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ABSTRACT 

Extreme values of ship motions and loads in 

irregular waves are of considerable interest for both the 

analysis of prospective designs and the development of 

operational guidance. However, the direct evaluation of 

these extremes via Monte-Carlo methods is cost-

prohibitive, as they are too rare to be predicted by a model 

test or numerical simulation of sufficient fidelity in 

realistic sea conditions. This paper describes recent 

developments in extreme value assessment procedures that 

are based on characterizing the extreme response from a 

finite set of numerical simulations. The specific focus of 

the present work is to use physical considerations to 

determine the type of tail of a distribution for a random 

variable that characterizes the extreme motion. This 

essentially adds physical information into the statistical 

model and may decrease the statistical uncertainty 

associated with extreme value prediction. The paper 

considers tails of two random variables: peaks of roll 

motions and values of the capsizing metric from the split-

time method. 

A single degree-of-freedom dynamical system 

with piecewise linear restoring is used for theoretical 

considerations. Such a system, with certain assumptions, 

allows for closed-form solutions of the distributions of 

large roll angles and the capsizing metric. A piecewise 

linear system with triangular stiffness is a qualitative 

model of a dynamical system with softening stiffness 

(reduced restoring at larger roll angles), so these closed-

form solutions reveal the principle form of the tails of the 

considered variables. Distributions of the roll peaks must 

have heavy tails, while the distribution of the capsizing 

metric is expected to have an exponential tail.  

Large-volume samples of ship motion in random 

irregular seas were generated using rapid volume-based 

numerical simulation. Small subsets of these samples were 

then used for extreme value predictions that incorporate 

theoretical types of the tails. Systematic comparison was 

made to confirm the structure of the tails of roll peaks and 

the capsizing metric. 

INTRODUCTION 

The need to use extrapolation in order to obtain 

extreme motions and loads from numerical calculations 

for a ship in irregular waves is a result of the transition to 

time-domain calculations. These codes incorporate 

nonlinearities that are not possible to account for in the 

frequency domain and lead to a non-Gaussian response 

even as the waves themselves remain Gaussian.  The 

most significant nonlinearities associated with motions 

and loads of a ship in waves are related to the changing 

geometry of the submerged portion of the hull.  As the 

influence of these nonlinearities is strongest in the largest 

motions, it is the tail of the distribution that is of practical 

interest. 

The problem of the assessment of extreme 

values is typically formulated as an estimation of the 

probability of exceedance of a given large value. Less 

commonly, it may be formulated as the largest value that 

would be observed in a given time duration. Both of these 

formulations require an approximation of the tail of the 

distribution of the quantity of interest. 

The approximation of the tail has to be 

performed using the results of time-domain numerical 

simulations, as that is the only available information of 

the ship response. As relevant large values of the 

response may not be observed during simulations of 

practical length, the estimation of the probability of 

exceedance of a large value is essentially an 

extrapolation task. Belenky, et al. (2012) reviews three 

possible methods of extrapolation applicable for a ship’s 

dynamical response: 

 Split-time method 

 Peak-over threshold (POT) 

 Critical wave group method 

The first two methods are based on the theory of extreme 

values, which establishes a limit distribution of the 

largest value in a sample (the first extreme value 

theorem). This distribution is commonly referred to as 

the Generalized Extreme Value (GEV) distribution. 



 

 

 

Using GEV, an approximation of a distribution above a 

“large-enough” threshold (the second extreme value 

theorem) is derived, which is known as the Generalized 

Pareto distribution (GPD). The second extreme value 

theorem is the mathematical background of the Peaks-

over-Threshold method (Pickands, 1975). 

Both theorems are applicable without limitations 

only for independent samples. As ship response is 

correlated (due to inertia and correlated excitation), 

independent points need to be extracted from the sample 

with a procedure usually referred to as “de-clustering.” 

One convenient way is to use an envelope. Peaks of the 

envelope of a ship response are far enough apart to be 

independent (Fig. 1). This particular application 

sometimes is referred as EPOT – Envelop Peaks over 

Threshold (Campbell, et al. 2016). EPOT has been applied 

to large roll and pitch angles and excessive transversal and 

vertical accelerations. 

 

Figure 1: De-clustering with an envelope 

 

The split-time method is intended for estimating 

the probability of complex and rare physical phenomena in 

which the physics of the problem changes with the extreme 

response, such as capsizing and broaching-to. The method 

is being developed under the US Office of Naval Research 

(ONR) funded project “A Probabilistic Procedure for 

Evaluating the Dynamic Stability and Capsizing of Naval 

Vessels” (Belenky, et al. 2016). As capsizing cannot be 

observed during a simulation or set of simulations of 

reasonable length, a special metric of capsizing likelihood 

is introduced. It is computed at the instant of upcrossing of 

an intermediate roll threshold. The roll rate is perturbed 

until capsizing is observed (Fig. 2). The difference 

between the roll rate at upcrossing and the roll rate when 

capsizing is observed is the metric, as it indicates “the 

distance to trouble.” 
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ϕ̇𝐶𝑖 is the critical roll rate calculated for the i-th 

upcrossing, and ϕ̇𝑈𝑖 is the roll rate observed at the i-th 

upcrossing, NU number of observed upcrossings. 

 

 

Figure 2: Motion perturbation for computing the 

capsizing metric 

Computation of the metric values (1) over a 

number of upcrossings creates a sample that can be used 

for extrapolation with GPD. For 3 DOF simulations, the 

de-clustering technique can be based on convergence 

time, which is when the perturbed solution converges 

back to the original unperturbed solution. This approach 

does not work for 6 DOF system, for which a technique 

based on an averaged decorrelation time is used instead 

(Weems and Belenky 2017).  

The critical wave group method is based on a 

completely different approach, though the principle 

remains the same: consider a complex nonlinear 

dynamical phenomenon and extreme rarity separately. 

The idea of the wave group method is to extract groups 

of large waves and consider them separately, assuming 

that the phenomena of interest are caused by rare groups 

of large waves separated by benign waves, see Fig 4. 

 

Figure 3: On critical wave group approach 

 

The first complete application of the wave 

group method for the probabilistic assessment of 

dynamic stability was carried out by Themelis and 

Spyrou (2007). Several theoretical descriptions of wave 

groups are available in the literature. One such 

description is Quasi-Determinism (QD), which is 

reviewed in Boccotti (2014). QD defines the wave group 

profile around a large wave, thus significantly decreasing 

the number of parameters needed to characterize the 

wave groups. Descriptions of recent developments, as 

well as an examination of the application of critical wave 

group method to model tests in a wave basin, can be 

found in Anastopoulos, et al. (2015) and Romolo, et al. 

(2016). 
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However attractive from a theoretical 

perspective, the practical application of these extrapolation 

methods require robust validation. What does it mean in 

relation to an extrapolation method and to rare events? The 

most current description can be found in Smith and Zuzick 

(2015). The validation of extrapolation requires very fast, 

but at least qualitatively correct simulation code, capable 

of reproducing data sets comprising millions of hours of 

irregular sea response, making even rare events 

observable. Small portions of this simulation date set are 

then used with the extrapolation method being tested. The 

extrapolated result is compared with a true value observed 

from the full data set. The most recent description of such 

code is available from Weems, et al. (2018). This 

reference, along with Smith and Zuzick (2015), give a 

complete picture of the validation attempts of the EPOT 

and split-time methods.  

Basic testing of the critical wave group method 

against a Mont-Carlo result was carried out by Malara, et 

al. (2014) using the Duffing equation. As the latter can be 

solved very quickly, it can be used as a source of rare 

events and extreme values associated with them. 

Validation using fast ship motion simulations remains for 

the future work. 

One of the outcomes if the validation of 

extrapolation with EPOT and split-time was the realization 

that the confidence interval of the extrapolated estimate is 

generally not small. While the lower boundary has mostly 

academic value, the upper boundary of the confidence 

interval of the extrapolated estimate is actually the value 

that constitutes the correct answer to use in any risk-based 

analysis. Some cases have shown this boundary to be two 

orders of magnitude or more above the true value. While 

some applications may accept an answer at this level of 

uncertainty, it would be highly desirable to decrease the 

uncertainty without increasing the volume of the sample. 

Can this be done? 

The answer is actually yes. Fitting GPD to a 

sample of peaks or capsizing likelihood metric is a data-

driven procedure. Including some physical information 

into the statistical model may decrease uncertainty. GPD is 

a two-parameter distribution. Each parameter is a result of 

fitting procedure (usually through maximum likelihood), 

which is a sort of averaging procedure performed on a 

finite data sample. Thus, each estimated parameter carries 

statistical uncertainty. However, the parameters are 

dependent as they were fit with the same data.  

Glotzer, et al. (2017) introduced a ratio between 

the parameters for extreme pitch motion, assuming a 

physical limit for a pitch of ONR tumblehome 

configuration. One can justify the assumption by the 

existence of a rather long flat portion of the longitudinal 

GZ curve, where dynamical system is no longer capable of 

accepting any energy from the excitation since its 

instantaneous natural frequency becomes zero. This 

assumption resulted in a significant decrease of the 

statistical uncertainty. 

The GPD approximates a “generic” tail for any 

data set. Including some physical information into the 

statistic model may decrease the uncertainty and increase 

the reliability of the extrapolation. This paper focuses on 

how it can be done for large roll angles and capsizing 

metrics by understanding the nature of the tails of their 

distributions.  

STRUCTURE OF A DISTRIBUTION TAIL  

As noted in the previous section, GPD is 

derived from GEV as an approximation for a tail above a 

sufficiently large threshold.  More details can be found 

in Coles (2001), where the logic of the derivation of GPD 

from GEV is outlined. Formally, GPD has two 

parameters: shape  and scale . Additionally, there is a 

threshold u; the distribution is only applicable for the 

random values y>u. 
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The scale parameter  is positive, while the 

shape parameter  can be both positive and negative. For 

the case =0, the GPD becomes an exponential 

distribution for the variable y-u with the parameters 1/. 

A negative shape parameter imposes a limitation on the 

expression in parenthesis: 
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This limitation formally introduces a right bound for the 

negative values of shape parameter: 
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That right bound was used by Glotzer, et al. 

(2017) to introduce physical information into the 

statistical model, which led to significant uncertainty 

decrease. 

Shape parameter defines the type of tail: heavy, 

exponential or light, as shown in Fig. 4. The exponential 

tail describes the extreme values of a normal distribution. 

The heavy tail is above the exponential tail, while light 

tail is below. As the exponential tail is the smallest 

infinite tail, the light tail has a limit, which is its right 

bound.  The heavy tail is unbounded. So the most basic 

question to ask is the type of the tail. 

 



 

 

 

 
Figure 4: Types of tails 

PIECEWISE LINEAR (PWL) MODEL  

PWL Model as a Nonlinear Dynamical System 

A single degree-of-freedom dynamical system 

with piecewise linear restoring function is a convenient 

object for theoretical study as it offers closed-form 

solutions for many interesting problems. Consider the 

differential equation: 

 )()(2
2
0 tff EL    (5) 

where  is a linear damping coefficient and fE is a 

stationary stochastic process of roll excitation, while the 

roll restoring fL is shown in fig.5. 

 

Figure 5: Piecewise linear restoring term 

The differential equation (5) has a closed form solution 

within each range. As the equation (5) is linear within each 

range, the general solution is presented as a sum of a 

general solution of the autonomous equation and a 

particular solution of heteronomous equation: 
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a, , A, B, a2 and 2 are arbitrary constants that are 

dependent on the initial conditions at the “switching” of 

the ranges; d0 and d2 are frequencies of the damped 

oscillation in ranges 0 and 2, respectively; 1 and 2 are 

eigenvalues for the solution in Range 1. p0, p1 and p3 are 

particular solutions, similar in shape to the excitation fE, 

i.e. stationary stochastic processes. 

The system (5) has all the properties of a 

nonlinear system; Belenky (2000) describes its nonlinear 

properties, typical for the softening nonlinearity 

including: 

 Loss of isochronism, i.e. dependence of natural 

frequency on initial amplitude 

 Fold bifurcation: coexistence of low- and high- 

amplitude stable response to mono-periodic 

excitation of the same frequency, observed for 

excitation frequencies slightly lower than natural 

frequency 

 Flip bifurcation: response period doubling 

sequence, leading to deterministic chaos under 

mono-periodic excitation with frequency slightly 

higher than natural frequency 

 Erosion of the safe basin (set of initial conditions 

in the phase plane that do not lead to capsizing) 

for large amplitude mono-periodic excitation, 

with the frequency close to natural frequency 

These phenomena are considered to be essential 

nonlinear behaviors observed for a nonlinear dynamical 

system with softening nonlinearity – e.g. Duffing 

equation (Belenky and Sevastianov 2007). Equation (5) 

can therefore be considered as a qualitative 

representation of a nonlinear dynamical system with 

softening nonlinearity. The latter is also considered as the 

simplest qualitative mathematical model of nonlinear roll 

motions. 

Large Roll in PWL Model  

As the dynamical system (5) may be considered 

as a qualitative mathematical model of nonlinear roll 

motions, consider a distribution of local maxima of the 

solution (6) in the absence of capsizing and if these 

maxima exceed the level of m0. 

Note that a resonance phenomenon is not 

possible in Range 1, as the general solution of 

autonomous equation does not contain any oscillatory 

function. As a result: 
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var( ) var( ) var( )p p p   (7) 

here var(..) is a variance operator. More details on this 

argument can be found in Belenky, et al. (2016). The 

eigenvalues for the solution at the Range 2 are: 
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where kf1 is an absolute value of the slope of the stiffness 

function at Range 1. For the sake of simplicity of further 

derivation, also assume that damping is absent in 

Range 1, so   
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Then the solution (6) in Range 1 can be expressed as: 
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Arbitrary constants are expressed as: 
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where ϕ̇𝑈 is a roll rate at upcrossing. The value of the peak 

is expressed as 
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ϕ̇𝐶𝑖 is critical roll rate corresponding to capsizing 

conditions (see the next subsection). 

Within the accepted assumptions, all the 

quantities in (13) are constant with exception of the roll 

rate at upcrossing ϕ̇𝑈. It is a random variable, as stochastic 

excitation has been kept for range 0. Assuming that 

upcrossing are rare, so the general solution of the 

autonomous equation at Range 0 has enough time to die 

out between upcrossings, the distribution of the roll rate at 

upcrossing follows Rayleigh (Leadbetter, et al. 1983, p. 

201).  The distribution needs to be normalized for the 

condition of the absence of capsizing (if capsizing 

happens, the ship is not coming back, and there will be no 

roll peak): 
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The distribution (14) can be used even if the 

upcrossings are clustered, see Belenky, et al. (2018) for 

details. Equation (13) is a deterministic function of a single 

random variable with known distribution and this function 

is monotonic, thus the distribution the roll peaks / local 

maxima of the roll angles can be expressed as: 
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where G-1is an inverse of the function defined in equation 

(13): 
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As a result, the distribution density of the roll peaks is 

expressed in the following form: 
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where: 
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As Equation (17) presents the entire distribution 

of roll peaks for the PWL system, it contains an answer 

as to how the PWL response differs from the linear 

response. The distribution of the peaks of a linear 

response can be approximated by truncated Rayleigh 

distribution (see, e.g. Belenky and Campbell, 2012): 
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Fig. 6 shows both PDFs. The peaks of the linear 

response are expected to follow an exponential tail, thus 

the PWL response peaks do have a heavy tail. The tail 

remains heavy until some very large value in the vicinity 

of the angle of vanishing stability. Then the tail turns 

light making the inflection point. It is caused by the non-

capsizing condition: closer to the angle of vanishing 

stability means more and more trajectories lead to 

capsizing. As the inflection point is close to the angle of 

vanishing stability, the tail of PWL peaks is heavy for 

most of Range 1. This is the sort of information expected 

from the present analysis. 

 

Figure 6: PDFs of peaks of linear response and PWL 

response (Belenky et al., 2016) 

Belenky, et al. (2018) describes a solution 

without assuming zero damping in Range 1. The 

complete PDF cannot be expressed as a closed-form 

function but its behavior at limit, when the roll angle 

approaches the angle of vanishing stability, points to a 

heavy tail. 

A completely different approach described in 

Belenky, et al. (2016, 2018) assumes that the excitation 

is white noise and obtains the PDF from Fokker-Plank-
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Kolmogorov (FPK) equation. While realistic excitation is, 

of course, far from white noise, the shape of the PDF of a 

nonlinear response seems to be the same for correlated or 

uncorrelated excitation (Maki, 2016). For the qualitative 

study described in this section, the assumption of white 

noise excitation seems to be quite appropriate.  

The FPK approach not only confirms that the tail 

is heavy, but helps to explain why. This is a result of the 

stretching of the phase plane, caused by softening 

nonlinearity.  

Another way to illustrate this stretching is to 

compare short portions of the time histories of the 

piecewise linear and linear systems, starting with some 

positive roll rate from the angle m0, see Figure 7. The 

response of the linear system is described by a 

trigonometric function, sine or cosine, with appropriate 

phase shift. The PWL response in the absence of capsizing 

is described by a hyperbolic cosine, see equation (10). It is 

easy to see that hyperbolic cosine always stays above the 

trigonometric cosine for the same initial conditions.   

 

Figure 7: Piecewise linear response above the knuckle 

point vs. linear response (Belenky, et al. 2016) 

The PWL system spends more time in Range 1 

than the linear system under the same initial conditions. As 

a result, the probability of finding the PWL system in 

Range 1 is higher and the tail of the response is heavier 

than the linear one. As both responses start from the same 

initial roll rate, the maximum of the PWL response must 

be larger than the linear one. Thus, the tail of peaks of the 

PWL response is heavier than the linear one, as can be seen 

in Figure 6. 

Capsizing Metric in PWL Model 

Capsizing conditions can be derived from the 

general solution over Range 1. Whether a capsizing is 

imminent is defined by the sign of the arbitrary constant A 

that corresponds to a positive eigenvalue 1. Since the 

exponential term with the positive index is unlimited, it 

will lead the solution either back to Range 0 if A<0 or to 

Range 2 if A<0. The latter is capsizing as the solution in 

Range 2 will lead to roll around the stable equilibrium at 

, i.e. “mast down.” There is a sort of “grey area” when 

A is close to zero and where other terms in the solution 

(6) may influence the outcome; however this “grey area” 

is too small to be statistically significant. The capsizing 

condition can therefore found through A=0, leading to the 

following expression for the critical roll rate of PWL 

system: 
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The approximately equal sign reflects an 

assumption that the particular solution in Range 2 is 

small in comparison with other terms. The metric of 

likelihood of capsizing is then expressed as: 
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The metric of likelihood of capsizing is a 

deterministic function of a single random argument, the 

roll rate at the instant of upcrossing. Its distribution 

following Rayleigh: 
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The tail of the Rayleigh distribution is 

exponential. De Haan and Ferreira (2007) contains a 

proof that a normal distribution that has a tail similar to 

the Rayleigh tends to exponential tail – see the example 

1.1.7 in the cited reference. Thus, the metric of capsizing 

likelihood is expected to have an exponential tail.  

EPOT WITH HEAVY TAILS 

Modeling Heavy Tails  

Let 𝑌 be a positive variable of interest. Its 

distribution is said to have a heavy (power-law, Pareto) 

tail if  

  𝑃(𝑌 > 𝑦) = 𝐶(𝑦)𝑦−1/𝜉 , 𝑦 > 0, (22) 

where 𝜉 > 0 is a parameter and 𝐶(𝑦) is the so-called 

“slowly varying” function at infinity. The simplest 

example of such a slowly varying function is any positive 

function satisfying 𝐶(𝑦)~𝐶 with a positive constant C as 

𝑦 approaches infinity. Another example would be for 

𝐶(𝑦)~log(𝑦) as 𝑦 increases. Following the results from 

the previous section, the distribution of envelope peaks 

of roll motion is suggested to be heavy-tailed. 

A number of ways to estimate the parameter 𝜉 

have been proposed in the literature (e.g. Beirlant, et al. 

2004). If 𝑌1, … , 𝑌𝑛 is a sample of independent copies of 

𝑌, let 𝑌𝑛,𝑛 ≤ ⋯ ≤ 𝑌1,𝑛 be its order statistic. The most 
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commonly used estimator of 𝜉 is the so-called Hill 

estimator defined as 

 𝜉𝑘 =
1

𝑘
∑ (log(𝑌𝑗,𝑛) − log(𝑌𝑘+1,𝑛))𝑘

𝑗=1 , (23) 

where the index 𝑘 refers to the number of upper order 

statistics used in estimation. It is known that, under suitable 

assumptions on large k,  

 √𝑘(𝜉𝑘 − 𝜉) ≈ 𝒩(0, 𝜉2), (24) 

where 𝒩(𝜇, 𝜎2) refers to a normal distribution with mean 

𝜇 and variance 𝜎2, which can be used to set confidence 

intervals in a standard way. 

A number of methods are also available to decide 

on the index 𝑘 or threshold 𝑢 = 𝑌𝑘+1,𝑛, above which the 

distribution is considered to be exactly power-law or 

Pareto, that is 𝑃(𝑌 > 𝑦) = 𝐶𝑦−1/𝜉, 𝑦 > 𝑢. One of these 

methods is based on the so-called prediction error criterion 

(Dupuis and Victoria-Feser, 2006, and Mager, 2015). Let 

𝑋𝑖,𝑛 = log(𝑌𝑖,𝑛) − log(𝑢) , 𝑖 = 1, … , 𝑘. The prediction 

criterion concerns the so-called mean squared prediction 

error defined as 

 Γ(𝑘) =
1

𝑘
∑ 𝐸 (

𝑋̂𝑖,𝑘−𝐸𝑋𝑖,𝑘

𝜎𝑖
)

2
𝑘
𝑖=1 . (25) 

Here, 𝜎𝑖
2 = var(𝑋𝑖,𝑘) and 𝑋̂𝑖,𝑘 is the estimated value of 

𝑋𝑖,𝑘 according to the model of interest (here, the 

exponential; see below). By expressing Γ(𝑘) as  

1

𝑘
∑ 𝐸 (

𝑋𝑖,𝑘−𝑋𝑖,𝑘

𝜎𝑖
)

2
𝑘
𝑖=1 +

2

𝑘
∑

𝐶𝑜𝑣(𝑋̂𝑖,𝑘,𝑋𝑖,𝑘)

𝜎𝑖
2

𝑘
𝑖=1 − 1 (26) 

(e.g. Mager (2015), Lemma 4.2), it is then estimated as  

 Γ̂(𝑘) =  
1

𝑘
∑ (

𝑋̂𝑖,𝑘−𝑋𝑖,𝑘

𝜎̂𝑖
2 )

2
𝑘
𝑖=1 + 

  
2

𝑘
∑

𝐶𝑜𝑣̂(𝑋̂𝑖,𝑘,𝑋𝑖,𝑘)

𝜎̂𝑖
2

𝑘
𝑖=1 − 1 . (27) 

where hats indicate the estimators. The index 𝑘̂ for the 

threshold selection is chosen as that minimizing Γ̂(𝑘) over 

some range of values 𝑘. Mager (2015) suggests using the 

range [min(40,0.02𝑛) , 0.2𝑛].   

To conclude the description of the method, one still 

needs to specify the various quantities in the definition of 

Γ̂(𝑘). Under the above Pareto model for 𝑌 > 𝑢, log(𝑌) −
log(𝑢) follows an exponential distribution with mean 𝜉, 

and 𝑋𝑖,𝑛, 𝑖 = 1, … , 𝑘, are its order statistics. Under the 

exponential model, the distributions of the order statistics 

𝑋𝑖,𝑘 are well-known (e.g. Embrechts, et al. (2013), 

Example 4.1.5). In particular, with details omitted here, 

one can show that   

 𝜎𝑖
2 = 𝜉2 ∑

1

𝑗2
𝑘
𝑗=𝑖 , (28) 

where 𝜉 is the mean parameter of the above exponential 

distribution. The estimator 𝑋̂𝑖,𝑘 of 𝑋𝑖,𝑘 is defined as 

follows. The quantity 𝑋𝑖,𝑘 can be thought as the (1 −

𝑖 (𝑘 + 1)⁄ )𝑡ℎ quantile of the exponential distribution. 

But for this distribution, this quantile is 

−𝜉 log(𝑖 (𝑘 + 1)⁄ ), which suggests using  

 𝑋̂𝑖,𝑘 = −𝜉𝑘 log (
𝑖

𝑘+1
). (29) 

One can also show (with details omitted) that 

cov(𝑋̂𝑖,𝑘, 𝑋𝑖,𝑘) ≈  
𝜉2

𝑘
(log(

𝑖

𝑘+1
))

2

, suggesting use of 

 cov̂(𝑋̂𝑖,𝑘 , 𝑋𝑖,𝑘) =  
𝜉̂𝑘

2

𝑘
(log(

𝑖

𝑘+1
))

2

. (30) 

Substituting these quantities into the definition of Γ̂(𝑘) 

leads to the expression  

 Γ̂(𝑘) = 

 𝜉𝑘
−2

∑ (∑
1

𝑗2
𝑘
𝑗=𝑖 )

−1

 (𝑋𝑖,𝑘 + 𝜉𝑘 log(
𝑖

𝑘+1
))

2
𝑘
𝑖=1 +

2

𝑘
∑ (∑

1

𝑗2
𝑘
𝑗=𝑖 )

−1

(log(
𝑖

𝑘+1
))

2
𝑘
𝑖=1 − 1. (31) 

In estimating the exceedance probability P(Y 

>y*) for a heavy-tailed distribution and some target value 

𝑦∗, one writes  

 𝑃(𝑌 > 𝑦∗) = 𝑃(𝑌 > 𝑢)
𝑃(𝑌>𝑦∗)

𝑃(𝑌>𝑢)
. (32) 

Here, 𝑢 is a threshold above which 𝑌 follows a Pareto 

model and which can be selected through the prediction 

error criterion described above. Then, 

 
𝑃(𝑌>𝑦∗)

𝑃(𝑌>𝑢)
=

𝐶(𝑦∗)𝑦∗−
1
𝜉

𝐶(𝑢)𝑢
−

1
𝜉

≈ (
𝑦∗

𝑢
)

−
1

𝜉
 (33) 

and hence  

 𝑃(𝑌 > 𝑦∗) =  𝑃(𝑌 > 𝑢) (
𝑦∗

𝑢
)

−
1

𝜉
. (34) 

In practice, the probability 𝑃(𝑌 > 𝑢) is 

estimated as the sample proportion of data above the 

threshold 𝑢 and 𝜉 is taken as the Hill estimator associated 

with that threshold. Confidence intervals for the 

probability 𝑃(𝑌 > 𝑢) are set based on the standard 

binomial calculations, and those for 𝜉 are set based on 

equation (23). 

Testing Heavy Tails 

A statistical validation of heavy tails was 

carried out using the fast volume-based 3 DOF 

calculations described in Weems, et al. (2018). The fast 

code was used to create a very large sample of data where 

large roll angles are observable. These observations are 

used to estimate a “true value” with direct counting. A 

series of small subsets of this large sample was then used 

to generate extrapolated estimates to be compared with 

the “true value.” Following the three-tiered methodology 

of Smith and Zuzick (2015), the tiers are defined as: 



 

 

 

 All extrapolations for a single target value; 

 All available target values; 

 All available environmental conditions. 

This separation by tiers depends on the context. 

When the extrapolation is carried out for large roll angles, 

multiple target values can be and should be analyzed. 

However, when capsizing is considered, there is only one 

target.  

The validation value data was computed for the 

ONR tumblehome configuration (Bishop, et al. 2005). All 

of the calculations were carried for random realizations of 

a Bretschneider spectrum with a significant wave height of 

9 m and modal period of 15 seconds. Speed was set to 6 

knots, and KG to 7.5 m, resulting in GM=2.2 m.  Other 

data for the true value calculations are summarized in 

Table 1.  

Table 1. “True value” calculations 

Headings 

Deg. 

Total 

time, hrs 

Number 

of 

targets 

Largest 

target 

Number of 

exceedances 

of largest 
target 

15 570,000 5 20 14 

22.5 200,000 7 27.5 16 

30 200,000 13 45 9 

37.5 200,000 15 60 7 

45 690,000 15 70 8 

60 600,000 15 70 12 

90 690,000 9 37.5 12 

135 690,000 3 20 6 

The tier 1 validation is a set of comparisons of 

extrapolated estimates with the true value. An example is 

shown in Fig. 8 for a 45 degree heading (stern quartering 

seas) and a 45 degrees roll target value. There are 50 

extrapolation estimates, each computed from 100 hours of 

data. The main index of performance is the Passing Rate, 

indicated the percentage of successful extrapolations. An 

extrapolation is considered successful if it has an overlay 

with the confidence interval of the “true value.” 

 
Figure 8: Tier 1 extrapolation validation for a heading of 

45 degrees and target value of 45 degrees 

 

Two more performance indicators are 

considered: conservative distance CD and relative bias 

RB, defined as: 
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Where, 𝐸(λ̂𝑈𝑝) is the upper boundary of the extrapolated 

estimates averaged over the considered extrapolation 

data sets, 𝐸(λ̂𝐸)  is the most probable extrapolated 

estimate averaged over the considered datasets, and λ̂𝑇 is 

the “true value.” Numerical values for the performance 

indexes are summarized in Table 2. 

Table 2. Extrapolation performance example 

Heading, deg. 45 

Roll angle target value, deg. 45 

Passing rate 0.9 

True value, 1/s 2.718E-7 

Averaged extrapolated estimate 𝐸(λ̂𝐸), 1/s 2.247E-7 

Relative bias, RB -0.174 

Conservative distance, CD 0.583 

Average time between exceedances, hours 1,022 

The extrapolation performance looks quite 

satisfactory for this combination of heading and target 

roll angle. The passing rate seems to be reasonable. The 

averaged extrapolated estimate 𝐸(λ̂𝐸) is a measure of 

validity of the statistics model. It shows a very slight 

underestimation, indicated by the negative RB value, but 

the difference between 𝐸(λ̂𝐸) and the “true value” is 

practically non-existent. Overall, the results presented in 

Fig.8 and Table 2 do not reject the heavy tailed model for 

roll peaks when considering this target roll angle using 

simulations from this ship heading. 

The second tier of statistical validation 

considers all available targets. The passing rates are 

shown in Fig. 9 while conservative distance and relative 

bias are presented in Fig. 10. An acceptable passing rate 

for 50 extrapolation data sets is from 0.88 to 1 (Smith, 

2018). Such variation of the passing rate can be 

explained by the natural variability of the statistical 

estimates. The extrapolations are acceptable for all 

targets, excluding 50 and 60 degrees, where the passing 

rates fells to 0.86. The performance for other roll target 

value is similar to the observed for the 45 degrees target. 

 
Figure 9: Passing rate for heading of 45 degrees 

0 10 20 30 40 50 1  10 12 

1  10 11 

1  10 10 

1  10 9 

1  10 8 

1  10 7 

1  10 6 

1  10 5 Extrapolated estimate 1/s  

Extrapolated case index 

“T
ru

e”
 v

al
u

e 

 

20 30 40 50 60 70 
0.85 

0.9 

0.95 

1 
Passing rate 

Target roll angle, deg 

Acceptable level 



 

 

 

 
Figure 10: Conservative distance and relative bias for 

heading of 45 degrees 

The third tier assesses the performance over all 

available conditions. The passing rates are shown in Fig. 

11. Two lines are shown. One corresponds to an averaged 

passing rate over all target values, another the smallest 

passing rate value encountered among all the target values; 

for a 45 degree heading it corresponds to a minimum 

shown in Fig. 9. Obviously, the extrapolation did not work 

for the heading 135 degrees. 

The values of the conservative distance and 

relative bias, averaged over all target roll angles, are shown 

in Fig. 12 and 13, respectively. With the exception of the 

15 and 135 degree headings, the conservative distance does 

not exceed one order of magnitude. The relative bias also 

remains quite small with the exception of the 15 degree 

heading (2.28) and 135 heading (39.6). The latter number 

explains the very low passing rates observed for the 135 

degree heading; there is a significant overestimation of the 

probability of exceedance, see Fig 14. Perhaps, the tail is 

too heavy.   

 
Figure 11: Passing rate for all headings 

 
Figure 12: Averaged conservative distance for all 

headings 

Softening nonlinearity was shown to be the 

reason for peaks of the response to have a heavy tail. Thus, 

if the tail is not heavy, maybe motions are simply too small 

for the nonlinearity to have a significant impact. Fig. 15 

shows percentiles and largest observed values computed 

for each extrapolation set and then averaged over all data 

sets for the same heading angle.  

 

Figure 13: Averaged relative bias distance for all 

headings 

 
Figure 14: Extrapolations for heading 135 degrees and 

target value 17.5 degrees 

 
Figure 15: Percentiles and maxima of roll motions 

All the curves in Fig. 15 have a maximum at the 

60 degree heading, while the excitation is the largest in 

beam seas.  There may be two reasons why the largest 

motions are observed at the 60 degree heading: 

synchronous resonance and stability variation. While the 

latter reason seems to be more plausible as ONR 

tumblehome configuration is known for her propensity 

for stability variation, resonance conditions also need to 

be considered. Fig. 16 shows encounter frequency 

corresponding the modal period of waves (15 s) for all 

the considered headings. As one can see from Fig 16, the 

60 degree heading is further from synchronous resonance 

than beam seas, so the increase percentiles around a 

heading of 60 degrees in Fig. 15 should be attributed to 

stability variation. 
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Figure 16: Encounter frequency vs. heading 

The influence of the stability variation waves is a 

known factor for stern quartering and following seas. 

While transverse stability still changes for other heading as 

well, it generally happens too quickly for a ship to react on 

decreased roll stiffness. Stability variations can also invoke 

parametric roll, which can be significant for ships with 

certain hull forms and very low roll damping, but the 

present hull is not particularly susceptible to it. The 

stability still can therefore be represented with the calm 

water GZ curve that is close to the averaged GZ curve in 

waves.  

Fig 17 shows the percentiles for 90 (beam) and 

135 (bow) headings from Fig 15 placed on the GZ curve 

normalized by the GM value. As expected, the percentiles 

for the 90 degree heading are closer to the maximum of the 

GZ curve. However, the difference between the two 

headings does not look as dramatic as one could expect. 

Nevertheless, this difference is sufficient to make the tail 

heavy. Can this difference be quantified? 

Fig. 18 shows values of the derivative of the 

normalized GZ curve computed at the angles 

corresponding to averaged maxima and 99 and 95 

percentiles for both headings. The following criteria can be 

deduced from the observation: the normalized derivative 

should be below 0.6 at the 95, below 0.5 at the 99 

percentile, and below 0.4 and at averaged maximum. 

Unfortunately, at the present time, there are no appropriate 

data to test these criteria, so they remain in a hypothetical 

state. 

 
Figure 17: Percentiles shown on normalized GZ curve 

 

Figure 18: Percentiles and derivatives GZ curve 

 

Data for all other headings cannot be used for 

this type of analysis as the influence of stability variation 

is strong, so the calm water GZ curve cannot be used to 

indicate nonlinearity.  Consider the 15 degree heading: 

the percentiles are smaller than those for the 135 degree 

heading, see Fig. 15. At the same time, the passing rate 

is much better; the minimum passing rate is 0.84, which 

is below the acceptable level of 0.88, but average passing 

is actually 0.88. That means that there are some target 

values for which extrapolation was perfect (i.e. deviation 

of the passing rate from 0.95 can be explained by random 

reasons). Fig. 19 shows the passing rates for all targets, 

available for the 15 degree heading. Fig. 20 shows 

conservative distance and relative bias, while Fig. 21 

depicts validation of extrapolation for the target of 17.5 

degrees. 

 

 
Figure 19: Passing rate for heading of 15 degrees 

 

 
Figure 20: Conservative distance and relative bias for 

heading of 15 degrees 
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Figure 21: Extrapolations for heading 15 degrees and 

target value 17.5 degrees 

While the extrapolation performance at the 15 

degree heading is worse than at the 45 degree heading, it 

still works and recovers the correct type of tail despite the 

fact that the observed motions are rather small. It can be 

explained that large excursions of roll are caused by 

decreased stability, so despite the small roll angles the 

influence of the softening nonlinearity remains strong 

enough to make the tail heavy. 

Overall, the performance of the extrapolation for 

heavy tails, except for the 135 degree heading, can be 

characterized as “almost there.” The passing rate falls short 

of the required 0.88 for a few cases, but not by much. The 

conservative distance is well within 1 order of magnitude, 

excepting the 15 degree heading, where it is slightly 

higher. Relative bias is largest for the 15 degree heading, 

which probably explains the larger conservative distance 

for that heading. Still, the decrease of uncertainty in 

comparison with two-parameter GPD is substantial and 

brings EPOT closer to practical application. 

TAIL STRUCTURE OF CAPSIZING METRIC 

Including physical information into statistical 

model of large roll angles, as described in the previous 

section, did help to reduce their uncertainty. While some 

issues remain unresolved, it is clear that this provides a 

way forward. Now consider adding physical information 

into the model of the tail of the distribution of the capsizing 

metric (1). 

The model of the tail of the distribution for the 

capsizing metric and its testing is considered in detail in 

Belenky, et al. (2018a). The present paper contains only a 

very brief description of that model, but includes some 

additional material that was not included in the cited paper. 

Numerical Study of Shape Parameter 

An early attempt to apply the exponential 

distribution to the capsizing metric computed with the 

volume-based method (Belenky, et al. 2013) led to a 

significant overestimation of the actual probability of 

capsizing. Application of the two-parameter GPD led to 

successful validation (Weems, et al. 2016), but the 

question remains: is the true tail of the capsizing metric 

actually exponential? One way to check this is to perform 

massive simulations of a data set containing actual 

capsizing, fit the two-parameter GPD and observe its 

behavior as it approaches unity, which indicates 

capsizing.  

The simulations were performed for a 

significant wave height of 8 m and modal period of 15 

seconds. The KG value was adjusted to make capsizing 

observable and a large-volume sample was taken to 

compute the critical roll rate and the capsizing metric. 

The latter was used to fit GPD and the evaluation of the 

shape parameter estimate is monitored for different 

heading and KG values. 

Fig. 22 shows the evolution of the shape 

parameter (with its confidence interval) with the increase 

of the threshold for beam seas. The volume of the sample 

was 875 hours (1750 records, 30 minutes each) and 

contained 3 capsizes, see Table 3. The estimates of the 

shape parameters start from negative values and show a 

clear tendency to increase, reaching zero around the 

threshold value of 0.88 rad/s. The zero value is contained 

within the confidence interval for the rest of the threshold 

with exception of u =0.91, 0.914 and 0.915 rad/s. This 

picture appears to be consistent with the hypothesis of an 

exponential tail of the capsizing metric. 

 
Figure 22: Evolution of shape parameter. ONRTH, 

beam seas, KG=8.35 m 

If one tries to fit GPD to data with known 

normal or Rayleigh distribution, i.e. where the tail is 

known to be exponential, the general picture will be very 

similar to the one in Fig. 22. Both normal and Rayleigh 

distribution contains the square of a variable, taken with 

a minus sign. The minus square decreases faster than just 

a line with negative slope. This circumstance can be seen 

in the GPD as a negative shape parameter for low 

thresholds. The shape parameter estimate is then 

expected to stabilize around the zero value. Fig. 22 can 

be interpreted along these lines. 

To see the effect of stability variation, these 

calculations were repeated for the 45 degree heading. 

The sample size was increased to 5,000 hours (still a set 

of records 30 minutes each). The sample contains 206 

cases of capsizing. Fig. 23 shows the result, and it is 
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dramatically different from the one seen in the previous 

case. The estimate starts near zero and shows two minima, 

around thresholds 0.65 and 1.01 rad/s.  

 

Figure 23: Evolution of shape parameter. ONRTH, 

heading 45 degrees, KG=7.85 m 

To find how stable this behavior is, the 

calculations were repeated for the 50 degree heading using 

an even larger sample – 16,000 hours where 1093 capsize 

cases were observed, see Fig. 24 and Table 3. The behavior 

of the shape parameter estimate did not change, but the 

confidence interval has shrunk as the volume of sample has 

increased. 

 
Figure 24: Evolution of shape parameter. ONRTH, 

heading 50 degrees, KG=7.85 m 

Further increase of heading is expected to bring 

the tail to exponential, as the influence of the stability 

variation gets weaker. Fig. 25 shows an estimate of the 

shape parameter’s evolution for the 70 degree heading. As 

in the previous case, the volume of sample was large – 

16,000 hours with 1003 capsizing case observed (see Table 

3). The behavior of the estimate is very similar to the beam 

seas result shown in Fig.22, only the stabilization of the 

shape parameter estimate occurs for a larger threshold 

value, =1.0 rad/s, than the u=0.88 rad/s seen in the beam 

seas case. 

Thus, the “double minima” topology of the shape 

parameter estimated observed for 45 and 50 degree 

headings can be attributed to stability variation. Can this 

preliminary conclusion be applicable for other hull forms? 

Fig. 26 shows a plot for the shape parameter 

estimated for ONR flared hull (ONRFL) sailing with 6 

knots and a heading of 45 degrees. This hull has the same 

shape as the ONR tumblehome hull (ONRTH) below the 

design waterline, but a flared topside similar to 

conventional destroyers.  The sample was also large: 

16,000 hours with 53 observed capsizing cases (see Table 

3). The behavior of the shape parameter estimate is 

consistent with the hypothesis of exponential tail. Thus, 

the “double minima” topology is a result of specific 

features of stability variation with the ONR tumblehome 

hull and not necessarily applicable for other hull 

configurations. 

 
Figure 25: Evolution of shape parameter. ONRTH, 

heading 70 degrees, KG=8.00 m 

 

Figure 26: Evolution of shape parameter. ONRFL, 

heading 45 degrees, KG=8.8 m 

 

Table 3 Conditions for Study of Shape Parameter 
Ship Heading 

deg. 
KG, m GM Numb. 

caps. 
Time, 
hrs. 

TH 45 7.85 1.85 206 5,000 

TH 50 7.85 1.85 1093 16,000 

TH 70 8.00 1.71 1003 16,000 

TH 90 8.35 1.36 3 875 

FL 45 8.80 0.33 53 16,000 

Fitting Exponential Tail 

The numerical study partially confirmed the 

hypothesis that the capsizing metric may have an 

exponential tail. Leaving the effect of stability variation 

for future study, consider a more robust method of fitting 

an exponential tail for the capsizing metric. Below is an 

abridged description of this study, for which full details 

can be found in Belenky, et al. (2018a). 

To fit the exponential tail, a threshold has to be 

found. If the threshold has been found correctly, the 

distribution above it should be exponential, i.e. passing 

the goodness-of-fit test. Kolmogorov-Smirnov (KS) is 

one of those tests that judges the goodness of fit by the 

largest distances between the statistical and theoretical 

Cumulative Distribution Functions (CDF). The problem 

is that the KS test works well when the theoretical 

distribution is completely defined and all the parameters 

are known; however the exponential distribution 

parameter here is not known and needs to be estimated. 
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The necessary modification to KS test for exponential 

distribution can be found in Stephens (1974).  

The null hypothesis H0 is that the capsizing metric 

above the candidate threshold yi-u follows exponential 

distribution. The test statistic for the null hypothesis is 

defined as 

 𝐷∗ = (𝐷 − 
0.2

𝑛
) (√𝑛 + 0.26 +

0.5

√𝑛
) (36) 

where n number of data points above the threshold u and 

 𝐷 = max{𝐷+, 𝐷−} (37) 

The values D+ and 𝐷− are defined as follows: 

 𝐷+ = max
𝑗=1,…,𝑛

|
𝑗

𝑛
− 𝑧𝑗|   (38) 

 𝐷− = max
𝑗=1,…,𝑛

|𝑧𝑗 −
𝑗−1

𝑛
| (39) 

The values zj are essentially the exponential CDF: 

 𝑧𝑗 = 1 − exp(γ̂(sort(𝑦𝑗) − 𝑢)) (40) 

where γ̂ is an estimate of exponential parameter: 

 γ̂ = 𝑛(∑ (𝑦𝑗 − 𝑢)𝑛
𝑗=1 )

−1
 (41) 

The critical values for D* are available from 

Stephens (1974) and are listed in Table 4 for several values 

of the significance level. 

 

Table 4 Critical value of D*  
Sign. 

level 
0.01 0.025 0.05 0.10 0.15 0.20 

D* 1.308 1.190 1.094 0.990 0.926 0.880 

Sign. 

level 
0.25 0.30 0.35 0.40 0.45 0.50 

D* 0.835 0.795 0.766 0.736 0.710 0.685 

 

An application of this goodness-of-fit test is 

somewhat similar to the KS test. The value of D* 

computed for a given threshold should be less than the 

critical value from Table 4 corresponding to the chosen 

significance level. The fitting procedure is essentially 

finding the largest value of the threshold that provides a 

given level of significance. Selection of the level of 

significance and other details, as well as other method of 

fitting exponential tail are discussed in Belenky, et al. 

(2018a).  

Testing Exponential Tail 

Testing of the exponential tail fit for the capsizing 

metric was performed using the data set from Weems, et 

al. (2017) for the ONR tumblehome configuration sailing 

with a speed of 6 knots in long-crested seas with the 

significant wave height of 9 m and modal period of 14 

seconds. The heading angle varied from 35 to 70 degrees. 

The 45 and 50 degree headings present the most 

interesting test cases, recalling the complex behavior of 

shape parameter estimates observed in Fig. 23 and 24. 

Attempts to validate the extrapolation of the capsizing 

metric with an exponential tail fit for these heading 

brought surprisingly high passing rate, see Fig. 27 and 

28.  

 
Figure 27: Validation of capsizing metric for the 45 

degree heading; passing rate is 0.98, CD=1.2, RB=1.1 

 
Figure 28: Validation of capsizing metric for the 50 

degree heading; passing rate is 1.0, CD=1.27, RB=1.63 

 

The exponential fit was done with the goodness-

of-fit method while the significance level was taken 

equal to 0.2. The other performance indicators are in the 

acceptable range, though they could be better. The 

practical applicability of the exponential fit for the 

capsizing metric for ONR tumblehome sailing in stern 

quartering seas is good news indeed. The behavior of 

shape parameter remains a puzzle however. 

The passing rates for all of the headings is 

plotted in Fig. 29. All the values are within the accepted 

range. The performance indexes, conservative distance 

and relative bias, while not perfect, seems to be 

acceptable. The conservative distance is just above unity 

and relative bias is positive, but not very large. Belenky, 

et al. (2018a) contains results computed for other 

significance level as well as results computed with an 

alternative method of fitting exponential tail using the 

minimization of the prediction error. 
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Figure 29: Passing rate for capsizing metric 

 
Figure 30: Conservative distance and relative bias for 

capsizing metric 

Relation between Metric and GZ Curve 

The shape parameter plots in Figs. 23 and 24 

differ from those in Figs. 22, 25 and 26 in two noticeable 

features. First, the shape estimates in Figs. 23 and 24 

decrease initially, before climbing towards zero. Second, 

these estimates then decrease again around a metric value 

of 1, before climbing up again for the very largest values 

of the metric. The following discussion puts forth a 

possible explanation for the first difference, but any 

underlying phenomena for the second difference remain to 

be clarified. 

On one hand, the specified different features in 

the shape parameter plots may simply result from the 

different characters of the histograms of the metric values 

underlying Figs. 22-26. For example, Fig. 31 presents the 

histogram of the values for ONRTH behind Fig. 23, with 

an inset that zooms into the tail of the histogram around the 

metric value 1. Fig. 32 provides a histogram of the metric 

values for ONRFL used in Fig. 26.  

 
Figure 31: Histogram of the metric values. ONRTH, 

heading 45 degrees, KG=7.85 m 

 
Figure 32: Histogram of the metric values. ONRFL, 

heading 45 degrees, KG=8.8 m 

Note from Fig. 31 that the histogram for 

ONRTH has certainly a bimodal character (with the 

second mode around the value 0.7) and perhaps even 

being trimodal (with the third mode in the zoomed 

histogram around the value 1.05), which is not the case 

with the histogram for ONRFL. This multimodal feature 

also explains the character of the shape parameter plot in 

Fig. 23. Because of the second mode, the GPD sees a 

heavier tail for smaller thresholds and thus yields larger 

shape parameter estimates. When the thresholds are 

around the second mode (the value 0.7 of the metric), this 

apparent heaviness of the tail disappears and shape 

parameter estimates decrease. They start increasing again 

because of the third mode, before again dropping around 

the third mode. The very tail of the histogram is 

consistent with the zero GPD shape parameter.  

If multimodality of the histogram is responsible 

for the character of the shape parameter plot, what might 

be causing it? The second pronounced mode is likely 

caused by the bimodality of the restoring force for 

ONRTH in certain headings. Similarly, the absence of 

such a second mode for ONRFL may be caused by the 

lack of bimodal features in the restoring force. Figs. 33 

and 34 present the histograms of the angle of maxima of 

the instantaneous GZ curves for ONRTH and ONRFL, 

and the bimodality is indeed evident in the former but not 

in the latter case. The algorithm for calculating the 

instantaneous GZ curve is described in Belenky and 

Weems (2008). 

Similarly, Fig. 35 presents GZ curves for 

ONRTH at several positions on a regular wave of length 

150 m and height 7.5 m, with the bimodality now clearly 

seen in the form of the two clusters of the curves. The 

bimodality in the GZ curves can be thought of as a result 

of the wave-piercing geometry of the ONRTH bow.  

Though not a formal proof, restoring forces 

without bimodal features thus seem to lead to a unimodal 

histogram of the resulting metric values. Restoring forces 

with bimodal features can then be expected to lead to a 

bimodal histogram, as described above, since the 
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restoring forces from the two clusters (or modes) are 

naturally expected to yield different average values and 

hence two modes of the resulting metric values. As noted 

in the beginning of the section, any phenomena underlying 

the apparent third mode in the zoomed histogram in Fig. 

31 remain to be clarified. 

 

Figure 33: Histogram of the maxima positions of the 

instantaneous GZ curves. ONRTH, heading 45 degrees, 

KG=7.85 m 

 

Figure 34: Histogram of the maxima positions of the 

instantaneous GZ curves. ONRFL, heading 45 degrees, 

KG=8.8 m 

 
Figure 35: GZ curves for several positions of ONRTH on 

a regular wave of length 150 m and height 7.5 m 

SUMMARY, CONCLUSIONS, AND FUTURE 

WORK 

The objective of the work presented in this 

paper was seeing how to insert physics into a statistical 

model of extreme values in order to reduce uncertainty 

and improve the prediction’s reliability. The second 

extreme value theorem states that Generalized Pareto 

Distribution can approximate a tail of any distribution 

above a high-enough threshold. The GPD model is 

completely data-driven, and its statistical uncertainty 

reflects the volume of the available sample. For rare 

events and extreme values, the statistical uncertainty of 

the prediction may be large. To reduce the uncertainty 

without having to increase the volume of sample, one can 

try adding physical information into the statistical model. 

Of course, such a hybrid model strongly depends on 

context of the physical problem. This paper describes 

how physical information can be added to extreme-value 

models of large roll angles and capsizing metrics.  

A piecewise linear dynamical system with 

triangle-shaped stiffness represents most properties of a 

dynamical systems with softening nonlinearity, while 

allowing for a closed-form solution to the distribution of 

peaks of roll motions. One can easily see that the tail of 

that distribution is heavy. Thus, a Pareto distribution with 

heavy tail can be used instead of the more generic GPD. 

The uncertainty is decreased because the model has only 

one parameter to fit. The heavy tail was tested for a large 

sample, containing extreme values, from which extreme-

value predictions were made on small subsets and 

compared with actual observations. The heavy tail was 

found to work well where there was enough influence of 

softening nonlinearity, but did not work for small-

amplitude motion cases, where the motion was more 

linear and the assumptions about the physical model 

were no longer applicable. 

The piecewise linear model was also used to 

examine the tail of the capsizing metric computed in the 

split-time method. Since this metric is largely a function 

of the roll rate at the instant of upcrossing, and the roll 

rate is known to be “a weak nonlinearity,” the metric is 

expected to have an exponential tail. The exponential 

character was tested in a similar manner – the probability 

of capsizing events observed in a large-volume sample 

was compared with predictions computed from small-

volume samples. The exponential approximation worked 

well, despite a very complex behavior of the tail of the 

capsizing metric for the ONRTH configuration in stern 

quartering seas. As with the heavy tail assumption for the 

roll peaks, the exponential assumption of the capsizing 

metric led to a decrease of uncertainty manifested 

through the transition from the two-parameter GPD to a 

one-parameter exponential tail. 

Finally, an interesting relationship was 

observed between the complex tail behavior and multi-
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modality of distributions of capsizing metrics and the 

angles of maxima of the instantaneous GZ curves in waves. 

This relationship presents its own interest for further study 

as a link between certain types of hull forms and their 

dynamical behavior in extreme seas. 
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