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ABSTRACT

For a large class of dynamical systems, the optimally time-dependent (OTD) modes, a set of deformable orthonormal tangent vectors that
track directions of instabilities along any trajectory, are known to depend “pointwise” on the state of the system on the attractor but not on
the history of the trajectory. We leverage the power of neural networks to learn this “pointwise” mapping from the phase space to OTD space
directly from data. The result of the learning process is a cartography of directions associated with strongest instabilities in the phase space.
Implications for data-driven prediction and control of dynamical instabilities are discussed.
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The optimally time-dependent (OTD) modes are a set of
deformable orthonormal tangent vectors that track directions of
instabilities along any trajectory of a dynamical system. Tradi-
tionally, thesemodes are computed by a time-marching approach,
which involves solving multiple initial-boundary-value problems
concurrently with the state equations. However, for a large class of
dynamical systems, the OTDmodes are known to depend “point-
wise” on the state of the system on the attractor but not on the
history of the trajectory. We propose a neural-network algorithm
to learn this “pointwise” mapping from the phase space to OTD
space directly from data. The neural network produces a cartog-
raphy of directions of strongest instability in the phase space, as
well as estimates for the leading Lyapunov exponents.

I. INTRODUCTION

The theory of dynamical systems has a long history of trying to
elucidate one of the most important concepts in science and engi-
neering: instability. Dynamical instabilities are important because
they can give rise to a variety of phenomena with unexpected, and
even disastrous, consequences. They occur in �uid mechanics,1,2 cli-
mate dynamics,3 optics,4 and thermoacoustics5 and come in many
shapes and forms. Perhaps the simplest of all are instabilities arising
from a linear mechanism, whose investigation traditionally involves

linearizing the governing equations around a �xed point and looking
for unstable eigenvalues of the linearized problem.6 Generalization
of this concept to periodic orbits led to the well-known Floquet
theory, in which stability of periodic trajectories is ascertained by
computing the spectrum of the monodromy matrix.6 The realiza-
tion that episodes of transient growth cannot be predicted by linear
or Floquet analyses came much later and in turn gave rise to the
theory of non-normal and transient instabilities.7 This culminated
with the introduction of the Lyapunov exponents and Lyapunov
vectors, which provide a rigorous description of instability mecha-
nisms in chaotic systems.8,9 Since then, considerable e�ort has been
devoted to the development of algorithms for computation of Lya-
punov exponents and Lyapunov vectors from data. Great strides have
been made by the likes of Eckmann et al.,10 Sano and Sawada,11

Rosenstein et al.,12 Kantz,13 and Wolfe and Samelson,14 who pro-
posed new methods to compute Lyapunov exponents and Lyapunov
vectors from experimental measurements or improved on existing
ones.

The key feature shared by these algorithms is that they monitor
the fate of perturbations around a reference orbit for su�ciently long
times, sometimes resorting to orthonormalization in order to prevent
blow-up of the perturbation vectors. However, tracking the evolution
of perturbations along a trajectory is nothing more than a time-
marching approach in disguise. More importantly, it does not utilize
the fact that for a large class of dynamical systems, the ith Lyapunov
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vector ui depends pointwise on the state of the system [with the
mapping x 7−→ ui(x) being uniquely determined by the phase-space
point x], and consequently, the ith Lyapunov exponent—a quadratic
form over ui(x)—can be recovered by measure-averaging over many
measurement points, rather than time-averaging over a long trajec-
tory. This was pointed out by Ershov and Potapov,15 who recognized
the bene�ts of using measure-averaging in lieu of time-averaging,
as the former allows for the measurement points to be arranged in
arbitrary order and even for them to belong to di�erent trajectories.
These results show that if one were able to compute the pointwise
function ui(x) from data, then one would immediately have access
to a complete picture of the directions of instabilities at any point
in the phase space, as well as accurate estimates for the Lyapunov
exponents.

As far as we know, the only attempt to compute the map ui(x)
was made in Ref. 16, where we used Fenichel’s theory of slow invari-
ant manifolds17 to derive analytical expressions for ui(x) in situations
exhibiting slow-fast dynamics. However, application of this method
is limited because (a) the dimensionality of the system cannot be too
large for the manifold analysis to be tractable and (b) the system
must have a well-de�ned separation of time scales, short of which
Fenichel’s theory becomesmoot.Of course, themethod being analyt-
ical, there is no data component to it. This is precisely what we set out
to rectify in the present paper, with the introduction of a machine-
learning algorithm that infers the map ui(x) from a large collection
of state measurements.

Machine-learning (ML) algorithms have pervaded virtually
every area of science and engineering because of two reasons. First,
the amount of data available from experiments, �eld measurements,
or numerical simulations has reached unprecedented levels. Second,
ML algorithms have proven to be extremely versatile and power-
ful from the standpoint of extracting patterns and information from
tremendously complex systems thatwould otherwise remain inacces-
sible. Applications ofML to dynamical systems include dimensional-
ity reduction and �ow-feature extraction,18–21 discovery of governing
equations,22–24 design of optimal control strategies,25 turbulence clo-
sure modeling,26,27 integration of partial di�erential equations,28–30

and forecasting of dynamical instabilities in chaotic systems.31,32 The
recent emergence of deep learning has led to a push in the latter direc-
tion, with recurrent neural networks33,34 and reservoir computing35,36

leading the way.
The learning algorithm that we propose in this paper produces

a cartography of directions associated with strongest instabilities in
the phase space, from which the leading Lyapunov exponents can
be extracted. These directions coincide with the backward Lyapunov
vectors of Legras and Vautard9 and the optimally time-dependent
(OTD) modes of Babaee and Sapsis.37 (The equivalence between
the two was established in Ref. 16.) The potential of the learning
algorithm in problems related to prediction and control of transient
instabilities and extreme events is considerable because the proposed
method is fully data-driven, has no restricting assumptions other
than invertibility, autonomy, ergodicity, and measure-invariance of
the underlying dynamical system, and only requires state measure-
ments as inputs.

The paper is organized as follows. We formulate the problem
in Sec. II, introduce the learning algorithm in Sec. III, followed by
results in Sec. IV, a discussion in Sec. V, and a conclusion in Sec. VI.

II. FORMULATION OF THE PROBLEM

A. Preliminaries

We consider the autonomous dynamical system

ẋ = F(x), x(t0) = x0, (1)

where x belongs to a compact RiemannianmanifoldX endowedwith
the Borel σ -algebra and a measure µ, the map F : X −→ X is su�-
ciently smooth to ensure existence and uniqueness of solutions, and
overdot denotes di�erentiationwith respect to the time variable t.We
assume that the transformation

St : X −→ X ,

x0 7−→ x(t) = St(x0),
(2)

sometimes referred to as the “�ow map,” is invertible, measure-
preserving, and ergodic. Measure-invariance is important from the
standpoint of de�ning time-averages of scalar functions. (This is
the well-known Birkho� ergodic theorem.38) Measure-invariance
and ergodicity are important to guarantee that time-averages and
measure-averages coincide,

lim
T→∞

1

T

∫ T

t0

f (St(x0))dt =
∫

X

f (x)dµ(x), (3)

for all f ∈ L
2
µ(X ). In words, these assumptions ensure that trajec-

tories asymptotically settle into an attractor A ⊂ X (which may be
steady, time-periodic, quasiperiodic, or chaotic) and remain on that
attractor (i.e., there is no “switching” between attractors).

In�nitesimal perturbations around a given trajectory obey the
variational equation

v̇ = L(x; v), v(t0) = v0, (4)

where v belongs to the tangent space of the manifold X at point x,
denoted by TxX , and L(x; v) , dF(x; v) is the Gâteaux derivative of
F evaluated at x along the direction v. In principle, the variational
equation could be used to track directions of instabilities around
trajectories. In practice, however, this is impossible, because any col-
lection of perturbations {vi}ri=1 evolved with (4) for a su�ciently
long time would see the magnitude of its members grow or decay
exponentially fast, and the angle between them rapidly vanish.

To compute a set of meaningful directions (or “modes”) from
the variational equation, Babaee and Sapsis37 proposed to enforce
orthonormality of the vi’s at all times. One way to achieve this is to
continuously apply the Gram–Schmidt algorithm to the collection
{vi}ri=1, starting with v1 and moving down. Blanchard and Sapsis16

showed that the resulting vectors obey

u̇i = L(x; ui) − 〈ui, L(x; ui)〉ui

−
i−1
∑

k=1

[〈ui, L(x; uk)〉 + 〈uk, L(x; ui)〉]uk (5)

for i ∈ {1, . . . , r}, where the angle brackets denote a suitable inner
product on TxX . In the above, we recognize the variational equation
(the left-hand side and the �rst term on the right-hand side),
appended with terms enforcing the orthonormality constraint (the
last two terms on the right-hand side). We also note that the
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summation index goes to i − 1 rather than r so that (5) assumes
a lower-triangular form. (This re�ects the very structure of the
Gram–Schmidt algorithm.) The ui’s have been referred to as the
“OTD modes” and the collection {ui}ri=1 as the “OTD subspace.”37

The terms “subspace” and “modes” are appropriate because the col-
lection {ui}ri=1 forms a real vector space, for which the ui’s are an
orthonormal basis.

A key property of the OTD modes is that they and the vi’s span
the same subspace. The �rst OTD mode aligns with the most unsta-
ble direction, just like v1 does. The second OTD mode is not free to
alignwith the second-most unstable direction because itmust remain
orthogonal to u1. However, the subspace spanned by u1 and u2 coin-
cideswith the two-dimensional subspace that ismost rapidly growing
(this is also the subspace spanned by v1 and v2). For hyperbolic �xed
points, the OTD subspace aligns with the most unstable eigenspace
of the associated linearized operator.37 For time-dependent trajec-
tories, the OTD subspace aligns with the left eigenspace of the
Cauchy–Green tensor, which characterizes transient instabilities.39

As a result, the ith Lyapunov exponent λi can be recovered from the
ith OTD mode,

λi = lim
T→∞

1

T

∫ T

t0

〈ui(t), L(x(t); ui(t))〉 dt. (6)

The fact that the OTD modes track directions of instabilities along
any trajectory has been utilized on multiple occasions, including in
the context of prediction of extreme events in chaotic systems40 and
design of low-dimensional controllers for stabilization of unsteady
�ows.41,42

The OTD system (5) is a set of time-dependent di�erential
equations, which must be solved concurrently with the dynamical
system (1). The standard approach for in�nite-dimensional systems
is to discretize (1) and (5) in space and advance each using a time-
stepping scheme. The dimension d of the phase space after discretiza-
tion may be quite large, with the discretized state potentially having
thousands of millions of degrees of freedom. In such cases, compu-
tation of the �rst r OTD modes involves solving r d-dimensional
di�erential equations (the OTD equations), plus a d-dimensional
di�erential equation for the state itself. For very large d, this proce-
dure is computationally onerous, and alternative approaches might
be desirable.

B. Formulation of the learning problem

For dynamical systems satisfying the assumptions made ear-
lier (autonomy, invertibility, ergodicity, andmeasure-invariance), the
OTD modes asymptotically converge to a set of vectors de�ned
at every point on the attractor.15,16,43 In other words, in the post-
transient regime, ui only depends on the state x, but not on the history
of the trajectory or its own initial condition ui(t0). Hence, we may
cease to view ui as being parametrized by t and instead view it as a
graph from the phase space to tangent space,

ui : X −→ TxX ,

x 7−→ ui(x).
(7)

In this context, the collection {ui(x)}ri=1 has been referred to as the
“stationary Lyapunov basis” (SLB) at point x (Ref. 15).

The existence of the SLB at every point x of the attractor was
established separately by Ershov andPotapov15 andGoldhirsch et al.43

as a consequence of the Oseledec theorem.44 The question of unique-
ness and continuity with respect to x was also addressed by Ershov
and Potapov.15 They showed that for a given x, more than one SLB
may exist, but only one is stable with respect to perturbations of
the underlying state. So, the OTD modes ui(x) are uniquely deter-
mined by the point x in the phase space. They also showed that
if the Lyapunov spectrum is not quasidegenerate (i.e., all Lyapunov
exponents are distinct, and there is no “crossing” of Lyapunov expo-
nents under small perturbations), then the graph (7) is continuous
in x. Uniqueness and continuity are important because they allow
for the possibility of representing the graph (7) as a superposition
of smooth basis functions, or as a realization of a Gaussian process.
Once the graph (7)—or an approximation of it—is known, the Lya-
punov exponents can be computed by replacing time-averaging with
measure-averaging in (6),

λi =
∫

X

〈ui(x), L(x; ui(x))〉dµ(x). (8)

A promising approach is to learn the mapping (6) from data.
This requires several ingredients. First, we assume that we have a
large collection of “snapshots” {xn}Nn=1 available for the state. Each
xn must belong to the attractor, but not necessarily to the same tra-
jectory, a consequence of the use of measure-averaging. Second, we
assume that we have a mechanism to compute the vector �eld F(xn)
and the action of the linearized operator L at xn in any direction v.
Third, we need to eliminate the dependence of the OTD system (5)
on time. This is done by applying the chain rule to the left-hand side
of (5), resulting in

dui(x; F(x)) = L(x; ui) − 〈ui, L(x; ui)〉ui

−
i−1
∑

k=1

[〈ui, L(x; uk)〉 + 〈uk, L(x; ui)〉]uk, (9)

where dui(x; F(x)) is the Gâteaux derivative of ui evaluated at x along
the direction F(x). There is no explicit temporal dependence in (9)
so that the variable x should no longer be thought of as a point on a
particular time-dependent trajectory, but rather as any point on the
attractor. System (9) may also be thought of as a partial di�erential
equation on X .

For computational purposes, it is useful to consider the dis-
cretized counterpart of (9),

∇xui F(x) = L(x)ui − 〈ui, L(x)ui〉ui

−
i−1
∑

k=1

[〈ui, L(x)uk〉 + 〈uk, L(x)ui〉]uk, (10)

where x and ui belong to R
d, L(x) , ∇xF(x) is the Jacobian of the

vector �eld F : R
d −→ R

d, and∇xui is the Jacobian of ui with respect
to x. Although not explicitly shown in (10), the vector ui should be
understood as ui(x). We are now in a position to state the learning
problem:

Learning problem. Given a dataset {xn}Nn=1 of snapshots belonging to
the attractorA, and a mechanism to compute F(xn) and the action of
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L(xn), �nd the collection of graphs {x 7−→ ui(x)}ri=1 that best satis�es
(10) at every xn.

In what follows, we solve the learning problem by a deep-
learning approach based on neural networks.

III. LEARNING THE OTD MODES FROM DATA

Wewill �nd it convenient to operate in the “big-data” regime, so
we assume that the dataset used in the learning algorithm contains
a very large number of snapshots. Before we proceed, we reiterate
the fundamental assumptions that are made about the data. The
underlying dynamical system from which data are collected should
be autonomous, invertible, measure-preserving, and ergodic, and
should have a nonquasidegenerate Lyapunov spectrum. As discussed
in Sec. II B, these assumptions are key to ensure existence, unicity, and
continuity of the SLB in the phase space.

A. Network architecture

To learn the graphs {ui}ri=1 from the collection of snapshots, we
employ a neural-network approach. This is appropriate because each
ui is a continuous function of x. This allows us to leverage the uni-
versal approximation theorem,45 which states that any function may
be approximated by a su�ciently large and deep neural network.

Neural networks do su�er from several shortcomings. They
come with heavy computational requirements, are sensitive to the
choice of hyperparameters, and do not always deliver on noisy data.
However, the pros largely outweigh the cons. First, neural networks
are known to be more powerful and more expressive than simpler
(neighborhood-based or autoregressive) methods. Second, as dis-
cussed in Sec. I, neural networks have been used successfully to solve
partial di�erential equations, which is essentially what the learning
problem proposed in Sec. II B amounts to. Third, neural networks
are generally trained by some variant of stochastic gradient descent
and thus do not su�er from the requirement that the entire dataset be
loaded in memory at training time. With an eye on large-scale deep-
learning applications, neural networks are, therefore, the de facto
correct choice for our learning problem.

Inwhat follows, we refer to the learnedOTDmodes as the “deep
OTD (dOTD) modes.”

1. Overview of the network architecture

We �nd it natural to assign to each OTD mode its own neu-
ral network ui(x; θ i), where θ i denotes the parameters (weights
and biases) of the ith network. We use the same fully-connected
feed-forward architecture with L hidden layers for all OTD modes
[Fig. 1(a)]. (The input and output layers are numbered 0 and L + 1,
respectively.) The loss function for the ith network is speci�ed as

`
pde
i (θ i) = 1

N

N
∑

n=1

∥

∥

∥

∥

∇xui(xn; θ i) F(xn) − L(xn)ui(xn; θ i)

+ 〈ui(xn; θ i), L(xn)ui(xn; θ i)〉ui(xn; θ i)

(a)

(b)

FIG. 1. (a) Simplified sketch of the neural-network architecture for the ith dOTD
mode and (b) schematic of the sequential approach, where each unit labeled “NNi ”
is of the type shown in (a), and gray arrows denote that the outputs of the first i − 1
networks are passed to the ith network as dummy inputs.

+
i−1
∑

k=1

[〈ui(xn; θ i), L(xn)uk(xn; θ k)〉

+ 〈uk(xn; θ k), L(xn)ui(xn; θ i)〉] uk(xn; θ k)

∥

∥

∥

∥

2

, (11)

which is nothing more than the residual of the ith OTD equation in

system (10). We note that any SLB is a global minimizer of `
pde
i , with

`
pde
i being trivially zero. So, this choice of loss function gives rise to
no estimation error, and the model is only limited by the hypothesis
class (i.e., the set of functions within reach of the neural network for
a given number of layers and neurons) and the tolerance speci�ed
for the optimization algorithm. Those are commonly referred to as
“approximation error” and “optimization error,” respectively.46

Equation (11) shows that the loss function for the ith dOTD
mode depends on the �rst i − 1 dOTD modes. This raises the ques-
tion of the order in which the dOTD modes ought to be learned. In
what follows, we opt for a “sequential” approach [Fig. 1(b)], whereby
the parameters θ i are optimized sequentially (starting with θ 1 and
moving down), and the outputs of the �rst i − 1 networks are fed into
the ith network as dummy inputs. (By “dummy inputs,” we mean
quantities that are fed into the neural network for the sole purpose
of computing the loss function.) We �nd this architecture to be intu-
itive because it mimics the triangular structure of the Gram–Schmidt
algorithm. Our numerical experiments suggest that this approach is
more stable (compared to other approaches described below), in the
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sense that it facilitates convergence of the optimization algorithm.
The only issue has to dowith error accumulation, arising as a result of
using the outcomes of the �rst i − 1 optimizations to compute the ith
dOTDmode. However, this is easily �xed by tightening the tolerance
of the optimization algorithm or doing multiple passes of training
with decreasing tolerance.

Of course, the “sequential” approach is not the only option.
Instead, one could solve the r optimization problems concurrently,
whereby the optimization algorithm performs one iteration for each
neural network before updating the parameters. Each iterationwould
need to be done sequentially (i.e., starting with θ 1, then θ 2, etc.), and
“coupling” between the dOTD modes would be done by passing the
�rst i − 1 parameter vectors at the current iteration to the ith neural
network. Alternatively, one could combine the r loss functions (11)
and solve for all of the dOTD modes in a single optimization pass
using the combined loss function. However, these two approaches
appear to cause di�culty for the optimization algorithm, both in
terms of execution speed and its ability to converge.

Use of the loss function (11) alone, which is solely based on the
residual of the OTD system, might be problematic for two reasons.
First, as discussed in Sec. II B, any SLB is a global minimizer of (11),
but only one of them is stable (this is the SLB to which the OTD
modes converge when computed with a time-marching approach).
So, we need a mechanism to ensure that the optimization algorithm
converges to the stable SLB and not to any of the unstable ones. Sec-
ond, there may be other (possibly local) minimizers of (11) besides
SLBs, so we also need a mechanism that prevents the optimization
routine from getting trapped in an irrelevant minimum.

2. Ensuring orthonormality of the dOTD modes

We begin with the question of how to ensure that the optimiza-
tion algorithm converges to an SLB, with no consideration yet for
whether that SLB is stable or not. We �rst note that minimization
of the loss function (11) does not guarantee orthonormality of the
resulting dOTD modes. [For example, the trivial solution ui = 0 is
a global minimizer of (11).] The reason is that the terms respon-
sible for orthonormalizing the OTD modes in the time-dependent
problem (5) are no longer su�cient to enforce this constraint. So,
orthonormality must be enforced explicitly in the neural network.
This is important because our numerical experiments suggest that the
SLBs are the only orthonormal minimizers of (11). In other words,
explicitly enforcing orthonormality of the dOTD modes helps the
optimization algorithm systematically converge to an SLB, rather
than some other irrelevant minimum.

Enforcing orthonormality of the dOTD modes can be realized
in two ways. One approach is to embed Gram–Schmidt orthonor-
malization immediately after the last layer of the network so that the
dOTDmodes are orthonormal by construction. Another approach is
to append to the loss function (11) a regularization term,

`
reg
i (θ i) = 1

N

N
∑

n=1

{

α (〈ui(xn; θ i), ui(xn; θ i)〉 − 1)2

+
i−1
∑

k=1

βk〈ui(xn; θ i), uk(xn; θ k)〉2
}

. (12)

The �rst term in the curly brackets enforces normality of ui, and the
second term enforces orthogonality of ui and uk (k < i). The regu-
larization parameters α and βk should be chosen on a case-by-case
basis, which o�ers less �exibility than the Gram–Schmidt approach.
We note that the regularization approach and the Gram–Schmidt
approach have no consequence for the estimation error because their
respective loss functions are exactly zero for any SLB.

In practice, we have found that the Gram–Schmidt approach is
more robust than the regularization approach, in the sense that the
former requires fewer iterations for the optimization algorithm to
converge to an SLB.We note that each iteration in theGram–Schmidt
approach requires computing the gradients of the Gram–Schmidt
layer with respect to the network parameters by backpropagation,
which is signi�cantly more expensive than computing the gradients
of the regularizing terms in (12). However, this is a burden worth
carrying, given that we have found cases in which the regulariza-
tion approach failed to converge (for a given iteration budget) while
the Gram–Schmidt approach succeeded, and no cases suggesting
otherwise.

3. Ensuring uniqueness of the dOTD modes

Now that we have designed a mechanism ensuring that the
optimization algorithm converges to an SLB, we must address the
question of how to isolate the stable SLB from all of the unstable ones.
We begin with a simple example that provides insight into this issue.
Consider a case inwhich the trajectory of interest is a hyperbolic �xed
point, denoted by xe. Theorem 2.3 in Babaee and Sapsis37 states that
any r-dimensional eigenspace of the operator L(xe) is an SLB of xe
and that the only stable SLB is that associated with the r most unsta-
ble eigenvalues of L(xe). In this work, “stability” was determined by
examining the time-dependent problem governing the evolution of a
perturbed SLB. In the learning problem, however, we have eliminated
any notion of temporality from the OTD system. Hence, for the case
of a hyperbolic �xed point, the neural network, in its current mani-
festation, may converge to any of the d-choose-r eigenspaces of L(xe)
and not necessarily to the most unstable one. This is problematic
because the OTDmodes draw their power from their ability to track
directions of greatest instabilities. Naturally, we wish our learning
algorithm to also have this feature.

Tomake sure that the learning algorithm returns the SLB associ-
ated with directions of strongest instabilities, we use a criterion based
on Lyapunov exponents. As discussed in Sec. II B, the ith Lyapunov
exponent λi can be computed as a measure-average of the Lagrange
multiplier 〈ui(x), L(x)ui(x)〉. With a �nite-size dataset, however, we
can do no better than approximating λi by a �nite sum over the data
points. If the dataset is composed of multiple long trajectories ini-
tialized on the attractor according to some probability distribution
(in general, we want the initial conditions to be independent and
identically distributed), we have that

lim
N→∞

1

N

N
∑

n=1

〈ui(xn), L(xn)ui(xn)〉 = λi, (13)

where xn is the state of the nth trajectory after some long time T. The
above limiting statement holds only when T → ∞, but in practice,
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we merely require that T be large enough so as to ensure conver-
gence of the distribution of initial conditions to an invariant one.
Equation (13) also holds when the dataset is composed of uniformly-
sampled snapshots collected in the asymptotic regime of a single
long trajectory, in which case (13) is equivalent to standard time-
averaging. (Note that in either case, the snapshots may be arranged
in any arbitrary order.) Equation (13) can be modi�ed to account for
the fact that ui is modeled as a neural network. We de�ne

λ̂i(θ i) = 1

N

N
∑

n=1

〈ui(xn; θ i), L(xn)ui(xn; θ i)〉 (14)

as the “learned” Lyapunov exponent associated with the ith dOTD
mode. This is the best approximation of λi available, given the con-
straints related to �niteness of the dataset and representability of the
OTD modes with neural networks.

With (14) in hand, we can append to the loss function (11) a
regularization term,

`
lyap
i (θ i) = −σ(λ̂i(θ i)), (15)

that penalizes small Lyapunov exponents. Here, σ is a monotoni-
cally increasing function on R that exacerbates di�erences between
the λ̂i’s. Possible choices for σ include σ(a) = a, a3, sinh(a), and
− exp(−a). Lyapunov regularization guarantees that the SLB to
which the optimization algorithmconverges is such that the λ̂i’s come
in decreasing order; that is, the ith dOTD mode picks up the ith-
largest Lyapunov exponent. Lyapunov regularization thus ensures
that the dOTD modes learned by the neural network coincide with
the unique stable solution of the time-dependent OTD system (5).

Adding Lyapunov regularization to the loss function (11) has the

e�ect of introducing an estimation error because the value of `
lyap
i (θ i)

for the optimal θ i is generally nonzero, except in very speci�c cases
[for example, if σ(a) = a and λ̂i is zero]. No estimation error is a fea-
ture worth preserving because it allows us to focus our attention on
the approximation error and the optimization error, thereby facili-
tating design and optimization of the neural network. To this e�ect,
we specify an optimization schedule so that Lyapunov regularization
is “switched o�” after a certain number of iterations. This allows us
to “steer” the optimization algorithm into a favorable direction ini-
tially, while ensuring no estimation error for iterations subsequent to
relaxation of Lyapunov regularization.

B. Attractor reconstruction

The last ingredient needed to make the method fully data-
driven is a mechanism to reconstruct the vector �eld F(xn) and the
action of the Jacobian matrix L(xn) from the collection of snapshots
{xn}Nn=1. We note that if the governing equations of the dynami-
cal system are known, then there is no need for such a mechanism
because F(xn) and L(xn) can be evaluated directly from the equations
of motion. We also note that if we can only record some observable
f (x) of the state, but not the state itself, then we can use delay embed-
ding to reconstruct the attractor and compute the dOTD modes in
the embedded space. (This case will not be considered in this work.)

As discussed in Sec. I, discovery and reconstruction of govern-
ing equations from data is an active �eld of research. Any of the
state-of-the-art methods could be applied to the present problem,

each introducing its own level of complexity. The key issue is that
reconstruction of F(x) can be done o�ine, regardless of the dimen-
sionality of the system. In other words, computation of F(xn) for each
xn may be viewed as a preprocessing step and, therefore, does not add
to the computational burden related to optimizing the parameters of
the neural network. In what follows, we opt for perhaps the simplest
of all approaches. We assume that the snapshots are sampled along
a single long trajectory with a uniform and su�ciently small sam-
pling time-step 1ts so that we may approximate F(xn) as a standard
Euler-forward �nite di�erence,

F(xn) = xn+1 − xn

1ts
+ O(1ts). (16)

Higher-order �nite-di�erence formulas (e.g., Adams–Bashforth,
Adams–Moulton, or backward di�erentiation formulas)may be used
if higher accuracy is desired. Finite di�erences have the advantage of
being extremely cheap to compute, even for high-dimensional sys-
tems. Implementation is straightforward, and the requirement that
1ts be small is far from drastic.

To compute the action of the Jacobianmatrix L(x) from data, we
employ the classical algorithm proposed independently by Eckmann
et al.10 and Sano and Sawada.11 First, we scan the dataset to identify
the K nearest neighbors of each datapoint xn. The nearest neighbors
of xn are de�ned as those points xk of the orbit (past or future) that
are contained in a ball of radius γ centered at xn,

‖xn − xk‖ ≤ γ , k ∈ {1, . . . ,K}. (17)

If γ is su�ciently small, then each vector vnk = xn − xk may be viewed
as a perturbation vector from the reference orbit. We, therefore, have

vn+1
k+1 − vnk

1ts
= L(xn)v

n
k + O(1ts), (18)

which allows us to compute the action of the Jacobian matrix L(xn)
on the vectors {vnk }Kk=1. Now, the critical step is to note that the vec-
tors {vnk }Kk=1 belong to the tangent space at point xn and so do the
OTDmodes. (In fact, theOTDmodes form a basis of this space when
r = d.) So, if we stack up the vectors {vnk }Kk=1 into amatrixVn ∈ R

d×K ,
then the least-square �t

ui(xn; θ i) ≈ VnV
†
nui(xn; θ i) (19)

should be a reasonably good approximation for the dOTD modes.
Here, V†

n is the pseudoinverse of Vn. (We note that the least-square
approach allows for K exceeding the dimension of the phase space
d.) From (19), we can compute the action of the linearized operator
on the dOTD modes as

L(xn)ui(xn; θ i) ≈ 1VnV
†
nui(xn; θ i), (20)

where 1Vn is a d-by-K matrix with columns (vn+1
k+1 − vnk )/1ts.

Equation (20) requires no information other than the snapshot data
and can be used to evaluate the loss function (11).

For low-dimensional systems, it is possible to form the matrix
1VnV

†
n ∈ R

d×d explicitly and store it in memory. This computation
can be done o�ine for every datapoint xn, and consequently, the com-
putational burden associated with reconstruction is nil for the neural
network. For high-dimensional systems, however, forming and stor-
ing 1VnV

†
n is not possible, so (20) must be computed online [i.e.,
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every time the loss function (11) is evaluated], which introduces an
additional cost. Another aggravating issue is that the complexity of
most nearest-neighbor-search algorithms grows exponentially with
the dimension of the state, making the above approach intractable
for d greater than about 25 (Ref. 47). The curse of dimensionality
thus requires that we pursue a di�erent strategy.

C. Learning in a high-dimensional phase space

For high-dimensional systems, the neural-network approach is
intractable for two reasons. First, there is the issue of reconstruct-
ing the Jacobian matrix (or, equivalently, its action on the dOTD
modes), which was discussed in Sec. III B. Second, to evaluate the
term ∇xui(xn; θ i) appearing in (11), we must compute the gradient
of the dOTD modes with respect to the state vector, resulting in a d-
by-dmatrix. For large d, this computation is virtually hopeless. So, to
make the neural-network approach applicable to high-dimensional
systems, we proceed to an order-reduction of the phase space.

If x arises from discretizing a partial di�erential equation (PDE)
de�ned in a domain �, then one approach is to randomly select
M points in that domain according to some probability distribu-
tion. Each snapshot xn then has dimension M, with M presumably
much smaller than d. When x contains nodal values of the state, this
approach amounts to randomly excisingM entries fromeach xn. (The
excised entries need not be the same for all the snapshots.) Random
sampling has been used successfully in a number of problems related
to deep learning of PDEs,29,48 largely because it has the advantage of
being a “mesh-free” approach. However, applicability of this method
to the present problem is limited because the algorithm for attractor
reconstruction requires that the sampled points be the same for all
snapshots. As a result, wemay need a large number of sampled points
(withM possibly on the order of d) to faithfully capture the dynamics.
If M is reasonably small, however, the dOTD modes can be learned
at the sampled points and subsequently reconstructed over the entire
domain using any standard interpolation algorithm.

To avoid these di�culties, we use an approach based on the
Galerkin projection.We assume that any state on the attractor can be
represented as a superposition of proper-orthogonal-decomposition
(POD) modes,

x − x̄ = 8ξ , (21)

where x̄ is themean �ow,8 ∈ R
d×ns contains the �rst ns PODmodes,

and ξ ∈ R
ns contains the corresponding POD coe�cients. Measure-

invariance and ergodicity of the attractor allow us to view ξ as a
function of time or as a function of the state, so that we may use ξ(t)
and ξ(x) interchangeably. Each PODmode can be computed directly
from data by the method of snapshots,18 and the ith POD coe�-
cient can be obtained by projecting x − x̄ onto the ith POD mode.
The number of retained PODmodes is determined by examining the
cumulative energy of the POD eigenvalues. In general, ns is selected
so as to account for at least 95% of the total energy. We also note that
implicit in (21) is a one-to-one correspondence between snapshots in
the x-space (xn) and snapshots in the ξ -space (ξ n). This allows us to
view any function of xn as a function of ξ n and vice versa.

In the POD subspace, the dynamics obeys

ξ̇ = 8TF(x̄ + 8ξ) , G(ξ); (22)

so, in principle, we could use the neural-network approach to learn
the OTD modes in the ξ -subspace. We would simply apply the
method proposed in Secs. III A and III B with ξ in place of x, G in
place of F, and ∇ξG in place of L and then project the dOTD modes
learned in the ξ -subspace back to the full space, resulting in 8ui(ξ).
However, this approach is �awed because by construction, it assumes
that the OTDmodes live in the same subspace as the state itself (that
is, the POD subspace spanned by the columns of 8). In reality, the
OTD modes belong to the tangent space at point x, whose princi-
pal directions have no reason to coincide with that of the state on
the attractor. This inconsistency persists regardless of the number of
POD modes used in (21) so that resorting to very large ns does not
solve the problem.

All is not lost, though, since we can use di�erent projection
subspaces for the state and the OTD modes,

x − x̄ = 8ξ(x), (23a)

ui(x) = 9(x)µi(x), (23b)

where 9(x) ∈ R
d×nt is a reduced orthonormal basis of the tangent

space at x and µi(x) ∈ R
nt contains the basis coe�cients. We note

that the number of PODmodes (ns) and columns of 9 (nt) need not
be the same, which allows for the possibility of learning the OTD
modes in a subspace bigger than the POD subspace. If 9(xn) is a
good approximation of the tangent space at xn, then the K nearest
neighbors of xn satisfy

xk ≈ xn + 9(xn)ank, k ∈ {1, . . . ,K}, (24)

where ank is a matrix of coe�cients. To compute9(xn) from data, we
solve the minimization problem

9(xn) = argmin
9 , a

‖xk − (xn + 9a)‖2, (25)

which is tantamount to a principal component analysis (PCA) of the
set of nearest neighbors {xk}Kk=1. In otherwords, the columns of9(xn)
are the leading nt POD modes of the K nearest neighbors of xn; we
refer to them as the “tangent POD (tPOD) modes.” We note that this
approach has been used as the basis for a number of manifold learn-
ing algorithms that involve reconstruction of the tangent space from
data.49,50

Now that we have two low-dimensional representations avail-
able for the state and the OTD modes, the learning problem reduces
to �nding the collection of graphs,

µi : R
ns −→ R

nt ,

ξ 7−→ µi(ξ),
(26)

given a dataset of reduced states {ξ n}Nn=1 and tangent bases
{9(ξ n)}Nn=1. To derive an equation for µi, we substitute (23a)
and (23b) into (10) and arrive at

∇ξµi G(ξ) = L9µi − 〈µi, L9µi〉µi

−
i−1
∑

k=1

[〈µi, L9µk〉 + 〈µk, L9µi〉]µk

− 9ᵀ9̇µi. (27)
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Three remarks are in order. First, we note that (27) is a system of nt-
dimensional di�erential equations, much less expensive to solve the
original system of d-dimensional di�erential equations. Second, we
note the presence of an additional term on the right-hand side of (27)
arising from the dependence of the tPODmodes on the state x. Third,
we have de�ned the reduced operator

L9 = 9(x)ᵀL(x)9(x) ∈ R
nt×nt , (28)

which is the projection of the high-dimensional operator L(x) onto
the reduced basis 9(x). Equation (28) provides additional insight as
towhy the “naive” approach described two paragraphs earlier was not
a good one. This approach was equivalent to having 9(x) = 8 for
every point x on the attractor, leading to L9 = 8TL(x)8. However,
this is a poor approximation for L(x) because 8 is a reduced basis of
the phase space but not the tangent space.

To compute the reduced operator L9(xn) from data, we use an
approach similar to that proposed in Sec. III B.We�rst recall that (18)
provides a mechanism to compute the action of L(xn) on a collection
of perturbation vectors {vnk }Kk=1 at point xn. However, the columns
of 9(xn) are linear combinations of these perturbation vectors, as
per the POD construction. Therefore, we may write 9(xn) = Vnκn,
where κn ∈ R

K×nt is a matrix of coe�cients. This leads to

L9(xn) ≈ κᵀ

nV
ᵀ

n 1Vnκn. (29)

The operator L9(xn) has the advantage of being low-dimensional,
so it can be computed o�ine and stored in memory, along with the
POD-reduced vector �eld G(ξ n).

The last term on the right-hand side of (27), however, is prob-
lematic because it involves the temporal derivative of the reduced tan-
gent basis 9 . We could use the chain rule and write 9̇ = ∇ξ9 G(ξ),
but the gradient ∇ξ9 is expensive to compute. Another option is to
use a �nite-di�erence formula in the spirit of (16),

9̇(xn) = 9(xn+1) − 9(xn)

1ts
+ O(1ts). (30)

If 1ts is su�ciently small, then the tPOD modes smoothly deform
from xn to xn+1, so (30) is a good approximation. [We note in pass-
ing that continuity of ui(x) requires continuity of both 9(x) and
µi(x).] With this approach, the term 9ᵀ9̇ can be computed o�ine
and passed to the neural network as a dummy input.

Finally, we address the question of whether the “local” tangent
bases 9(x) could be combined into a larger “global” subspace that
does not depend on x. Mathematically, this is equivalent to seeking a
reduced basis of the tangent bundle,

T X =
⊔

x∈X
TxX , (31)

where
⊔

is the disjoint union operator. Such a construct would have
the bene�t of eliminating the last term on the right-hand side of
(27). Also, it would be esthetically more appealing because the OTD
modes would be learned in a common subspace, regardless of the
point at which they are computed. To construct a reduced basis of
T X , one can perform POD on the set of tangent bases {9(xn)}Nn=1.
This results in a set of “bundlemodes,” denoted by5 ∈ R

d×nb , whose
span is the best nb-dimensional approximation of the tangent bun-
dle T X . The expectation is that the number of bundle modes nb,

although generally greater than the number of local tPOD modes
nt , will still be much smaller than d. The dOTD modes may then be
sought as vectors in the bundle space; that is, ui(x) = 5ρ i(x), where
the coe�cients ρ i ∈ R

nb satisfy

∇ξρ i G(ξ) = L5ρ i − 〈ρ i, L5ρ i〉ρ i

−
i−1
∑

k=1

[

〈ρ i, L5ρk〉 + 〈ρk, L5ρ i〉
]

ρk, (32)

and L5 is de�ned as

L5 = 5ᵀL(x)5 ∈ R
nb×nb . (33)

For nb not too large, the reduced operator L5 may be computed
o�ine and stored in memory.

Applicability of the tangent-bundle method is limited to cases
in which the governing equations of the dynamical system are avail-
able. This is because L5 cannot be computed solely from snapshot
data, except when the linearized operator is known L(x) explicitly.
To see this, we �rst recognize that by construction, each bundle
mode is a linear combination of the columns of ϒ = [V1, . . . ,Vn].
So, evaluation of (33) from data is conditioned on our ability to com-
pute L(xn)ϒ or, equivalently, each member of the set {L(xn)Vm}nm=1.
However, there is no mechanism to compute L(xn)Vm from data
when m 6= n. [Equation (18) holds only for m = n.] Thus, evalua-
tion of (33) requires explicit knowledge of the linearized operator
and, in turn, the governing equations. Because of this restriction, this
approach will not be pursued any further in this work.

D. Implementation

We conclude this section with a few words on implementa-
tion. The neural network is built from scratch in Python. We use
Autograd51 for automatic di�erentiation. The activation function
between hidden layers is the hyperbolic tangent, although other
choices (e.g., sigmoid function or swish function) are possible.52 The
activation function for the output layer is a linear function. As dis-
cussed in Sec. III A 2, the last layer of the neural network is followed
by a Gram–Schmidt layer. The weights are initialized according to
Xavier initialization.53 For Lyapunov regularization, we useσ = sinh.

We use Adam54 to solve the optimization problem. In its current
manifestation, the code supports mini-batching, although caution
must be exercised when selecting the batch size in order not to dete-
riorate the accuracy of (14). (The results presented in Sec. IV do not
use mini-batching.) We have found no need for specifying learning
rate schedules in the optimizer. Di�erent stopping criteria may be
used, depending on how the vector �eld and linearized operator are
computed. If F(xn) and L(xn) are evaluated from the governing equa-
tions, and the hypothesis class is reasonably large, then optimization
may be terminated when the loss function (11) is smaller than a user-
speci�ed tolerance. (As a result, the overall error is dominated by the
approximation error.) If F(xn) and L(xn) are reconstructed fromdata,
then it is preferable to terminate optimization after a user-speci�ed
number of iterations, in recognition of the fact that the reconstruc-
tion process is approximate and, therefore, introduces an estimation
error.

To generate the dataset, we consider a single long trajectory of
the dynamical system, rather than multiple shorter trajectories with
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distinct initial conditions. The dataset is constructed by collecting
equally-spaced snapshots (with sampling time 1ts) along that long
trajectory. (For the results presented in Sec. IV, 1ts coincides with
the time-step size 1t used to advance the dynamical system.) For
each snapshot, we reconstruct the vector �eld and linearized operator
using the KNeighborsClassifier implemented in scikit-learn.
Wenote that the nearest-neighbor search is carried out over the entire
collection of snapshots, including those collected in the transient
regime, so as to improve accuracy of the reconstruction algorithm.10

For high-dimensional systems, the nearest-neighbor search is con-
ducted in the POD subspace to alleviate computational cost. (By this,
we mean that we merely extract time stamps for the nearest neigh-
bors in the ξ -space and then use the corresponding snapshots in
the x-space in the reconstruction algorithm.) In the examples pre-
sented in Sec. IV, the vector �eld and linearized operator are formed
explicitly, stored in memory, and passed to the neural network as
dummy inputs. This is possible either because the dynamical system
is low-dimensional or because we �rst proceeded to a reduction of
the dynamics using the Galerkin approach described in Sec. III C.

Upon reconstruction of F(xn) and L(xn), we discard from the
dataset those snapshots that were collected in the transient regime of
the long trajectory. As discussed in Sec. III A 1, this step is critical
to ensure validity of the measure-averaging operation. The result-
ing “truncated” dataset is then split into training, validation, and test
sets. The training set is used to optimize the weights of the neu-
ral network and the test set to evaluate its predictive capability. The
validation set is used to tune the hyperparameters of the neural net-
work, as described in Ref. 55. (For a given dynamical system, we
consider a range of random combinations of hyperparameters and
select the architecture for which the validation error is the smallest.)
The validation set is also used to tune the learning rate for the Adam
optimizer, the schedule for Lyapunov regularization, and the number
of nearest neighbors used in the reconstruction step.

The code is available on GitHub.56

IV. RESULTS

A. Performance metrics

To evaluate the accuracy of the learning algorithm, we consider

two performancemetrics. The �rstmetric is the PDE loss `
pde
i de�ned

in (11), which quanti�es the extent to which the neural network sat-
is�es the OTD equations (10). We use this metric as our primary
guide in our search for appropriate hyperparameters because a small
PDE loss on training and validation data is a key prerequisite for
generalizability on test data.

However, as discussed in Sec. III A 1, the PDE loss does not
discriminate between stable and unstable SLBs. So, we supplement
it with

di(x) = 1 −
∣

∣

∣
〈udeep

i (x), unum
i (x)〉

∣

∣

∣
, (34)

where u
deep
i denotes the ith dOTD mode and unum

i denotes the ith
OTD mode computed by direct numerical integration of (5). The
distance di takes values between 0 and 1, with the former indicating

that u
deep
i and unum

i coincide and the latter indicating that u
deep
i and

unum
i are orthogonal.We could also use the distance between the sub-

spaces {udeep
i }

r

i=1 and {unum
i }ri=1, but that measure, unlike (34), assigns

the same score to all the SLBs, regardless of stability (when r = d).
If the OTD modes are learned in a reduced subspace, then it is

useful to compute

d2
i (x) = 1 −

∣

∣

∣
〈udeep

i (x),22Tunum
i (x)〉

∣

∣

∣
, (35)

where 2 is a placeholder for 9(x) or 5, depending on whether the
“local” or “bundle” approach is used. The above is equivalent to com-
puting the distance function in the reduced subspace in which the
modes are learned. This quantity is important because dimension-
ality reduction of the tangent space (or tangent bundle) introduces
an additional error over which the neural network has no control.
Thus, situationsmay arise in which d2

i is small, but di is large. Should
this occur, a quick �x is to increase the dimension of the reduced
subspace 2.

For each example considered below, we report training, valida-

tion, and testing error as measured by the two metrics `
pde
i and di.

(For the latter, we report its measure-average, d̄i, over the dataset
considered.) These numbers have been averaged over ten learn-
ing experiments. Each learning experiment corresponds to a di�er-
ent (random) initialization of the weights θ i. The hyperparameters,
training set, validation set, and test set are kept the same from one
learning experiment to the next. The results were found to be robust
to small changes in hyperparameters and dataset selection.

B. Examples

1. Low-dimensional nonlinear system

We begin with a three-dimensional nonlinear system that was
proposed by Noack et al.57 as a testbed for investigating Hopf bifur-
cations in laminar blu�-body �ows. We choose this system because
it provides a good illustration for many of the comments made in
Secs. II and III. The governing equations are given by

ẋ = µx − y − xz, (36a)

ẏ = µy + x − yz, (36b)

ż = −z + x2 + y2, (36c)

withµ being a positive constant. The system admits a linearly unsta-
ble �xed point (x = y = z = 0) and a stable periodic solution,

x = √
µ cos t, y = √

µ sin t, z = µ, (37)

which de�nes a limit cycle of radius
√

µ in the z = µ plane. As noted
by Noack et al.,57 the limit cycle is asymptotically and globally stable.

For µ ≤ 1/8, it is possible to derive analytical expressions for
the OTD modes on the limit cycle,

u1 =





− sin t
cos t
0



 , u2 =





−a cos t
−a sin t

−b



 , u3 =





−b cos t
−b sin t

a



 , (38a)

where

a = 1 + √
1 − 8µ

4
√

µ
b, b =

√

1 + 4µ − √
1 − 8µ

2(1 + µ)
. (38b)
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These are the modes to which solutions of the OTD equations con-
verge when computed with a time-stepping approach. [To the best
of our knowledge, this is the �rst time that exact (nonasymptotic)
expressions have been reported for unsteady OTD dynamics.] Each

ui may be expressed as a function of the state x =
[

x y z
]T

as follows:

u1(x) = F(x)

‖F(x)‖ , u2(x) = − a
√

µ
x −





0
0

b + a/
√

µ



 ,

u3(x) = − b
√

µ
x +





0
0

a − b/
√

µ



 .

(39)

The ordered set {u1(x), u2(x), u3(x)} is the unique stable SLB at point
x on the limit cycle, although other unstable SLBs exist. If we de�ne

a±=1 ± √
1 − 8µ

4
√

µ
b±, b±=

√

1 + 4µ ± √
1 − 8µ

2(1 + µ)
, (40)

then any of the ordered triples {u1, u
±
2 , u

±
3 }, {u±

2 , u1, u
±
3 }, and

{u±
2 , u

±
3 , u1} are solutions to theOTD equations, but only {u1, u

+
2 , u

+
3 }

is stable.
We consider the case µ = 0.1 and use the neural-network

approach to learn the graphs {x 7−→ ui(x)}3i=1 fromdata.We begin by
generating a long trajectory initiated close to the limit cycle. This tra-
jectory is computed by a third-order Adams–Bashforth method with
time-step size 1t = 0.01 for a total duration of T = 50 time units.
We record snapshots at every time step, resulting in an initial dataset
comprising 5000 points. For each datapoint, we reconstruct the vec-
tor �eld and linearized operator using its seven nearest neighbors.
We then discard the �rst 1000 datapoints corresponding to the tran-
sient regime. The resulting dataset is comprised of 4000 snapshots
recorded in the interval 10 ≤ t ≤ 50, spanning about six periods
in the asymptotic regime of the long trajectory. We then divide up
this dataset into three. The training set is comprised of 10 equally-
spaced points over the period 20 ≤ t ≤ 20 + 2π ; the validation test
of 629 equally-spaced points over the period 10 ≤ t ≤ 10 + 2π , and
the training set of the remaining points. (We use the same dataset
splitting to train the three neural networks.) The neural network is
composed of one hidden layer with 40 neurons, and the learning
rate for the Adam optimizer is set to 0.04. Lyapunov regularization
is active for the �rst 1000 iterations and turned o� for the remain-
der of the optimization. The dOTD modes are learned sequentially,
with the maximum number of iterations speci�ed as 3000. For these
parameters, the training, validation, and test errors are shown in
Table I.

(a) (b)

FIG. 2. For the low-dimensional nonlinear system with µ = 0.1, (a) details of
the distance function computed on test data for the three dOTD modes and (b)
phase-space cartography of instabilities learned by the algorithm, with the color
of each point on the limit cycle referring to the leading Lyapunov exponent at that
point. For the dOTD modes, the same color code is used in (a) and (b): first mode,
green; second mode, orange; and third mode, purple.

Figure 2(a) shows the distance function di computed on part of

the test set. [Time series for the dOTD modes u
deep
i and the numer-

ically integrated OTD modes unum
i are shown in Figs. S1(a)–S1(c) of

the supplementary material.] The key points are that (a) the neu-
ral network is able to learn the graphs {x 7−→ ui(x)}3i=1 from the
limited number of training points supplied to it and (b) error accu-
mulation is inconsequential because we were careful not to terminate
the optimization prematurely. We note that d3 closely follows d2, a

consequence of the fact that u
deep
3 is completely determined by u

deep
1

and u
deep
2 . We also note that Lyapunov regularization is instrumen-

tal in the optimizer converging to the stable SLB (39). The Lyapunov
exponents learned by the algorithm (λ̂1 = −0.005, λ̂2 = −0.272, and
λ̂3 = −0.655) are reasonably close to the analytical values (λ1 = 0,
λ2 = −0.276, and λ3 = −0.724).

As discussed in Sec. I, the novelty of our approach is that the
neural network provides, locally for each x, not only the directions of
strongest instabilities, but also the degree of instability along each of
these directions. This is made visually clear in Fig. 2(b), which shows
all the points from the test set in the three-dimensional phase space.
Each point is colored according to its local leading Lyapunov expo-
nent δ1(x) = 〈u1(x), L(x)u1(x)〉, as learned by the neural network.
The neural network correctly learns that δ1(x) = 0 for all x on the
limit cycle. Figure 2(b) also shows, for two of the test points, the three
dOTDmodes (i.e., the directions of strongest instabilities) learned by
the algorithm. Consistent with (39), the �rst mode is tangent to the

TABLE I. Empirical validation results for the low-dimensional nonlinear system with µ = 0.1 and hyperparameters given in the text.

Training set Validation set Test set

i `
pde
i d̄i `

pde
i d̄i `

pde
i d̄i

1 1.2× 10−6 1.1× 10−6 2.7× 10−6 9.6× 10−7 2.5× 10−6 9.6× 10−7

2 7.9× 10−6 1.2× 10−4 3.9× 10−4 1.3× 10−4 1.9× 10−4 1.4× 10−4

3 8.2× 10−6 1.2× 10−4 3.9× 10−4 1.3× 10−4 1.9× 10−4 1.4× 10−4
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trajectory. Figure 2(b) thus reinforces the claim made in Sec. I that
our approach provides a “cartography” of instabilities in the phase
space.

2. Charney–DeVore system

Next, we consider a modi�ed version of the classical Char-
ney–DeVore model, which describes atmospheric circulations at
midlatitudes. We consider a six-dimensional truncation of the orig-
inal system, which models a barotropic �ow in a plane channel with
topography.58 The governing equations are given by

ż1 = γ ∗
1 z3 − C(z1 − z∗

1), (41a)

ż2 = −(α1z1 − β1)z3 − Cz2 − δ1z4z6, (41b)

ż3 = (α1z1 − β1)z2 − γ1z1 − Cz3 + δ1z4z5, (41c)

ż4 = γ ∗
2 z6 − C(z4 − z∗

4) + µ(z2z6 − z3z5), (41d)

ż5 = −(α2z1 − β2)z6 − Cz5 − δ2z4z3, (41e)

ż6 = (α2z1 − β2)z2 − γ2z4 − Cz6 + δ2z4z2, (41f)

with parameters

αm = 8
√
2m2(b2 + m2 − 1)/[π(4m2 − 1)(b2 + m2)], (42a)

δm = 64
√
2(b2 + m2 − 1)/[15π(b2 + m2)], (42b)

µ = 16
√
2/(5π), (42c)

βm = βb2/(b2 + m2), (42d)

γm = 4
√
2m3γ b/[π(4m2 − 1)(b2 + m2)], (42e)

γ ∗
m = 4

√
2mγ b/[π(4m2 − 1)], (42f)

where m = 1 or 2. The parameters αm and δm account for zonal
advection in the z1 and z4 directions, respectively; βm for the

so-called β e�ects; γm and γ ∗
m for topographic interactions; C

for Ekman damping; and z∗
1 and z∗

4 for zonal forcing in the z1
and z4 directions, respectively. We set z∗

1 = 0.95, z∗
4 = −0.760 95,

C = 0.1, β = 1.25, γ = 0.2, and b = 0.5. These values of the param-
eters give rise to signi�cant transitions between regimes of the
“zonal” and “blocked” �ow, resulting from the nonlinear interac-
tion between barotropic and topographic instabilities.58 The extreme
episodes of blocked �ow are of main interest to us because
they are the manifestation of transient instabilities. Thus, it is in
those intervals where we attempt to learn the OTD modes from
data.

We use a third-order Adams–Bashforth scheme with time-step
size 1t = 0.05 to generate a long trajectory spanning 4000 time
units. We use zero initial conditions, except for z1(0) = 1.14 and
z4(0) = −0.91. Snapshots are recorded at every time step, resulting
in an initial dataset with 80 000 points. For each datapoint, we recon-
struct the vector �eld and linearized operator using its 60 nearest
neighbors and then discard the �rst 10 000 data points corresponding
to the transient regime (0 ≤ t ≤ 500). The resulting dataset is then
divided up into training, validation, and test sets. For the training set,
we consider the interval 1075 ≤ t ≤ 1165 during which the trajec-
tory passes through a regime of blocked �ow [see Figs. S2(a)–S2(f) in
the supplementarymaterial] and select 50 uniformly-spaced training
points in this interval. The remaining 1750 points in this inter-
val form the validation set. The test set comprises all data points
in the original dataset, except for those used for training and val-
idation. The test data, therefore, contains multiple episodes of the
blocked �ow [Fig. 3(a)].We only attempt to learn the �rst OTDmode
u1. The neural network has two hidden layers, each with 128 neu-
rons. The learning rate for the Adam algorithm is 0.001. Lyapunov
regularization is used for the �rst 2000 iterations and switched o�
thereafter. Optimization is terminated at 5000 iterations. For these
parameters, the training, validation, and test errors are shown in
Table II.

(a)

(b)

FIG. 3. For the Charney–DeVore system, time series of (a) the first state coordinate z1 and (b) the distance function for the first dOTD mode, with the shaded interval
(1075 ≤ t ≤ 1165) identifying the training and validation sets (points outside this interval make up the test set).
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TABLE II. Empirical validation results for the Charney–DeVore system and hyperparameters given in the text.

Training set Validation set Test set

i `
pde
i d̄i `

pde
i d̄i `

pde
i d̄i

1 2.2× 10−5 2.0× 10−2 7.0× 10−5 2.5× 10−2 2.1× 10−1 2.6× 10−1

Figure 3(b) shows time series for the distance d1, which mea-

sures agreement between u
deep
1 and unum

1 . Not surprisingly, the neu-
ral network is able to learn the mapping from the phase space
to the OTD space in the interval 1075 ≤ t ≤ 1165 in which the
training points were supplied. Much more remarkable is the out-
standing agreement in other intervals of blocked �ow (e.g., 1340 ≤ t
≤ 1410 and 2900 ≤ t ≤ 3100)—that is, the region in the phase space
synonymous with transient instabilities—showing that the neural
network only needs to know what a single interval of blocked �ow
looks like to be able to predict all other such intervals, past or future.
This level of prediction capability is unprecedented in the context of
extreme events in dynamical systems. Figure 3(b) and Fig. S3 in the
supplementary material also show that agreement is generally poor
outside intervals of the blocked �ow, which explains the relatively
large test errors reported in Table II. This should come as no sur-
prise because neural networks are known to perform poorly when
the testing data look nothing like the training data. (The fundamen-
tal assumption for generalizability is that training and testing data are
drawn independently from the same probability distribution.)

Our attempts to train the neural network in an interval of
zonal �ow, or in an interval containing both blocked and zonal
�ow regimes, were unsuccessful. We suspect that this is because the
intervals of zonal �ow are more “chaotic” (with more time scales
involved) than intervals of blocked �ow. Our numerical experi-
ments suggest that improving expressivity of the neural network
(by increasing the number of hidden layers and neurons) does not
solve the problem. We note that a similar observation was made by
Raissi,48who attempted tomachine-learn the Kuramoto–Sivashinsky
equation with a neural network. Raissi48 noted that for this system,
intervals of laminar �ow posed no di�culty to the neural network,
while chaotic intervals were “stubbornly” challenging, with the opti-
mization algorithm not converging to the “right values” of the net-
work parameters. This description aligns with what we have seen in
the present investigation of the Charney–DeVore system. We leave
investigation of this issue for future work.

3. Flow past a cylinder

We conclude this section with an application of the learning
algorithm to a high-dimensional dynamical system. This is to pro-
vide an illustration of the Galerkin approach proposed in Sec. III C.
Speci�cally, we consider the �ow of a two-dimensional �uid of den-
sity ρ and kinematic viscosity ν past a rigid circular cylinder of diam-
eter D with a uniform free-stream velocity Uex. The Navier–Stokes
equations can be written in a dimensionless form as

∂tx + x · ∇x = −∇p + 1

Re
∇2x, (43a)

∇ · x = 0, (43b)

with no-slip boundary condition (x = 0) on the cylinder surface and
a uniform�ow (x = ex) in the far �eld.Velocity, time, and length have
been scaled with the cylinder diameter D and free-stream velocity
U, and the Reynolds number is Re = UD/ν. We consider the case
Re = 50, for which there exists a limit-cycle attractor, which is
believed to be globally and asymptotically stable.59 Our computa-
tional approach (mesh topology, spatial discretization, and time-
stepping scheme) is identical to that used by Blanchard et al.41,42

This �ow lends itself to dimensionality reduction because the
limit-cycle attractor, while being part of an in�nite-dimensional
phase space, is low-dimensional, with a handful of PODmodes faith-
fully capturing nearly all of the energy. (In fact, the system discussed
in Sec. IV B 1 was originally introduced as a simpli�edmodel for this
�ow.) Low-dimensionality of the attractor is important for leveraging
the full power of the reduced-order learning algorithm proposed in
Sec. III C. We also note that learning the dOTD modes on the limit
cycle does not have much merit from the standpoint of predicting
instabilities, but it does from the standpoint of �ow control. As dis-
cussed in Sec. V, having access to the OTDmodes at any point along
the periodic orbit is the stepping stone for the application of the OTD
control strategy proposed by Blanchard et al.42

We begin with the generation of a long trajectory on the limit
cycle by integrating the Navier–Stokes equations for 400 time units
(corresponding to about 52 periods) with a time-step size of 0.002.
Snapshots are recorded every ten time steps, resulting in an initial
dataset with 20 000 �ow snapshots. The POD modes 8 are com-
puted using 192 snapshots equally spaced over one period. We retain
the �rst ns = 8 POD modes, accounting for more than 99.9% of the
cumulative energy. Time series for the POD coe�cients ξ ∈ R

8 are
generated by projecting the 20 000 �ow snapshots on the PODmodes
[Fig. 4(a)]. For each point ξ n, we reconstruct the vector �eld G(ξ n)

using an Euler-forward �nite-di�erence approximation in the ξ -
space. [Alternatively, one could project (16) on the POD modes.] To
compute the reduced basis in which the OTDmodes will be learned,
we consider the local approach proposed in Sec. III C. We compute
the tPOD modes {9(xn)}Nn=1 using the 50 nearest neighbors of each
xn and then use (29) and (30) to reconstruct the reduced linearized
operator and the last term on the right-hand side of (27), respectively.
We consider local tangent bases with the dimension ranging from
nt = 2 to 6.

Upon completion of the reconstruction step, the 20 000-point
dataset in the ξ -space is divided up into training, validation, and test
sets. The training set is comprised of 20 equally-spaced points over
the period 50 ≤ t ≤ 57.6, the validation test of 55 points over the
period 100 ≤ t ≤ 107.6, and the training set of 110 points over the
interval 200 ≤ t ≤ 215.2. (We discard the remaining 19 815 points
to avoid lengthy calculations.) Results are presented for the �rst two
dOTDmodes. For both,we use the samedataset splitting and aneural
network with two 32-unit hidden layers. The Adam optimization
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(a)

(b) (c)

FIG. 4. For flow past a cylinder at Re = 50, (a) details of time series for the
POD coefficients and (b) and (c) the distance functions di and d

9
i
, respectively,

computed on test data for dOTD modes 1 (green) and 2 (orange).

algorithm uses a learning rate of 0.01 and is terminated after 2000
iterations. Lyapunov regularization is turned o� after 100 iterations.
For these parameters, the training, validation, and test errors are
shown in Table III.

For nt = 4, Figs. 4(b) and 4(c) show that the distances {di(x)}2i=1

and {d9
i (x)}2i=1 are virtually zero at the test points. This shows that

(a) the error introduced by the low-dimensional reconstruction of
the tangent space is negligible and (b) the neural network �nds the
best representation of the OTDmodes in this reduced tangent space.
Figures S4(a)–S4(f) in the supplementary material provide visual
con�rmation that the dOTDmodes learned in the reconstructed tan-
gent space are indistinguishable from their numerically integrated
counterparts. These results illustrate the bene�ts of learning theOTD
modes in a reduced subspace. Equally good agreement was obtained
for nt = 2 and 6 with the same network parameters.

V. DISCUSSION

We now discuss possible improvements and modi�cations to
the OTD learning algorithm introduced in Sec. III as well as impli-
cations for data-driven control of instabilities in dynamical systems.

In the examples discussed in Sec. IV, the nonlinearity appear-
ing in the governing equations was no stronger than quadratic with
respect to the state variables, and the neural network was able to
learn the OTD graph using the state x as its only “active” input.
In cases in which the nonlinearity is known to be, or suspected

to be, stronger than quadratic (e.g., with terms involving higher-
order polynomials, trigonometric functions, or nonlinear di�eren-
tial operators), it is likely that supplying x as the only input will
call for wider, deeper networks than used in Sec. IV. To keep the
number of network parameters reasonably small and facilitate con-
vergence of the optimization algorithm, one possibility is to use as
additional inputs a library of nonlinear functions of the state; for
example, {xn, F(xn), sin(xn), exp(−x2n), xn · ∇xn}Nn=1. This approach is
in the same spirit as the SINDy algorithm,22 in which sparse regres-
sion is applied to a library of nonlinear functions of x in order to
discover governing equations from state measurements. (We note
that equation discovery goes well beyond the SINDy algorithm,
with more general techniques such as grammar-based equation
discovery60 and process-based modeling.61,62)

We also note that in any laboratory experiment, sensing capa-
bilities are limited by the apparatus, leading to errors in state esti-
mation and reconstruction. Uncertainty in state measurements may
be accounted for by trading the neural-network approach for one
based on Gaussian processes (GPs) because GPs have the advan-
tage of providing error estimates at each testing points. GPs have
been found capable of handling sizable noise levels in a number
of problems similar to the present, including deep learning of par-
tial di�erential equations and discovery of governing equations from
noisy measurements.24,63 Another possibility is to use an approach
based on reservoir computing, a type of neural-network architecture
on which noise in the dataset has, paradoxically, a stabilizing e�ect.
Vlachas et al.36 recently applied reservoir computing to the problem
of predicting chaotic dynamics and found that addition of noise in the
training data not only led to better generalization, but also improved
performance of the network on both the training and testing datasets.

Themethod proposed in Sec. III is fully data-driven, in the sense
that no input other than state snapshots is required to learn the dOTD
modes. (The vector �eld and linearized operator are reconstructed
using nothing but state snapshots.) If governing equations are avail-
able (either derived from �rst principles or reconstructed from data),
then there is another possibility to learn the graphs x 7−→ ui(x);
that is, generate a large number of {xn, ui(xn)} pairs by solving the
state and OTD equations numerically and model the input–output
relationship with a neural network, whose parameters are found by
minimizing the empirical risk,

`
emp
i (θ i) = 1

N

N
∑

n=1

`(xn, ui(xn; θ i)), (44)

where ` is an appropriate loss function (e.g., quadratic loss or log-
cosh loss). To `

emp
i may be appended the loss function (11), which

then acts as a physics-informed24,64 (equation-based) regularization
term. The downsides of this approach are that (a) access to gov-
erning equations is mandatory and (b) generating the input–output
pairs requires solving r + 1 d-dimensional initial-boundary-value
problems, which may be computationally expensive.

From the standpoint of predicting instabilities, the bene�t of
learning the dOTD modes from data is that it gives access to direc-
tions of instabilities at any point in the phase space and to the leading
Lyapunov exponents, regardless of their sign. But the dOTD learn-
ing algorithm also has signi�cant implications from the standpoint
of controlling instabilities. As discussed in Sec. II A, we have recently
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TABLE III. Empirical validation results for flow past a cylinder at Re= 50 and hyperparameters given in the text.

Training set Validation set Test set

i `
pde
i d̄i d̄9

i `
pde
i d̄i d̄9

i `
pde
i d̄i d̄9

i

1 8.8× 10−5 8.5× 10−3 8.5× 10−3 4.3× 10−4 6.7× 10−3 6.7× 10−2 6.9× 10−4 4.3× 10−3 4.3× 10−3

2 5.7× 10−5 7.5× 10−2 7.5× 10−2 4.9× 10−4 5.5× 10−2 5.5× 10−2 7.0× 10−4 6.0× 10−2 6.0× 10−2

shown that the OTD modes can be incorporated into reduced-order
control algorithms for stabilization of unsteady high-dimensional
�ows. The OTD control strategy proposed in Ref. 42 requires solving
the OTD equations concurrently with the state equations because the
control force belongs to the OTD subspace. With the dOTD learning
approach, this requirement disappears because the neural-network
approach can be used to build a library of dOTD modes for various
regions of the phase space. (Construction of the OTD library may be
done o�ine.) Then, as the controlled trajectory wanders about in the
phase space, the controller can look up in the OTD library the dOTD
modes associated with the current state. (If the trajectory visits a state
that is not present in the library, then one can interpolate between
nearby states for which dOTDmodes are available.) Library look-up
can be done in real time because the computational complexity of
the look-up algorithm scales with the dimension of the OTD sub-
space, which makes the approach very attractive from the standpoint
of controlling high-dimensional systems in real time. We note that
similar ideas were employed in the context of nonlinear model order
reduction by Amsallem et al.20,65

Finally, there is the issue of how the predictive capabilities of the
neural network are a�ected by changes in system parameters.We �rst
note that even a small change in system parameters has the potential
of considerably altering the topology of the phase space and, in par-
ticular, the number, nature, and properties of the attractors. (This is
apparent when a bifurcation occurs.) We also note that one of the
prerequisites for the neural network to perform well on unseen data
is that the training and testing data be drawn from the same under-
lying probability distribution. Large variations in system parameters
are likely to violate this assumption, seriously compromising gener-
alizability of the neural network. Small variations in system param-
eters may lead to good generalizability provided that the changes
in phase-space topology and underlying probability distribution are
also small.

VI. CONCLUSION

For a large class of dynamical systems, the optimally time-
dependent (OTD) modes, a set of deformable orthonormal tangent
vectors that track directions of instabilities along any trajectory, are
known to depend pointwise on the state of the system on the attrac-
tor but not on the history of the trajectory. We have developed a
learning algorithm based on neural networks to learn this pointwise
mapping from the phase space to OTD space using data collected
along one or more trajectories of the system. The proposed method
is fully data-driven as it requires no other input than snapshots of the
state and is applicable regardless of the dimensionality of the system.
The learning process provides a cartography of directions associ-
ated with strongest instabilities in the phase space as well as accurate

estimates for the leading Lyapunov exponents of the attractor. This
has signi�cant implications for data-driven prediction of dynamical
instabilities, with the learning algorithm exhibiting predictive capa-
bilities of extreme events to a degree that is unprecedented, but also
for design and implementation of reduced-order controllers capable
of operating in real time.

SUPPLEMENTARY MATERIAL

See the supplementary material for supplementary �gures ref-
erenced in the paper.
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