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a b s t r a c t 

We present data driven kinematic models for the motion of bubbles in high-Re turbulent fluid flows 

based on recurrent neural networks with long-short term memory enhancements. The models extend 

empirical relations, such as Maxey-Riley (MR) and its variants, whose applicability is limited when either 

the bubble size is large or the flow is very complex. The recurrent neural networks are trained on the 

trajectories of bubbles obtained by Direct Numerical Simulations (DNS) of the Navier Stokes equations 

for a two-component incompressible flow model. Long short term memory components exploit the time 

history of the flow field that the bubbles have encountered along their trajectories and the networks are 

further augmented by imposing rotational invariance to their structure. We first train and validate the 

formulated model using DNS data for a turbulent Taylor-Green vortex. Then we examine the model pre- 

dictive capabilities and its generalization to Reynolds numbers that are different from those of the train- 

ing data on benchmark problems, including a steady (Hill’s spherical vortex) and an unsteady (Gaussian 

vortex ring) flow field. We find that the predictions of the developed model are significantly improved 

compared with those obtained by the MR equation. Our results indicate that data-driven models with 

history terms are well suited in capturing the trajectories of bubbles in turbulent flows. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Inertial particles, such as bubbles or aerosols, have been the fo-

al point of a large number of studies, from particle ladden turbu-

ent flows ( Elghobashi, 2019 ) to cloud dynamics ( Shaw, 2003 ), over

he last few decades. These studies reveal that even in the case

f neutral buoyancy, inertial particles may not follow the flow, ex-

ibiting strongly dispersive or clustering behaviors ( Maxey and Ri-

ey, 1983; Michaelides, 1997; Rubin et al., 1995 ). In this context

everal dynamical models have been derived for the description of

nertial particles motion. 

The theoretical analysis of inertial particle motion was pio-

eered by Stokes (1851) , who addressed the motion of an isolated

article sedimenting in a fluid when the inertia effects are negligi-

le and the flow field is dominated by viscous diffusion. Since then

umerous effort s have been made to derive improved models (see

.g. Basset, 1888; Oseen, 1910; Proudman and Pearson, 1957; Sano,

981 ). Maxey and Riley (1983) (see also the work Gatignol, 1983 )
∗ Corresponding author at: Department of Mechanical Engineering, Massachusetts 
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arried out a complete analysis of the motion of a sphere in un-

teady Stokes flow for nonuniform flow fields and derived an equa-

ion governing the relative velocity of the particle for any nonuni-

orm transient background flow. This model and several of its im-

rovements have been used widely for the description of bubbles,

erosols and neutrally buoyant particles in ambient fluid flows. 

The Maxey-Riley (MR) equation is characterized by a singular

tructure and is challenging to solve numerically. In Haller and

apsis (2008) a geometrical singular perturbation reduction was

erformed for small particles size that led to analytical kinematic

odels for inertial particles. These models were employed to in-

estigate properties such as dispersion ( Sapsis and Haller, 2008;

aller and Sapsis, 2010 ) and clustering ( Sapsis and Haller, 2010 ).

espite the success of the MR equation (and its variants) on quali-

atively capturing several aspects of inertial particles motion, there

re still significant discrepancies between the predicted trajectories

f individual particles and those measured experimentally, even for

elatively low Re numbers ( Sapsis et al., 2011 ). 

In Wan and Sapsis (2018) it was shown that bubble trajecto-

ies generated from the MR equation for a simple cell flow, are

ufficient to facilitate the learning of data-driven kinematic mod-

ls. These models not only reproduce the trajectories for the flow

n which they were trained, but they also predict accurately bub-

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103286
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2020.103286&domain=pdf
mailto:sapsis@mit.edu
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103286
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ble trajectories and their non-Gaussian statistics in different flows,

such as the flow behind a cylinder or a turbulent flow in a periodic

box. This is achieved by learning a velocity field for the particles,

in terms of the flow properties that the particle has encountered

along its past trajectory. In this way the trained model does not

depend on the specific form of the flow that is used for train-

ing. Despite its success, this study was limited by the fact that

the underlying ‘ground truth’ is considered to be the MR equation

and the trajectories generated from it, which, due to a multitude

of simplifying assumptions made (e.g. size and shape of the bub-

ble), is a good assumption for a limited number of problems. On

the other hand, direct numerical simulations (DNS), can provide

more realistic descriptions of the underlying physical phenomena,

as the whole range of spatial and temporal scales in the Navier-

Stokes (NS) equations are resolved. DNS of turbulent flows with

bubbles, however, entail a number of technical challenges, includ-

ing the accurate description of the liquid-gas interface, the treat-

ment of the surface tension force ( Elghobashi, 2019 ) and the high

computational cost. 

The scope of this work is to obtain a data-driven kinematic

model for 3-dimensional (3D) finite-size bubbles, trained using

a limited number of DNS bubble trajectories. Compared to prior

work, the present model is subject to fewer restricting assump-

tions as it learns from high-fidelity NS solutions and is therefore

capable of providing accurate description of bubble behaviors un-

der a much wider range of settings. In particular, we aim to learn

kinematic models for bubbles that generalise well to other fluid

flows, by informing the model with the local flow characteristics

that the bubbles have encountered along their trajectories. At the

same time, we address the data scarcity problem that arises as

a natural consequence of relying on data generated by expensive

DNS. Specifically, we exploit physical symmetries of the kinematic

models, such as rotation invariance, in order to augment the lim-

ited training data set. We examine the generalization of the trained

model to different Re numbers and assess its performance in three

different 3D benchmark problems. The first one is the turbulent

Taylor-Green vortex which also provides the training data. Subse-

quently, we use the same trained model for bubbles in a flow field

described by the laminar Hill’s spherical vortex, as well as, bub-

bles in a flow field of an unsteady vortex ring generated by DNS.

Detailed comparisons with MR are also presented. 

The remainder of this work is organized as follows. In

Section 2 we present the DNS set-up that is used to obtain

bubble trajectories required for model training and validation.

Section 3 provides details of the data-driven model including the

selection of the appropriate input variables for the model, a novel

data augmentation mechanism to deal with sparse data, and train-

ing results. Using the learned model we also examine its general-

izability to different flow conditions, including different Reynolds

(Re) numbers. Finally, we showcase the model capabilities to: (a,

Section 4 ) predict bubbles motion in an analytically described,

steady, fluid flow, the Hill’s spherical vortex, and (b, Section 5 ) pro-

vide high-fidelity multi-step predictions for bubbles in an unsteady

vortex ring. 

2. DNS of a turbulent multiphase Taylor-Green vortex 

The training data for our model is generated from DNS of tur-

bulent flows with bubbles, which provide complete information

about the bubbles trajectories and the underlying flow. We focus

on obtaining kinematic models for monodisperse systems, i.e. mix-

tures with bubbles of equal size. The important case of polydis-

perse systems will be considered in the future. For DNS data gen-

eration, we employ a two-component incompressible flow model

consisting of the 3D Navier-Stokes equations for the mixture ve-
ocity u and pressure p 

 · u = 0 , (1)

(
∂ u 

∂t 
+ ( u · ∇ ) u 

)
= −∇ p + ∇ · μ(∇ u + ∇ u 

T ) + f σ , (2)

nd the advection equation for the volume fraction α

∂α

∂t 
+ ( u · ∇) α = 0 , (3)

here the mixture density ρ = (1 − α) ρ1 + αρ2 and dynamic vis-

osity μ = (1 − α) μ1 + αμ2 are computed from the volume frac-

ion and constant material parameters ρ1 , ρ2 , μ1 and μ2 . The

urface tension force is defined as f σ = σκ∇α, where σ and κ
enote the surface tension coefficient and interface curvature re-

pectively. No gravity was included in the model. The equations

re discretized on a uniform Cartesian mesh using the finite vol-

me method and the SIMPLE algorithm for pressure coupling

 Patankar and Spalding, 1983; Ferziger and Peric, 2012 ). The ad-

ection equation is solved using the volume-of-fluid method with

iece-wise linear interface reconstruction ( Aulisa et al., 2007 ). For

 detailed description and evaluation of the numerical algorithm,

ncluding the treatment of surface tension, readers are referred

o Karnakov et al. (2020) . 

We generate data for the training of our model by simulating

he evolution of the Taylor-Green vortex ( Van Rees et al., 2011 )

xtended by a gaseous phase. The problem is solved in a periodic

omain � = [0 , 2 π ] 3 with the initial velocity field (u x , u y , u z ) =
( sin x cos y cos z, − cos x sin y cos z, 0) and the volume fraction field

epresenting multiple bubbles of dimensionless radius R = 0 . 196 .

he liquid has dimensionless density ρ1 = 1 and viscosity μ1 =
 / Re based on the Reynolds number Re. For the gas properties,

e assume that μ2 = 0 . 01 μ1 and ρ2 = 0 . 01 ρ1 . The surface ten-

ion σ = 2 R/ We is determined from the Weber number, We, which

haracterizes the ratio between inertia and capillary forces. The

rajectories of bubbles are obtained by computing the center of

ass of each bubble from the volume fraction field. The prob-

em is solved on a mesh of 256 3 cells. Snapshots of the simulated

ow field at Re = 800 and We = 3 . 92 are shown in Fig. 1 . Results

n Fig. 2 show how the solution changes with mesh refinement:

he integral quantities such as the energy dissipation rate are in-

ependent of the mesh size while the trajectories deviate at later

imes due to their chaotic nature. Fig. 3 shows that the bubbles

emain largely spherical. The deformation of one bubble is charac-

erized by the gyration tensor 

1 

V 

∫ 
(x − x c ) � (x − x c ) α dV, (4)

here V = 

∫ 
α dV is the volume and x c = 

1 
V 

∫ 
x α dV is the center

f mass of the bubble. The corresponding ellipsoid of gyration has

emi-axes R 1 < R 2 < R 3 that relate to the principal components

1 < λ2 < λ3 of the gyration tensor as R i = 

√ 

5 λi , i = 1 , 2 , 3 . The

emi-axes remain within 8% of the initial radius of the bubbles. 

The data set includes three cases with Re = 40 0 , 80 0 and 1600

nd in all cases We = 3 . 92 . For each Re, 30 groups of 10 bubbles

re simulated. The bubbles are initialized with zero velocities and

andom positions drawn from a uniform distribution in the prob-

em domain. Within each group, the bubbles may occasionally co-

lesce with one another to form a bigger bubble but maintain a

onstant size otherwise. For the purpose of this work, we are only

onsidering bubbles with constant size and trajectories with coa-

escence are therefore omitted. We obtain 255 ~ 290 bubble tra-

ectories for each Re number. 
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Fig. 1. Snapshots of the DNS flow field for the multiphase Taylor-Green vortex with Re = 800 at time instants t = 2 . 5 , 10 , 17 . 5 . The vorticity field is shown with color 

(increasing values from blue to red) together with the surfaces of bubbles (green) and their indices. Properties of the bubbles (such as position, pressure, velocity) are 

obtained by averaging over spherical surfaces surrounding the bubbles with radius 2 R (gray). (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 2. Energy dissipation rate 1 
8 π3 

∫ 
ρ| u | dV and x -components of position and flow velocity of bubble 4 from Fig. 1 depending on the mesh size: 256 3 (solid blue) and 384 3 

(dashed orange). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Principal semi-axes of the ellipsoid of gyration of bubbles 2, 4 and 6 from Fig. 1 normalized by their initial radius. 
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. Data-driven modeling of bubbles in the Taylor-Green vortex 

Following Wan and Sapsis (2018) , we aim to obtain a kinematic

odel relating the instantaneous velocity of the bubble to the his-

ory of the local flow conditions experienced by the bubble. As

iscussed, our study focuses on modeling the motion of bubbles

hose radius stays constant ( R = 0 . 196 unless otherwise noted). In

iscrete time, the model takes the form 

¯  t = G 

(
�; ˆ ξt , ̂

 ξt−1 , ̂
 ξt−2 , . . . 

)
, (5)

here subscripts are used to represent the index of the time steps,

¯ t denotes the gas velocity averaged over the entire spherical vol-

me of the bubble, and 

ˆ ξt denotes the local flow state (e.g. flow

elocity u , gradient ∇ u , material derivative D u /Dt) experienced by
he bubble. These quantities are computed as the average over an

nclosing and concentric spherical surface with radius 2 R . This cor-

esponds to a region where, for the particular flows considered, the

ensitivity of flow properties to the size of the averaging surface

s verified to be insignificant. However, this is not necessarily the

ase for generic flow configurations (e.g. higher Re number). 

The vector field, G ( · ), is represented with a recurrent neu-

al network (RNN), whose structure is illustrated in Fig. 4 . RNNs

ave been shown to represent dynamical systems very effectively

ven for chaotic regimes ( Vlachas et al., 2018 ). The architecture

onsists of two stacked long short-term memory (LSTM) layers of

00 hidden units each and a fully-connected (FC) layer with 50

idden units before the final 3-dimensional output layer repre-

enting bubble velocity. Denoting a set of N training trajectories
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Fig. 4. RNN/LSTM-based architecture for modeling bubble kinematics. The LSTM 

layers have 100 hidden units and fully-connected (FC) layer has 50. L2 kernel and 

recurrent regularizations are used ( λ = 10 −4 ). 
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by D = {T (n ) } N 
n =1 

where T (n ) = { ̄v (n ) 
1 

, ̂  ξ
(n ) 

1 , . . . , ̄v (n ) 
T 

, ̂  ξ
(n ) 

T } is a single

training trajectory, the weights � for RNN model G are obtained by

minimizing the normalized mean squared error (MSE) loss func-

tion: 

L ( �;D) = 

1 

N 

1 

T 

N ∑ 

n =1 

T ∑ 

t=1 

∣∣∣∣∣∣G 

(
�; ˆ ξ

(n ) 

t , ̂  ξ
(n ) 

t−1 , . . . 

)
− v̄ (n ) 

t 

∣∣∣∣∣∣2 

var (v ) 
, (6)

where var( v ) is the variance of the bubble velocity. 

3.1. Maxey-Riley (MR) slow manifold approximation 

As a benchmark, we employ the MR equation: 

˙ v = 

1 

ε
( u − v ) + 

3 γ

2 

D u 

Dt 
, (7)

where ε is a dimensionless parameter representing bubble iner-

tia and γ = 2 ρ1 / (ρ1 + 2 ρ2 ) is a density ratio. The MR equation is

known to admit a slow-manifold approximation which takes the

asymptotic form Haller and Sapsis (2008) 

˜ v = u + ε
[ 

3 γ

2 

− 1 

] 
D u 

Dt 
+ O (ε2 ) , (8)

which is a good approximation to the original equation when ε is

small and some additional stability constraint (based on the min-

imum eigenvalue of ∇ ̃  v ) is satisfied ( Sapsis and Haller, 2008 ). For

the DNS parameters specified in Section 2 , ε takes the value 3.48

at Re = 800 . This suggests that the bubble has considerable iner-

tia, which significantly compromises the accuracy of the low-order

truncation of the slow manifold (8) and makes it difficult to as-

sess its stability. Nevertheless, we employ this model as a minimal

baseline to understand the capabilities of our proposed machine-

learning schemes. The resulting first order truncation to (8) leads

to standardized MSE of 0.77 and 0.83 respectively. 

3.2. Selection of input variables for the data driven, kinematic model 

In data driven models a key issue is the selection of the flow

features or variables that should be included as input, i.e. how

to select the components of the input vector ξ. Unlike the cases

where the MR equation is valid ( Wan and Sapsis, 2018 ), in the

present setup the form or even the presence of a slow manifold

is not supported by any theoretical argument. We will therefore

choose the flow state to use from a larger pool of candidates in-

cluding flow velocity, gradient of pressure, etc. 
We consider several combinations of input variables (see Ap-

endix A) and observe that the 6-dimensional input vector ˆ ξ con-

isting of the flow velocity u and the flow material derivative

 u /Dt produces the best model performance after 100 epochs of

raining. We find that the flow material derivative plays a crucial

ole. Including additional variables in the state vector slows down

he training process and results in a larger generalization gap be-

ween the performance on training and validation cases. We high-

ight the interesting fact that these particular variables are consis-

ent with the ones contained in the standard form of the MR equa-

ion. 

.3. Data augmentation via random orthogonal transformation 

The generation of DNS data has high computational costs and it

nevitably leads to a data scarcity problem. We propose a remedy

o this situation by introducing a data augmentation scheme that

xploits symmetries in the system to enrich our training data. In

articular, we assume that the resulting kinematic model is equiv-

riant with respect to the orientation of the coordinate axes, i.e.

 ̄v t = G 

(
�;R ̂

 ξt ,R ̂

 ξt−1 ,R ̂

 ξt−2 , . . . 
)
, (9)

here R denotes an arbitrary orthogonal transformation. Note that

lthough bubbles may deform and become non-spherical we ex-

ect that their exact shape depends only on the history of the flow

hey have encountered. In this sense the effect of the potential de-

ormation is implicitly encoded in the machine-learned model. This

dditional assumption allows us to take advantage of the equivari-

nce property. However, it introduces a limitation as the machine-

earned model has a direct dependence on the We number. 

To facilitate training models with such a property, we randomly

ample orthogonal matrices which are used to transform the orig-

nal data. In this way, we obtain an augmented training data set

hat is used to impose the directionless property on the model:

n order to achieve low training loss, the model needs to perform

ell on the DNS data, as well as, their random orthogonal trans-

ormations. Sampling is enabled by parametrizing the orthogonal

ransformation as the product of a rotation matrix R θ and a reflec-

ion matrix R b : 

 = R θR b (10)

 θ = R x (θx ) R y (θy ) R z (θz ) , (11)

 x (θx ) = 

[ 

1 0 0 
0 cos θx sin θx 

0 − sin θx cos θx 

] 

, R y (θy ) = 

[ 

cos θy 0 sin θy 

0 1 0 
− sin θy 0 cos θy 

] 

, 

R z (θz ) = 

[ 

cos θz sin θz 0 
− sin θz cos θz 0 

0 0 1 

] 

(12)

 b = b I = 

[ 

b 0 0 

0 b 0 

0 0 b 

] 

(13)

here R x , R y and R z are elementary rotation matrices about x,

 and z axes respectively, with rotation angles specified by θ =
(θx , θy , θz ) . Each elementary rotation corresponds to rotating a vec-

or in R 

3 around the associated axis counter-clockwise or equiva-

ently, the coordinate axes in the opposite direction by the same

ngle. R b is parametrized by a binary variable b , which takes the

alue of +1 and −1 with equal probability (the latter signifies a re-

ection). For θ x , θ y , θ z ∈ [0, 2 π ], (10) to (13) encompass all possi-

le orthogonal transformations with determinant +1 (proper rota-

ion) and −1 (improper rotation). Note that such a parametrization
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Fig. 5. Cross validation box plots showing training and validation MSE against training data size. Each box-whisker represents statistics of 10 independent training-test 

partitions. Top row model is trained with D train 
o . Bottom row model is trained with D train 

aug . Horizontal axes indicate size of D train 
o (subtracted from 255 to obtain size of D test 

o ); 

D train 
aug is augmented from D train 

o to 80 0 0 trajectory examples (different q for different D train 
o size). Middle and right columns show MSE computed on D test 

o and D test 
aug (augmented 

from D test 
o to 10 0 0 trajectory examples) for each trained model respectively. All models use six-dimensional feature vector ξ = [ u , D u /Dt] . Reynolds number is set at 800. 
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v  
s by no means unique. However, it has the fewest number of pa-

ameters possible (3 angles plus a single binary), offers good geo-

etric interpretability and flexible control over the range of trans-

ormation, choosing anywhere between small perturbation and a

ompletely free rotation. 

By applying the same transformation, e.g. first order tensors as

 (v ) = Rv and second order tensors as R (∇ u ) = R ∇ u R 

−1 
, to all

uantities including bubble velocity v̄ and flow field variables se-

ected to make up ξ along a trajectory, we obtain a rotated trajec-

ory 

 

(n ) 
R 

= {R ( ̄v (n ) 
1 ) , R ( ̂ ξ

(n ) 

1 ) , . . . , R ( ̄v (n ) 
T ) , R ( ̂ ξ

(n ) 

T ) } . (14)

n this way, for each directly observed trajectory T (n ) we easily ob-

ain an augmented set {T (n ) 
1 

, . . . , T (n ) 
q } by applying q different sets

f orthogonal transformation parameters { ( θ1 , b 1 ) , . . . , ( θq , b q ) } .
e refer to q as the augmentation factor . We sample all θ from a

ormal distribution: N (0 , σ 2 I ) , σ = 0 . 5 for each trajectory in the

irectly observed data set D o to obtain an augmented data set,

hich we denote by D aug . This sampling regime is found to sig-

ificantly improve the models while maintaining stable training, as

t is demonstrated by the numerical experiments described in the

ollowing sections. 

.4. Cross-validation numerical experiments 

We study the effects of training data size as well as the

erformance of the augmentation scheme through several cross-

alidation tests. We use as baseline data D o the 255 trajectories

enerated from DNS for Re = 800 . Each trajectory consists of 400

ime steps ( 
t = 0 . 05 ). The trajectories are randomly partitioned

nto a training D 

train 
o and a test set D 

test 
o , at different size ratios. 10

ndependent partitions are drawn for each training-test ratio. Sep-

rate models are then trained and tested on each division of data

nd the resulting MSE statistics are shown in the form of boxplots

n Fig. 5 . In the figure we compare performance of model trained

rom the original D 

train 
o and the augmented D 

train 
aug on both D 

test 
o and

 

test 
aug . We observe that model trained using D 

train 
o does not perform
ell on D 

test 
aug , which suggests that the model has developed a pref-

rence for axes orientation during training. 

On the other hand, the model trained using D 

train 
aug not only gen-

ralizes well to both D 

test 
o and D 

test 
aug but also has better stability

smaller variance) in training error. Note that the larger testing er-

or variance as the size of D 

train 
o increases may be attributed to

 

test 
o getting extremely small in size and more likely to sample

nd overweight extreme examples. Nevertheless, the error mean

teadily decreases with richer training data, demonstrating effec-

iveness of the data augmentation procedure on training direction-

ess models. 

.5. Model generalization with respect to Reynolds number 

It is demonstrated in Wan and Sapsis (2018) that a data-driven

odel can be directly generalized to unseen flow fields, provided

hat a globally attracting slow manifold exists at all times for the

ubble kinematics. This condition is not necessarily satisfied for

he DNS training set used in this model. Therefore, we conduct

umerical experiments to examine the generalization capacity of

he learned model to flow conditions other than those experienced

uring the training phase. In particular, we focus on applying the

odel to various Re numbers. 

We obtain DNS data for Re = 40 0, 80 0 and 1600 respectively.

odels (with random sampled and augmented training data) using

-dimensional ξ = [ u , D u /Dt] are learned for each Re number and

ested on all others. The MSE results are plotted against time in

ig. 6 . Time-averaged values of the MSE for each case are given in

ppendix B. Each subplot represents comparison of data with the

odels for a specific Re. Each curve within a subplot represents

he error for a particular data-driven model, learned from a given

e data-set or using all Re data-sets together (Re mixed). We also

nclude results from the slow manifold of the MR Eq. (8) (MRsm),

s well as, integrating the full MR Eq. (7) , 

 (t) = v (0) + 

∫ t 1 

ε
( u ( x , s ) − v ( x , s )) + 

3 R 

2 

D 

Dt 
u ( x , s ) ds, (15)
0 
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Fig. 6. RMSE (unnormalized) vs. time averaged over 50 0 0 augmented test trajectories for Re = 40 0, 80 0 and 160 0 respectively. The title of each subplot indicates the data- 

set at which we compare the different models. The different curves indicate different models trained using DNS trajectories for various Re, analytical (such as full MR or 

slow-manifold of MR), and the fluid flow itself. 

Fig. 7. Example predictions for Re = 40 0, 80 0 and 1600 trajectories using models trained from data sets with various Re numbers and analytical models, such as MR and 

the reduced MR. These are superimposed with the true (DNS) bubble velocity, and the flow velocity. Predictions are bagged results obtained from 20 models (each model 

trained with different samples from the same data-set). 
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where the integral is computed over the true DNS trajectory. Both

models are far less effective in capturing the bubble velocity com-

pared to the data-driven models. 

We note that learning kinematic models for higher Re number

is intrinsically more difficult because small scales of the flow be-

come more important and averaging the input variables ˆ ξ is less

representative of the true flow state in the vicinity of the bubble.

This is consistent with the observation that training errors for high

Re number flows are typically larger. Nevertheless, when applied to

flows with different Re numbers than those used for training, we
bserve that the models still generate reasonably accurate predic-

ions. As expected, the best performance occurs at the Re number

n which they are trained (see also Appendix B). 

We also note that models trained on higher Re number data sets

end to predict better the trajectories for lower Re flows compared

ith the model performance on higher Re flows when trained on

ower Re data sets . This is consistent with the fact that higher Re

ows are much richer in terms of scales and dynamics. In Fig. 7 we

lot the predicted velocity time series at each Re number. Specifi-

ally, we show velocity predictions for a specific bubble trajectory.
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Fig. 8. (a) Toroidal stream surfaces for fluid elements. (b) Poincaré section at y = 0 of the Hill’s spherical vortex for a = 0 . 6 , b = 0 . 1 and c = 0 . 15 . Stream surfaces are marked 

in black. (c) Circular limit cycle generated by the MR equation for ε = 0 . 01 . (d) A double limit cycle generated by the MR equation for ε = 0 . 7 . 
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hese predictions are made with models trained using data sets

ith various Re numbers. These are compared with the true (DNS)

ubble velocity time series, the flow velocity time series, as well

s the MR and reduced MR predictions. Data-driven predictions

re averaged results obtained from 20 models (each model trained

ith different samples from the same data-set). We observe that

he data-driven models provide much better predictions than MR

nd notably for high Re numbers. 

. Application: steady Hill’s spherical vortex 

We illustrate the performance of the kinematic model, learned

rom the DNS of the Taylor-Green vortex, in the Hill’s spherical

ortex. Due to the laminar and steady character of this flow, bub-

les described by MR tend to cluster in specific regions having the

orm of limit-cycles. It is therefore interesting to examine whether

he data-driven model is able predict the existence of similar limit-

ycles that act as attractors for bubbles. 

We consider the integrable case of a Hill’s spherical vortex

mended with a line vortex at the z -axis. The velocity field of the

ow is given by 

 ( x ) = a 

[ 

xz − 2 cy/ (x 2 + y 2 + b) 
yz + 2 cx/ (x 2 + y 2 + b) 
1 − 2(x 2 + y 2 + b) − z 2 

] 

, (16)

here a is a scaling parameter and b is a parameter used to re-

ove the singularity along the z -axis. c balances the components

singular and non-singular) in x - and y -directions. For our study

e choose a = 0 . 6 , b = 0 . 1 and c = 0 . 15 . This flow generates com-
act toroidal stream surfaces inside the sphere | x | ≤ 1 − b (see

ig. 8 a). 

We examine the statistical steady state of bubbles following

he MR dynamics for a fixed set of flow parameters at differ-

nt bubbles size ( ε). To achieve this we randomly pick a num-

er of initial positions inside the spherical vortex. The locations of

he bubbles are then evolved based on the MR equation and the

achine-learned model. According to the MR dynamics, for suffi-

iently small ε, the bubbles should always cluster on a limit cycle

n the shape of a circular ring ( Sapsis and Haller, 2010 ). However,

he position and size of the ring differs for particles with differ-

nt inertia. For ε close to 0, the MR limit cycle lies on the z = 0

lane. As ε increases, the MR limit cycles lies higher up along the

 -axis. At around ε = 0 . 7 , the system goes through a bifurcation as

wo stable limit cycles simultaneously exist at different z levels. Of

ourse, this is a regime where the validity of MR is questionable

ven for simple laminar flows. As ε increases further, the system

eturns to having a single stable limit cycle whose vertical posi-

ion, z , and radius nonetheless start to decrease with respect to ε. 

The data model on the other hand describes the motion of a

ubble with large size. For the purpose of comparison, we set orig-

nal scales of the Hill’s vortex flow to be the same as those of the

NS, which leads to ε = 1 . 5 . In this case the limit cycle position

s even higher up along the z -axis compared to all MR cases. The

verall trend is illustrated by the Poincaré map in Fig. 8 b and also

he plots in Fig. 9 . It is interesting to note that the two approaches

gree qualitatively on the existence of a limit cycle. Quantitatively,

owever, the data-driven method predicts a different location for

he limit cycle, which is consistent with the trend that the MR
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Fig. 9. Trajectory in ( r, z ) plane (where r = 

√ 

x 2 + y 2 , corresponding to the plane formed by the z -axis and the bubble coordinate) for MR equation using increasing values 

of ε (a to c) and for the data model (d) which corresponds to ε = 1 . 5 approximately. 

Fig. 10. Interaction of a vortex ring with a bubble. Snapshots of the vorticity magnitude (increasing values from blue to red) and the bubble surface (green) at t = 40 , 60 , 80 

and 100. Parameters of the vortex ring are given in Bergdorf et al. (2007) (ring A) and the ring radius is R = 1 . Bubble of radius R b = 0 . 25 is positioned at a distance 


from the ring axis. Depending on 
, the bubble is either trapped inside the ring (top, 
 = 0 . 22 ) or separates from the ring (bottom, 
 = 0 . 44 ). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

a  

a

ω  

w  

t  

m  
gives for small ε, i.e. for values 0 − 0 . 5 , where we expect it to be

valid. 

5. Application: unsteady vortex ring 

As a last example, we examine the performance of the data

driven, RNN model in an unsteady flow, generated by DNS of the

NS equations. The DNS resolve a bubble whose motion is driven by
n evolving vortex ring. The vortex ring is initialized by a Gaussian

zimuthal vorticity in cylindrical coordinates 

 θ (x , t = 0) = 

1 

πσ 2 
e −(s/σ ) 2 , (17)

here s 2 = z 2 + ( 
√ 

x 2 + y 2 − 1) 2 is the squared distance away from

he circular ring { �R : x 
2 + y 2 = 1 , z = 0 } that is the location of

aximum vorticity and also the mean of the Gaussian. The stan-
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Fig. 11. Comparison of trajectories for DNS, data-driven and MR models. Left two columns correspond to a bubble trapping case within the ring - bubble moves together 

with traveling vortex ring up and beyond z = 15 . The trapping behavior is captured by both models. The right two columns are for a slipping case - bubble does not move 

up after contact with the vortex. Data-driven model correctly predicts slipping (although exact trajectories differ) whereas MR continues to suggest trapping. Bottom row are 

the corresponding velocity time series for the first 150 time units. Numbers inside brackets of the legend entries indicate the initial distance away from the z -axis. 
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ard deviation is denoted with σ and its value is chosen as σ =
 . 4232 ( Bergdorf et al., 2007 ). We use the Stokes stream function

o solve for the initial velocity field and evolve the flow according

o (2) and (3) . The results are shown in Fig. 10 . For t > 0, the vortex

ing moves in the positive z -direction, steadily, having a constant

elocity. A bubble that is initially resting above the vortex ring in-

eracts with the flow in two possible ways as the ring passes by:

a) the bubble becomes trapped inside the ring and moves together

ith it or (b) the bubble slips away. Given the fixed physical prop-

rties of the bubble, occurrence of trapping within the vortex ring

epends on how far the bubble initial position is chosen from the

 -axis. 

Using the previously learned kinematic model, we track this

ubble-flow interaction, solving a simple ordinary differential

quation. Specifically, we employ the kinematic model trained for

e = 1600 , as it is the closest to Re = 7500 that is used to set up

he flow field and DNS for the considered flow. By approximating

he flow as steady, in the frame of reference of the vortex ring,

nput for the data-driven model may be conveniently queried to

acilitate fast multiple-step predictions of bubble trajectories. 

In Fig. 11 we compare the DNS and data-driven trajectories for

oth trapping and slipping scenarios, in terms of the trajectory

rojected to the x − z plane and z -velocity characteristics. For the

rapping case, the DNS and the data-driven model predict com-

arable oscillations in the trajectories and velocity time series for

ubbles initiated from similar heights and distances away from the

entral axis (column 1). On the other hand, although the MR model

orrectly predicts trapping, the predicted trajectory contains much

ore spurious oscillations (column 2). Column 3 demonstrates a

ase where the data driven model successfully predicts slipping -

ignified by the fact that trajectories endpoints lie slightly above

he initial position. The same behavior is not observed for MR

odel, whose trajectory endpoint extends beyond the plotting lim-
 i  
ts in the positive z direction. The small difference (much smaller

han bubble size) in the initial positions between DNS and the MR

r the data-driven model is due to the matching of the initial bub-

le velocity which plays a crucial role in the MR equation. Finally,

e would like to add that the obtained results have demonstrated

 sufficient level of robustness for small perturbations of the initial

ubble positions (i.e. within the DNS bubble region) used in the

R and the date-driven model. 

. Conclusions 

We propose a machine learning algorithm for deriving kine-

atic models of finite-size bubbles with constant radius, in tur-

ulent flows. The kinematic models rely on Recurrent Neural Net-

orks with Long Short Memory (RNN-LSTM) trained on trajecto-

ies obtained from multi-phase DNS of bubbles in turbulent flows.

ur approach relies on representing the vector field that governs

he velocity of bubbles, in terms of the flow field encountered all

long their trajectories. We have assessed various flow properties

s potential input variables for the kinematic model and we found

s most informative the velocity field and the local gradient tensor.

his is consistent with the general form of the MR equation and its

xtensions based on the Basset-Boussinesq memory terms. 

We have also discussed a new data augmentation approach that

nforces rotational symmetries that the kinematic model should

ossess. In this way, we are able to augment the data obtained

rom the from DNS. We studied the predictive generalization of

he models to different Re numbers and observed that the models

rained with flows of a given Re number are able to maintain good

erformance for flows with lower Re numbers, but less so when

he relation is reversed. This is not a surprise given that higher Re

ows contain smaller scale turbulent structures which are absent

n lower Re flows. We applied the trained model to a steady lam-
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inar Hill’s spherical vortex. This is a setup where the MR equation

has been studied analytically and for which it has been shown that

finite-size effects will induce clustering of bubbles on a limit cycle.

The results obtained from the data-driven model also predict the

existence of a limit cycle which has geometrical characteristics that

are consistent with the ones obtained from MR when the bubble

size is assumed small. Finally, we use the trained model to perform

multi-step prediction for an unsteady flow - a traveling Gaussian

vortex ring. With no additional training, predicted trajectories cap-

ture very well the trapping and slipping behaviors observed in the

multiphase DNS. 

Our analysis relied on the assumption of bubbles having ap-

proximately fixed size. Several important directions will be pur-

sued in the future including modeling the effect of variable bub-

ble size and/or shape, possibly by combining data-driven kine-

matic models with the Rayleigh-Plasset equation and/or deforma-

tion models ( Gordillo et al., 2012 ). However, even under this as-

sumption we expect that the presented data-driven strategy for

learning the dynamics of bubbles will impact a series of appli-

cations where analytical models, such as MR equation, encounter

limitations, such as quantifying the statistics of bubbles in multi-

phase flows, as well as, their effect back to the fluid flow. 
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ppendix A. Input variables selection 

Table A.1 . 

Table A.1 

Performance for different input variables: training and validation loss at the end 

of 100 training epochs. All input variables are averaged over a spherical surface 

that contains the bubble ( Fig. 1 ). The same two-layer LSTM architecture is used 

for all runs. All results are for Re = 800. 

Input variables Dimension Training MSE Validation MSE 

u 3 0.704 0.708 
D u 
Dt 

3 0.094 0.086 

( u · ∇) u 3 0.725 0.801 
∂ u 
∂t 

3 0.286 0.307 

u , D u 
Dt 

6 0.078 0.082 

u , D u 
Dt 

, ∇p 9 0.102 0.115 

u , ∇ u , ∂ u 
∂t 

15 0.182 0.289 

ppendix B. Mean squared error for Cross-Re validation 

Table B.1 

ty st. deviation: models trained using data with a particular 

s are conducted on both original and augmented data set. 
for the mixed Re case, where 20 sets of 600 are used) are 

eviations listed here are calculated for the performance of 

amples. 

Test MSE, Re = 800 

mented original augmented 

an std mean std mean std 

471 0.0023 0.1093 0.0027 0.0953 0.0025 

386 0.0031 0.0777 0.0036 0.0767 0.0026 

453 0.0046 0.1919 0.0021 0.1674 0.0027 

451 0.0026 0.1295 0.0021 0.1155 0.0018 

1600 Test MSE, combined 

augmented original augmented 

an std mean std mean std 

523 0.0056 0.0799 0.0029 0.0726 0.0015 

253 0.0022 0.0971 0.0026 0.0927 0.0016 

957 0.0030 0.1535 0.0049 0.1417 0.0025 

289 0.0025 0.1094 0.0023 0.1015 0.0012 
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