

The first property shows how the OTD modes capture persistent instabilities and thus provides
a connection with the dynamic mode decomposition (DMD) modes for the special case of steady
linearized dynamics. DMD was proposed by Schmid [28] for extracting a linear approximation
to the flow map of a nonlinear dynamical system. The resulting modes have proved insightful
in the analysis of fluid flows [29,30] and shown to have intricate connections to the Koopman
and Fourier modes of time periodic solutions [31,32]. However, the real benefit of OTD
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modes is their property to capture transient episodes of intense growth, as illustrated by the
second property. In particular, they provide the directions associated with the largest finite-
time Lyapunov exponents, which is essential for the inherently transient character of extreme
events, independently of whether these are caused by exponential or non-normal growth. In other
words, computation of the finite-time Lyapunov exponents of the full system can be performed
using the projected variational equation to the OTD directions. We emphasize that non-normal
growth cannot be quantified through standard methods, such as the eigenvalues or the singular
values of the linearized operator L(u, t) (see figure 1 in [1]). For this reason, OTD modes are
particularly attractive and robust in capturing transient growth phenomena. OTD modes share
some fundamental characteristics of other stability measures. The time varying nature of the OTD
modes distinguishes them from the Lyapunov vectors [33,34] and Oseledec subspaces [35,36].
The relation between the OTD modes and the finite-time Lyapunov vectors is examined in
[1]. Their connection with covariant Lyapunov vectors [36] remains to be explored. The OTD
modes also describe the behaviour of the dynamically orthogonal (DO) modes used for uncertainty
quantification of high-dimensional dynamical systems [37,38]. This connection has been
studied in [1].

We present results illustrating the predictive properties of the OTD modes. A detailed
discussion of OTD modes as precursors of extreme events can be found in [27]. For a given scalar
quantity of interest q(t), we define

q̄(t) = max
τ∈[t+ti,t+tf ]

q(τ ), (3.3)

where 0 < ti < tf are prescribed numbers that control the time window of prediction in the future.
The time window expresses the time scale it takes for the extreme event to grow and depends on
the intensity of the instability. The aim is to parametrize the expected future value of the quantity
of interest with respect to an indicator α(t). In this case, the indicator will be expressed using
measures associated with the OTD subspace. To this end, we use the joint PDF of q̄ and α, denoted
as pq̄,α . The conditional PDF of q̄ (conditioned on α) is then given by

p(q̄ | α) = pq̄,α(q̄, α)

pα(α)
, (3.4)

where pα is the PDF of the indicator α. Roughly speaking, p(q̄(t) = q̄0 | α(t) = α0) denotes the
likelihood of the maximum of the scalar q over the time interval [t + ti, t + tf ] being q0 given that
the value of α at time t is α0.

In [27], the predictive skills of OTD modes for extreme events in the Kolmogorov flow as well
as in nonlinear waves described by the MNLS equation were studied. For the Kolmogorov flow,
the quantity of interest q is the energy dissipation rate, D, and the predictor α is chosen as the
largest eigenvalue, λ1, of the symmetric part of the reduced linearized operator within the OTD
subspace, Lr = 〈U, LU〉 for r = 8. For this system, the prediction window is set to ti = 3 and tf = 5.
For the nonlinear waves problem, the quantity of interest is the spatial local maximum of the wave
field, maxx | u(x, t)|, and the indicator is chosen to be the spatial maximum of the first OTD mode,
maxx | u1(x, t)|. The prediction window in this case is set as ti = 25 and tf = 26. The joint PDF pq̄,α
is approximated for each case from a large set of numerical simulations and the conditional PDF is
then computed through the Bayesian relation (3.4). The conditional PDF for each case is shown in
figure 3a,c. In both cases, the shape of the PDF suggests a successful parametrization with respect
to the values of the indicator in regions corresponding to high probability for extreme events
and regions of low probability for extreme events. For reference, we also show in figure 3b the
corresponding PDF using predictors built from DMD modes. For this case, however, the indicator
has very limited skill on parametrizing effectively the two regions. This is not a surprise taking
into account that DMD modes are designed to capture persistent instabilities, i.e. instabilities
associated with long-time behaviour rather than finite-time episodes. Note, however, that variants
of DMD such as the multi-resolution DMD [39] and the Hankel alternative view of Koopman
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modes [40] have been shown to perform satisfactorily in capturing intermittent events in certain
chaotic systems.

(b) High-likelihood unstable modes
Despite their favourable properties, OTD modes can be expensive to compute especially for high-
dimensional systems. To this end, we seek a formulation that will provide us with static modes
associated with finite-time instabilities that have high likelihood. This is along the philosophy of
OTD modes that give the most unstable directions around the current system state, but it does
not require to evolve the modes.

For a general dynamical system, there can be many states that evolve to an extreme event.
However, there are only few of those that have high likelihood to occur if the system state ‘lives’
within the chaotic attractor (or more generally a low-dimensional set as it is the case of the
nonlinear waves problem). For this reason, it is not effective to build precursors based exclusively
on stability arguments. This led to the formulation of a variational theory [24], where the objective
is the determination of modes associated with intense finite-time instabilities under a feasibility
constraint which guarantees that these modes are associated with states that have high likelihood.

 on July 24, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


9

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170133

.........................................................

ob
se

rv
ab

le

t t time

(a) (b)

u(t)

u0

C(u) = c0
constraint of equal

probability

contours of growth

rate of q(t)

contours of

growth rate of q(t)

incre
asi

ng

growth ra
te

in
cr

ea
si

ng
gr

ow
th

 r
at

e

Figure 4. (a) A depiction of intermittent bursts of an observable. The highlighted regionsmark an approximation of the growth
phase of the extreme events. (b) The shaded region indicates the probability density function of the system in phase space. The
dark contour indicates one possible feasibility constraint associated with given probability of occurrence. The dashed blue lines
indicate contours of equal finite-time growth for the quantity of interest q. The optimization problem determines all states that
satisfy the feasibility constraint and have the most intense growth. (Online version in colour.)

The constraint is expressed in terms of observed low-order statistics of the system and the growth
rate is optimized based on the governing equations of the system. This constraint is of particular
importance as it excludes ‘exotic’ states with rapid growth rates for the quantity of interest, but
negligible probability of being observed in practice.

This method is formulated as a constrained optimization problem for which we give a brief
overview (see [24] for details). Assume that there is a typical time scale τ over which the bursts in
the observable q(t) develop (figure 4a). We seek initial conditions u0 whose associated observable
q(t) = T(u(t)) attains a maximal growth over the finite-time interval τ . More precisely, we seek the
solutions to the constrained optimization problem,

sup
u0

(T(u(t0 + τ )) − T(u(t0))) (3.5a)

and

where

{
u(t) satisfies (2.1),

C(u0) = c0,
(3.5b)

where the optimization variable is the initial condition u(t0) = u0 of system (2.1). The set of critical
states are required to satisfy the constraints in (3.5b) in order to enforce two important properties.
The first property ensures that u(t) obeys the governing equation (2.1) as opposed to being an
arbitrary one-parameter family of functions. The second property C(u0) = c0 (where C is a co-
dimension-k constraint) is enforced to ensure the non-zero probability of occurrence, i.e. states
that are sufficiently close to the chaotic background attractor or set of high probability. The set of
probabilistically feasible states can generally be described by exploiting basic physical properties
of the chaotic attractor or set, such as average energy along different components of the state
space or the second-order statistics.

The optimization problem is illustrated graphically in figure 4b. The shaded region indicates
the PDF of the system state in phase space—it is a representation of the chaotic set for which
we have a rough description through e.g. second-order statistics. The bold contour indicates one
possible feasibility constraint associated with a given probability of occurrence; this is formulated
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Figure 5. (a) High-likelihood unstable mode for the Kolmogorov flow shown in terms of the vorticity field. (b) Conditional PDF
for the dissipation rate with respect to the precursor obtained from the computed mode. Figure reproduced with permission
from Farazmand & Sapsis [24]. (Online version in colour.)

in terms of second-order statistical information. The dashed blue lines indicate contours of equal
finite-time growth for the quantity of interest q(t). While there are rapidly growing solutions in
two regions of the phase space (lower left and upper right), only those in the upper-right region
are associated with important probability of occurrence. ‘The optimization problem identifies
the states that satisfy the feasibility constraint and have the most intense growth. It provides
directions in phase space of intense growth and high-likelihood.’ An indicator is then built by
measuring the distance of the system state from this critical state. This can be done by measuring
the projected distance along the vector u0 − ū (figure 4b).

We emphasize that there are some fundamental differences between this approach and the
general spirit of LDT, where the search is over the full space of initial conditions associated with
trajectories that cross a given level; from those, we pick the one with the highest likelihood. In the
described approach, we specify a desired likelihood level and we search for the initial condition
with the highest growth. In contrast with LDT, the optimization problem here is tractable even for
very high dimensions since we are constrained to look over a smaller set—one associated with
feasible solutions. Also, it is natural to apply order reduction methods because the set of feasible
sets often can be described through a reduced set of variables. The details for the numerical
solution of the optimization problem can be found in [24].

We review results related to the application of this method to the two prototype problems. For
the Kolmogorov flow, the high dimensionality of the space of solutions leads us to seek for modes
associated with intense growth instantaneously, so that we have a tractable computational cost.
For this case, we consider the limit of τ → 0 and the growth rate can be computed analytically
from the governing equations. The feasibility constraint is formulated in terms of the dissipation
rate. In particular, we seek only the states with dissipation rate equal to its statistical mean value
(obtained from a short simulation of the system), so that we always remain close to the chaotic
attractor. In figure 5a, we present the solution of the optimization process. This is the state that has
the most intense growth rate in terms of the quantity of interest and has dissipation rate consistent
with the chaotic attractor. The magnitude of the projection of the velocity field to this mode,
λ(t), provides the precursor for this case. The conditional PDF for the dissipation rate D with a
prediction window extending from ti = 1 to tf = 2 is shown in figure 5b. Note that the prediction
horizon can be extended and a detailed study can be found in [24]. We can clearly observe that
the derived precursor parametrizes effectively the range of extreme events providing an efficient
and parsimonious method for their prediction.
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For the water waves problem [41,42] the background chaotic set is not formed due to
dissipation, i.e. we do not have a chaotic attractor but rather a random set caused by the random
phase between harmonics. We first approximate the stochastic set by a reduced order model. In
this way, the space where the optimization is performed is low-dimensional (two dimensional for
unidirectional wave-groups [43] and three dimensional for two-dimensional directional waves
[42]). Specifically, the space of initial conditions with non-zero likelihood of occurrence can be
parametrized as localized wave-groups having random amplitude, A and random length, L [41]:

u(x, t) = A sech
( x

L

)
.

Their joint PDF can be computed directly from the wave elevation spectrum (see [41,42] for
details), i.e. second-order statistical information. In figure 6a, we present this joint PDF for a
given sea spectrum. This provides an efficient representation of the random background set.
Although there are numerous wave-groups that constitute the full wave-field, it is a valid
assumption to consider their evolution independent from each other, at least for dynamical
regimes associated with realistic steepness and amplitude [41,42]. To this end, we quantify the
evolution of each wave-group as if this was uncoupled to the surrounding waves. In figure 6b,
we present the normalized (with respect to the initial amplitude) space–time maximum of the
solution, (1/A) maxx,t | u(x, t)|, for each initial wave-group. While for small initial amplitudes we
have linear dynamics (no amplification), for larger initial wave-groups we have amplification due
to nonlinear focusing effects. We specify a given likelihood of occurrence and within this set of
wave-group amplitudes and lengths we identify the pair with length L∗, corresponding to the
largest amplification.

We formulate the precursor for extreme waves by utilizing the projection of the wavefield to
this wave-group with critical length scale, L∗:

Y0(x∗, t) = 2L∗
〈
sech

(
x − x∗

L∗

)
, u(x, t)

〉
, (3.6)

where the factor 2L∗ is a normalization constant. In figure 6c, we present the conditional PDF of
the maximum wave elevation in a future time instant within a prediction window extending from
ti = 50 to tf = 350, given the magnitude of the precursor |Y0| at the current time instant. The fact
that the high-likelihood unstable mode is localized in space also allows for the determination
of the neighbourhood, x∗, where the extreme event will occur in the near future. Note that
compared with the OTD method the precursors based on the highest-likelihood unstable mode
provides with longer warning times. This is because OTD modes need a small amount of time to
align to the currently most unstable modes. The modes presented have been used for predicting
extreme events in nonlinear water waves with high success rates and low false-positive rates [41].
Moreover, in [42] a similar analysis was employed for two-dimensional directional waves.

4. Quantification problem: efficient computation of the probability density
function

The next problem we are interested in involves the parsimonious statistical quantification of
extreme events. This is an essential task for design and operational purposes but also challenging
because it requires a large number of samples for the quantity of interest. Following our
formulation, we assume that we have a coarse description of the chaotic attractor or background
random set through second-order statistics information or a few samples. We will discuss two
recent approaches for the quantification of statistics focusing on extreme event properties. In the
first case, we will additionally assume that we have a description of the instability region that
leads to the formation of extreme events (green region in figure 1). This will result in a semi-
analytical formulation with very high accuracy for the tails of the PDF [44,45]. However, for cases
where we do not know explicitly the instability region, we will use a machine learning approach
that leads to an efficient sampling strategy for extreme event statistics [46].
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Figure 6. (a) Joint PDF of amplitude A and length scale L of the random wave-groups that represent the chaotic set of
initial conditions, consistent with the spectrum of the random wave field. (b) Space–time maximum of the wave amplitude,
normalized by the initial amplitude, for elementary wave-groups. (c) Conditional PDF of the maximum wave elevation within
the prediction horizon, given the magnitude of the precursor. (Online version in colour.)

(a) Probabilistic decomposition-synthesis method
The idea behind the probabilistic decomposition-synthesis (PDS) method is to rely on an
ergodicity assumption for the system dynamics and then employ (i) a special treatment
(statistical quantification) of the regimes associated with instabilities which are responsible
for the heavy-tail character of the PDF and (ii) second-order statistics for the probabilistic
core of the PDF. We first compute the conditional PDF statistics when the system state goes
through the instability region (simulating a few carefully selected initial conditions) and then
merge this information with the low-order statistical description of the chaotic attractor or
background random set. This idea was first developed for oscillators with parametric instabilities
(multiplicative noise) having the form of correlated stochastic processes [44]. In this case, the
coarse description of the attractor was given by a Langevin approximation of the original
equation in the stable regime, while the unstable bursts were approximated analytically. The
idea was further developed for stochastic PDEs in [45] and here we give an overview of this
analysis.

For the ergodic dynamical system (2.1), we assume that the second-order statistics (i.e. a
coarse representation of the chaotic background set) and the instability region, Re (green region
in figure 1), are both also known. We simulate or analytically describe a few trajectories initiated
in the unstable region. Using those, we approximate the conditional PDF associated with extreme
events, ρ(q | extreme events). This conditional PDF describes the statistics of the system during
transient instabilities that lead to extreme events. We use the second-order statistics of the
background random set through a Gaussian approximation to compute the overall probability
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of occurrence of the unstable region, Re, i.e. the probability that the system will go through this
region:

Pr = P(extreme events), where P denotes probability.

This probability expresses how frequently the system exhibits extreme events due to the transient
instabilities. Using the Gaussian approximation for the conditional statistics of the system state,
u, when this is away from the unstable region, Re, we obtain the conditional statistics of q =
T(u) when we have no extreme events (e.g. using derived distributions). This will give the
conditional PDF, ρ(q|regular events). Note that this PDF also includes rare occurrences of large
magnitude which are not caused by instabilities. The final step is the probabilistic synthesis of
this information and this is done through a total probability argument:

ρ(q) = ρ(q|extreme events)Pr + ρ(q|regular events)(1 − Pr). (4.1)

The first term expresses the contribution of extreme events due to internal instabilities and it
is the heavy-tailed part of the distribution for q. The second term expresses the contribution
of the background random set and accounts for the main probability mass in the PDF for q.
The decomposition separates statistical quantities according to the total probability law through
conditioning on different dynamical regimes. It provides a partition in terms of the Gaussian
‘core’ due to the background random set or chaotic attractor and the heavy tails caused by the
intermittent bursts.

The framework has been applied to mechanical systems, such as the Mathieu equation
excited by a correlated stochastic process [11], optimal mitigation of extreme forcing events using
nonlinear springs [47] and the quantification of extreme nonlinear water wave statistics [45].
In figure 7, we present the results of the PDS method for the MNLS equation in the context
of nonlinear water waves. The quantity of interest in this case is the local spatial maxima of
the wave field. We use the statistical information we employed in the previous section for the
derivation of precursors, i.e. the PDF for the amplitudes and lengths of the formed wave-groups,
obtained from second-order statistics. The red line defines the unstable region where wave-groups
undergo nonlinear focusing. By performing a few simulations of the full equations initiated in the
unstable regime, we obtain an approximation of the conditional statistics for extreme events. The
conditional statistics for regular events are obtained analytically and have the form of a Rayleigh
distribution. We apply the total probability law and obtain the PDF shown in figure 7b, which
compares favourably with direct Monte Carlo simulations several standard deviations away from
zero. The computational cost of the PDS method is extremely small compared with the direct
Monte Carlo method as it involves only a few simulations of the full equations for a short time
interval. Nevertheless, the PDS method suffers from an important drawback and that is the need
to know explicitly the unstable regime. This difficulty is overcome through the formulation of the
adaptive sequential sampling scheme presented next.

(b) Adaptive sequential sampling
To overcome the need for explicit knowledge of the unstable region, we develop a sequential
sampling strategy of the attractor or background random set that provides with the PDF of the
local maxima of the quantity of interest over a specific time window, q̄(t) = maxτ q(t) � T̄(u(t)),
using only a small number of simulations of the system. Specifically, the ergodic property
allows us to obtain extreme event statistics by sampling the attractor or background random set
over different initial conditions and performing short time simulations (over a time window of
O(τ )) to characterize the quantity of interest. We assume a coarse knowledge of the attractor or
background random set, i.e. that u has known second-order statistics. The details of the scheme
are presented in [46] and here we give a summary of the approach.

Given a set of n − 1 samples {û1, û2, . . . , ûn−1} for which we have performed short time
simulation of the full equations and we have quantified the local maxima of the quantity of
interest, we aim to identify the next point of the attractor or background random set that we

 on July 24, 2018http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


14

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20170133

.........................................................

0

A

0.25

0 30 0.05 0.400.350.300.250.200.150.10

Monte Carlo
linear theory
decomposition

2520

Re

15
L q

105

0.05

0.10

0.15

0.20

2.5

102

PD
F

1

10–4

10–2

2.01.51.00.5(a)

(b)

Figure 7. (a) Joint PDF of amplitude A and length scale L of the random wave-groups that represent the background random
set. The red line denotes the unstable region, Re i.e. the wave-groups that undergo nonlinear focusing. (b) PDF of the wave
elevation maxima using the PDS method and comparison with direct Monte Carlo method. The green dashed line indicates
the conditional PDF for regular events and the grey line is 4σ . Reproduced with permission from Mohamad et al. [45]. (Online
version in colour.)

should sample in order to achieve fastest convergence of the PDF for q̄. What properties this
point should have? One potential strategy could be to sample points that have high probability
according to the second-order statistics that we have available for the system state (i.e. sample the
dark shaded region in figure 1a). But, there is no guarantee that these high probability points will
be associated with large magnitude for q̄, so we can capture the extreme event statistics accurately.
Another strategy would be to sample points associated with large value of q̄ (green region in
figure 1a), but we do not assume that these regions are known, as the map T̄ : u → q̄ is unknown,
and even if we knew them these may have very small probability of occurrence to contribute to
the extreme event statistics, i.e. they may be away from the brown region.

Our approach will focus on sampling points that have high probability but also important
contribution to the form of the tail. In particular, we first use the existing samples to machine
learn the map T̄ : u → q̄ . We also estimate the local error caused by the sparse sampling of this
map. Then, we formulate a criterion which leads to sampling points that (i) have high probability,
and (ii) cause important error reduction for the estimated map in regions where the value of the
map is expected to be large (and therefore contributes to the form of the tail).

More specifically we follow these steps (see also figure 8 for a graphical description of the
steps):

1. We use a Gaussian process regression (GPR) scheme, based on the existing set of samples
Dn−1 = {ûi, T̄(ûi)}n−1

i=1 . To estimate T̄ we place a Gaussian process (GP) prior over T̄ and
consider the function values as a realization of a GP. This gives us the posterior mean
T̄n−1(u) and variance σn−1(u).

2. We hypothesize a new sample û∗ which we want to determine according to the properties
above, in order to optimally sample the system. We compute the new error map σn(u; û∗).
As we do not wish to directly sample the system before we finalize this new point, we
assume that the exact value of the map is given by the best linear unbiased estimator,
using the n − 1 points we have already analysed through the GPR scheme, i.e. T̄(û∗) �
T̄n−1(û∗).

3. Using the second-order statistics for u, we compute the PDFs of the upper and lower
bounds of the estimated map (denoted as ρ±

n (s; û∗)) i.e. the PDFs of T̄n−1(u) ± σn(u; û∗).
These PDFs take into account the addition of the hypothetical point û∗.
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T
–
n – 1(u) + sn – 1(u)

T
–
n – 1(u) T

–
n – 1(u)

T
–
n – 1(u) – sn (u; û*)
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4. The criterion we use to select the ‘next-best’ point is based on the following L1 distance
between the PDFs

Q̂n(û∗) � 1
2

∫
|log ρ+

n (s; û∗) − log ρ−
n (s; û∗)| ds. (4.2)

The next sample point ûn is chosen so that Qn is minimized. We finally perform a direct
sampling of the system at the new point.

After a sufficient number of points, we can estimate the PDF of q̄ using the estimated map and
the second-order statistics of u. Note that the logarithm used in the distance emphasizes accuracy
for the tail region. In [46], we analytically study the asymptotic behaviour of the criterion and
demonstrate the favourable properties of the method on capturing the tail region of the PDF
using a small number of samples. In addition, we discuss the details for the implementation and
numerical treatment of the optimization problem in the last step.

We emphasize that in the sequential sampling strategy knowledge of the instability region is
not needed, in contrast to the PDS method. On the other hand, the adaptive sampling strategy
relies on the solution of an expensive optimization problem. Depending on the dimensionality of
the problem we may also need to apply order reduction techniques for representing the attractor
or background random set in a low enough dimensional space so that the problem is numerically
tractable. Nonetheless, the method is valuable for systems where samples are very expensive to
obtain and thus is worth solving an optimization problem for each sample. The method has been
demonstrated in high dimensional hydromechanical systems excited by random water waves
[46] and it allows for the accurate quantification of the PDF for the quantity of interest several
standard deviations away from the mean using O(10) samples.
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5. Conclusion
We have discussed recent approaches for the prediction and statistical quantification of extreme
events in complex dynamical systems characterized by high dimensionality. We have considered
systems where transient instabilities and the associated nonlinear energy transfers are responsible
for the formation of extreme events. For all the methods presented, the underlying idea is to
combine a coarse description of the attractor or background random set (expressed through
second-order statistics or a few realizations) with some dynamical information concerning the
instabilities of the system that cause the extreme events (expressed through carefully selected
simulations of the full equations). The reviewed approaches use both equations and data.

For the prediction problem, we have presented two complementary approaches that allow for
the short-term prediction of extreme events by identifying the subspaces related to the transient
instabilities. These approaches should be important for applications beyond prediction, such as
filtering and control. On the other hand, the developed strategies for statistical quantification
allow for the inexpensive computation of the heavy-tailed characteristics for the PDF of interest.
Such approaches pave the way for the optimization and design of systems using their higher-
order statistical properties, a computational task that has been formidable using traditional
methods such as Monte Carlo-based methods. Some results along this direction are presented
in [47].

Future directions include the formulation of fully data-driven methods for system for which
equations may not be available or they are characterized by important model error. Such efforts
should not rely on the purely statistical analysis of the data but rather on the data-driven
identification of the underlying dynamics [48–51] and then the subsequent utilization of the
discovered models with the same data in a blended, data-driven, model-assisted philosophy.
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