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ARTICLE INFO ABSTRACT

Keywords: A single-degree-of-freedom random oscillator with a piecewise linear restoring force (experiencing softening
Linear and nonlinear oscillators after a certain point value of the response, called a “knuckle” point) is studied with the goal of understanding
White noise and correlated excitations the structure of the distribution tail of its response or (local) maximum. A theoretical analysis is carried out

Piecewise linear restoring force (stiffness)

e N by two approaches: first, by focusing on the maximum and response after crossing the “knuckle” point, where
Distribution tails

. explicit calculations can be performed assuming standard distributions for the derivative at the crossing, and
Fokker—Planck-Kolmogorov equation . . . e . .
Generalized Pareto distribution second, by considering the white noise random external excitation, where the stationary distribution of the
Ship roll motion response is readily available from the literature. Both approaches reveal the structure of the distribution tails
where a Gaussian core is followed by a heavier tail, possibly having a power-law form, which ultimately
turns into a tail having a finite upper bound (referred to as a light tail). The extent of the light tail region
is also investigated, and shown to be the result of the conditioning for the system not to reach the unstable
equilibrium. The study is motivated by applications to ship motions, where the considered random oscillator
serves as a prototypical model for ship roll motion in beam seas, and estimation of the probabilities of these
motions exceeding large critical angles is of interest. Standard statistical methodology for such estimation is
based on the peaks-over-threshold approach, for which several lessons are drawn from the analysis of the tail
structure of the considered random oscillator.

1. Introduction where w, is a natural frequency in the linear regime (-x,,,, x,,), —k]a)g <
0 is a negative slope in the nonlinear regime |x| > x,, and x,,, called the
Piecewise linear oscillators might seem to be exotic models for “knuckle” point, defines the threshold above which the system behaves

engineering applications as most of the real-world forces are smooth.
Nevertheless, they have proved useful on several occasions, e.g. as
in the classical problem of a dynamical system with dry friction [1].
Another application area concerning ship motions will be discussed in V(x)
more detail below. Thus, consider a single-degree-of-freedom random
oscillator given by

nonlinearly, i.e. the point above which the restoring force is decreasing.
The corresponding potential for this case is given by

1 1 .
—zklw(z)xz = (ky+1) coéxmx 3 (ky + l)a)(z)xrzn, if x < —x,,,

X+ 26x + r(x) = y(1), (1.1) 1
. : . . = —ngz, if —x, <x<x,,
where § > 0 is a damping parameter, r(x) = VV(x) is a nonlinear 2
rest(?ring force (stiffness) asso?iatfed with a potential funcFion 14 gnd 1 k, ngz + ( ki + 1) a%xm Y- 1 ( Ky + 1) ngi . ifx>x,,
¥(t) is an external random excitation (forcing). The potential function 2
is characterized by the existence of a stable center and two symmetric 1.3)
unstable saddle equilibrium points. The stiffness function associated
with such potential is assumed to have a piecewise linear form given by Fig. 1 provides the plots of a generic piecewise linear stiffness function

(1.2), the associated potential function (1.3) and the phase space (for

—klw(z) (x+x,) —@2x,, ifx<-x,,

0 the unforced, unperturbed system). The point x, > 0 such that r(x,) =0
rx) =3 olx if —x, <x<x 1.2) . de .
0™ m == m corresponding to the unstable equilibrium is referred to as the point of
_klw(z) (x=x,) + wéxm’ if x > x,,, vanishing stability, and will play an important role below.
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Fig. 1. Left: a piecewise linear stiffness function r(x) (dash-dotted curve) and its associated potential function V' (x) (solid curve). The potential function for the linear stiffness
function is also shown (dashed curve), as are —x,,, x,,, —x,, x, (dashed vertical lines). Right: A phase portrait of the system on the left.

The model (1.1)—(1.3) is an attractive tool for a qualitative consid-
eration of large roll motions of a ship in waves, including capsizing
(understanding the latter as a transition to motion near another stable
equilibrium). Indeed, the piecewise linear function (1.2) is a schematic
model of an actual ship roll stiffness resulting from hydrostatic and
hydrodynamic pressures over the submerged portion of the ship hull.
While this model can be seen as a very simplistic one, it retains most
known nonlinear properties of an oscillator with a similar smooth
stiffness, including loss of isochronism, fold and flip bifurcations, as
well as fractalization of the safe basin [2]. It also allows for a closed-
form solution to the probability of capsizing within a given time [3].
The model has seen some further development and applications, e.g.
by Paroka and Umeda [4]. Another important outcome of the study
of piecewise linear oscillators was the so-called “split-time” approach
to find the probability of capsizing by a novel numerical simulation
scheme; see [5] for a review. This reference also contains an updated
and rectified closed-form solution for capsizing with a piecewise linear
stiffness.

Ship stability accidents are not limited to capsizing. Encountering
large (extreme) roll angles can also have catastrophic impact, in terms
of both human, cargo or machinery loss. Indeed, probabilistic charac-
terization of extreme values of ship roll has attracted much attention in
Naval Architecture. A Weibull distribution is employed for wave loads,
e.g. for vertical bending moment [6]. Significant nonlinearity of roll
motion, however, prevents this conventional approach for probabilistic
characterization of dynamic stability. Some of the approaches, account-
ing for nonlinearity of roll motions, have been reviewed in [7]. Recent
works include further development of the critical wave group method
by Malara et al. [8], Anastopoulos et al. [9], and path integration
method by Kougioumtzoglou and Spanos [10], Chai et al. [11]. Modern
simulation tools for probabilistic characterization are reviewed in [12].
See also [13] who focus specifically on accreditation for regulatory
applications.

Another standard statistical approach to characterizing extremes is
the peaks-over-threshold (POT) method based on fitting a generalized
Pareto distribution (GPD) to data above a suitably chosen threshold
(e.g. [14-16]). The POT approach has been applied to ship motions
and loads data (e.g. [17-20]) and has generally been found to perform
well in characterizing extremes. The GPD density is expressed as

_ —1/6-1
l(1+M) , MU<X, if £>0,

o

Q

Suzo) = le_% u<x, ife=0, 1.4

>

(o2
1(1 L8 =w )-1/5—1

, u<x<u—-2%2, iféE<O,
c 3

Q

where ¢ is the shape parameter, o is the scale parameter and u is a
threshold. The GPD has an upper bound (—c/&) (above the threshold)
for a negative shape parameter £ < 0. This case shall be referred to
as that of a light tail. When ¢ = 0, the GPD is the usual exponential
distribution. When ¢ > 0, on the other hand, the GPD density has a
power-law tail behavior Cx~!/¢-! with constant C > 0 and exponent
—1/& — 1. In this case, the tail is heavy, especially compared to the
tail of a Gaussian distribution. Unless specified otherwise, a heavy tail
will refer to a distribution tail that is heavier than that of a normal
distribution, and the term “power-law tail” or “power-law heavy tail”
will refer to the tail behavior Cx~/¢=! with & > 0.

The GPD is an asymptotic distribution, while ship roll data arise as a
response of a strongly nonlinear dynamical system. The available data
does not necessarily provide sufficient information about the system,
and the approximation of the tail with GPD may not necessarily reflect
real limiting behavior of the nonlinear system. For example, if the
available data on the response of the system (1.1) does not include any
transitions to another stable equilibrium (capsizing), the POT method
will not be able to predict it, unless some additional information
is provided. Thus, the solution has to be sought in complementing
statistical analysis of the response with mathematical models reflecting
physics of particular nonlinear dynamical systems.

A practical step towards this objective is to try to relate a character
of nonlinearity and a type of statistical estimate of the response. Be-
lenky and Sevastianov [21] described an influence of the initial form
of the roll stiffness on the deviation of roll distribution from normal.
Mohamad and Sapsis [22] and Mohamad et al. [23] introduced a prob-
abilistic decomposition method to describe the influence of instabilities
on the heavy-tailed statistics of general dynamical systems. Consider-
ation of an intermittent resonance allows applying this approach to
parametric roll [24], where it successfully reproduces a shape of a dis-
tribution observed in high-fidelity numerical simulation [25]. Another
example is the introduction of a limiting upper bound to pitch motions
[20], reflecting the fact that a ship loses sensitivity to wave excitation
once pitch angle exceeds a certain value. The result is a dramatic
shrinkage of confidence intervals, i.e. the statistical uncertainty of an
extrapolated estimate is decreased by introducing additional physical
information.

The goals of this study are, in broad terms, to examine the properties
of the distribution and its tail of the response (and local maxima)
of the piecewise linear oscillator, to interpret them from a physical
standpoint whenever possible, and to understand their implications
for available extreme value techniques such as the POT approach.
A more concrete question of interest, for example, is why [18,19]
systematically observed positive shape parameters while fitting GPD to
the roll peak data. At first glance, a negative shape parameter and the
distribution having an upper bound might be expected: observing a roll
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Fig. 2. Left: The empirical pdfs of x(r) from 30,000 h at the upcrossing of x,, for all upcrossings (dashed curve) and the first upcrossings (solid curve) per 30-min record. Also,
the Rayleigh pdf with parameter o, = 0.13 rad/s (solid smooth curve) is plotted. Right: The same empirical pdfs of x(¢) calculated for a piecewise linear system with the same

Rayleigh distribution.

peak means a ship returning to its stable equilibrium, and a limit is
expected beyond which a ship would not return (i.e. she will capsize).

The goals above are achieved by deriving and interpreting the
distribution of the response (and local maxima) of the piecewise linear
oscillator in two complementary approaches: the first approach for
correlated excitation by taking advantage of the piecewise linear form
of the stiffness (see Section 2 below), and the second approach for white
noise excitation based on the Fokker-Planck-Kolmogorov equation
(see Section 3 below). Both approaches reveal the structure of the
distribution tails where a Gaussian core is followed by a heavier tail,
possibly power-law heavy, which ultimately turns into a light tail with a
finite upper bound. Some implications of the findings on extreme value
analysis using GPD are also discussed (Section 4 below). The study ends
with a summary and conclusions (Section 5 below), and an appendix is
included with details on the synthetic processes employed in this work.
The paper extends earlier study by the authors [26].

2. Probabilistic response for system with piecewise linear stiffness
and correlated Gaussian excitation

The focus here is on the distributions of the response of the oscillator
(1.1)-(1.2) and its largest values (local maxima). Excitation is assumed
to be a stationary ergodic correlated Gaussian process. The considera-
tion is limited to the values exceeding the “knuckle” point x > x,,. As
the slope of the piecewise linear stiffness is negative for x € [x,,, x, ], the
excitation may be “switched off” for x > x,,. This assumption is based
on the notion that lightly-damped dynamical systems receive most of
their energy for the excitation through the resonance, while the latter
is not possible when the slope of stiffness is negative [21].

2.1. Solution in the nonlinear regime and the case of absent excitation

When the excitation is switched off above the “knuckle” point, the
solution of (1.1) above the “knuckle” point x > x,, is given by

x(t) = At + Be?' + x,, 2.1

where

A==+ [kl +62>0, Jh=-5-/kuwl+52<0 (2.2

are the two eigenvalues associated with the linear oscillator (1.1) in
the regime x > x,,, and A, B are constants determined by the initial
conditions x,,, x; of x,x at the upcrossing of x,, by x, through
X +AZ(xu_xm) _A](xu_xm)-"xl

A=A A=y
The absence of capsizing now corresponds to the case A < 0 (see

also [3]), and hence x; < X, with the critical value of the derivative
at the upcrossing given by

A= , B= (2.3)

Xer = —Ap(x, — X,)- 2.4)

The constant B is always negative.

If no capsizing occurs, the solution (2.1) can also be expressed
through the hyperbolic cosine as

x(f) = He ™ cosh (w1 + €) + x,,, (2.5)

where w; = 4/k; w(z) + 62, and the “magnitude” H and the “phase” e are

constants defined as

1 )
H = _Cl)_l\/w?(xm - xv)z - (xl + 5(xm - xU))z’ (26)
L+ o(x, — x,
€ = tanh™! <—x1 X = X, ) 2.7)
w(x,, —x,

For stationary Gaussian excitations, the probability density func-
tion (pdf) of the derivative %, at the upcrossing is expected to be
approximated by a Rayleigh distribution with density

2 2
ie—z /203, ,

o2
X

z>0, (2.8)

where 0'?( = Ex,(0)> and x,(r) is the solution of (1.1) supposing the
stiffness function of the linear regime throughout the whole domain.
Indeed, recall that Eq. (2.8) describes the pdf of a value of the first
derivative of a stationary Gaussian process taken at the instant of
upcrossing of a given level (for example, [27], p. 201; [28], Section
8.4; [29], pp. 161-162; [5], Section 2.4). Supposing A < 0, the density
of %, can then be thought of as

22
ze~? /203

i, () = . 0<z< % (2.9)

6?((1 - e_’kgr/z"%)

In fact, some caution needs to be exercised in using (2.8) for the
purposes here. The pdf (2.8) is that of the derivative x; at an upcrossing
of a linear system, but this includes all upcrossings. A response of the
dynamical system is correlated, and one upcrossing is often followed by
another upcrossing, so that they appear in clusters. Consider the first
upcrossing in each cluster as a way to sample independent upcrossings.
Then, the pdf of these independent upcrossings might, in fact, be
different from that in (2.8) for all upcrossings. Comparison between
an empirical pdf of the first upcrossings and the pdf of all upcrossings
is shown in the left plot of Fig. 2. (The system parameters are given at
the end of this section.) A good agreement is obtained with (2.8) in the
case of all upcrossings but not in the case of first upcrossings. The value
of the derivative at an upcrossing is related to the value of the peak to
follow this upcrossing. The higher peak comes with a larger derivative
at the preceding upcrossing. The first peak (the derivative at the first
upcrossing, respectively) is not usually the largest in a cluster, and
the average first peak (the average derivative at the first upcrossing,
respectively) in a cluster will not necessarily be equal to the average of
all peaks (derivatives, respectively) above the upcrossing threshold. In
fact, Fig. 2, left plot, suggests that the derivatives at the first upcrossings
are smaller on average than the derivatives at all upcrossings.
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Fig. 3. Left: The empirical pdfs of x(r) and their fitted Rayleigh pdfs. For all upcrossings (solid curves), the fitted Rayleigh parameter is 5, = 0.089 rad/s; for the first upcrossings,

it is 0.084 rad/s. Right: The same plot on a vertical log scale.

The right plot of Fig. 2 shows similar quantities for the piecewise
linear system. The empirical pdf of the derivatives at all upcrossings is
no longer in agreement with the theoretical pdf in (2.8). Each time the
“knuckle” point is crossed, the oscillations (2.1) with natural frequency
are generated. If the piecewise linear system is lightly damped for x €
[—x,,, X,,), the oscillations do not die out until the next crossing. As a
result, the value of the derivative at the upcrossing is altered compared
to the linear system (where the oscillations with natural frequency are
present only at the initial transition).

Though no agreement is observed with (2.8) in the right plot of
Fig. 2, the Rayleigh distribution still provides a good fit to the two
empirical distributions of that figure. This is illustrated in Fig. 3. Its
left plot shows the two Rayleigh fits (for the Rayleigh parameters o2 in
(2.8) chosen through maximum likelihood). The right plot shows the
same plot but on the vertical log scale, where a slight disagreement
can be seen in the tails of the empirical and fitted distributions for
first upcrossings — the empirical pdf seems slightly lighter in the tail
than the Rayleigh distribution. Since the Rayleigh fits are generally
satisfactory in Fig. 3, the pdf of the derivative at the upcrossing in the
case of the piecewise linear system will still be assumed as (2.8), with
the understanding that its parameter aﬁ may need to be adjusted.

The excitation process y(¢) and other parameters used in simulations
throughout the paper are defined as follows. The process y(¢) is assumed
to be a zero mean Gaussian process with the spectral density given and
discussed in Appendix. The plots in Figs. 2 and 3 correspond to the
significant wave height H, = 9 m and the mean period 7; = 11.595 s.
The other parameter values in the system (1.1)-(1.2) are the damping
parameter §, the natural frequency w,, the “knuckle” point x,,, and
the slope parameter k,. For Figs. 2 and 3, these are w, = 0.6 rad/s,
6 =0.15wy, x,, = #/6 = 0.5236 rad and k; = 1 but may change in other
simulations below.

2.2. The distribution of the maximum value

The solution (2.1) depends on only one random variable: the deriva-
tive value at upcrossing x; with its distribution described by (2.8).
Thus, the expression (2.1) can be seen as a deterministic function of
a random variable. Consider the distribution of the maximum value
of (2.1) first, as its derivation is easier than the distribution of all the
points in the solution (2.1). In the absence of capsizing (A < 0), the
time of maximum of (2.1) can be found by setting the derivative of
(2.1) to zero, which results in:

1 A B
Imax = =7, 10g(‘m)~

A zero value of the derivative of (2.1) at 7, allows expressing
the constant B as B = —(4,/4,)Ael%1~%)'max | which leads the following
formula for the maximum value:

(2.10)

MY (A2 NI o | -2
xmax=x(’max)=xu_(1—/1_2)<—/1_l) TRBI AT Al AR = G()),

(2.11)

where x,, < G(x;) < x, for 0 < x| < %¢;. The density of the maximum
value (2.11) is then given by

e () = £, (G ()) ‘%G’l(x)), Xy < X < X,. (2.12)

The function G in (2.11) does not have an inverse expressible in
closed form so that the density (2.12) cannot be written in closed form
either. The structure of the density can nevertheless be explored in at
least two ways: its tail around the unstable equilibrium/endpoint x,,
and its form in the special case of no damping when § = 0 (above x,,).

2.2.1. Behavior of the density around unstable equilibrium

Consider the situation just short of capsizing, i.e. the solution (2.1)
when the value of the derivative at the upcrossing is just slightly below
the critical value (2.4):

X| = Xep — AX, (2.13)

where Ax is small. The constants A and B can be expressed in terms of

Ax as

A= Ax . B= Ax
A= A=

Substitution of (2.13) and (2.14) into (2.11) yields the approximation

of the distribution of the maximum near capsizing, i.e. at the tail: as

x| 1 X¢r (or 4x | 0),

(2.14)

—(x, = x,) & =(x, = xp,).

o)

G(x)) & x, — Co(Xer — X;) 11742, (2.15)
where
CO=(1—72)(71(xm—xv)) (A = A) T % (2.16)
The function (2.15) can be inverted in closed form: as x 1 x,,
x, —x\-

(%) % Ko — ( UCo ) % (2.17)
and hence

(A4 = A2 [y, (Xer) _hth _hth
fap ¥ ——— (=) 2 =Ci(x,mx) 2. (218)

= —Gi=i)/h
(_AZ)C() 1=42)/ 42

Analysis of the tail structure based on the formula (2.18) is further
discussed below.

2.2.2. Special case of no damping

The oscillator (1.1)—(1.2) is only an approximate qualitative model
of large ship rolling. While the roll damping actually increases at large
roll angles because sharp edges of deck structures enter water, for the
purposes of the present analysis, this can be neglected. The topology
of the phase plane is defined by the shape of stiffness. Also, the shape
of the distribution near the mean value is mostly defined by the initial
shape of stiffness [21], so that the shape of the tail is also influenced
by the stiffness more than by the damping.
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Fig. 4. Left: The density f(xmax) of the maximum value on the log vertical scale. Right: The density f(xmax) around the endpoint x, on the log-log scale.

In the case of no damping § = 0, the functions G, G~ and the
density f,  can be expressed in closed form. Use of the hyperbolic
form of the solution (2.5) is more convenient here. When § = 0,
@, = \/kyw, and hence

x(t) = H cosh(wt + €) + x,, (2.19)
where the magnitude and the phase shift are

H= —%\/mf(xm —x,)? - %2, e=tanh"! (ﬁ) (2.20)
The maximum value is then

Xmax = X, + H = G(xy) (2.21)
and hence

Gl =w \/(xu = Xp)? = (X, = X)%, X, <X <X, (2.22)

Substituting (2.22) into (2.12) and using (2.9) leads to the density of
the maximum value (2.21) given by

2
S Geu=x)?

S () = Cx, = X)e % s Xy <X <Xy, (2.23)
where

2 2

C r (X))

7 Ko™ Xm
Ccl= (™ -1
®

1

is a normalizing constant. Since (4; — 4,)/4, = -2 in the case of no

damping, the form (2.23) is consistent with (2.18) as x 1 x,,.

2.2.3. Tail without damping

The left plot, solid line, of Fig. 4 depicts the density (2.23) on the
log vertical scale, for the parameter values § = 0, of( = 0.0066, x,, = 7/6,
x, = n/3, wy = 0.6 and k; = 1, which are typical values for ship
dynamics. For comparison, the density (in dashed line) of the maximum
value for the corresponding linear system is also included, supposing
that the derivative at the upcrossing is smaller than ., in (2.4). (The
calculation of the distribution in this case is similar to that above and
is omitted.) The density (2.23) has a heavier tail than that of the linear
system before collapsing at the endpoint x,,. At the same time, the right
upper bound of the distribution is evident around x, = z/3.

The right plot of Fig. 4 depicts the same density (2.23) on the log—
log scale around the unstable equilibrium/endpoint x,,. For reference, a
straight line is plotted whose slope is 1 as predicted by (2.18). The first
vertical line at x, — xmay = 5% 1072 is approximately where the density
is no longer linear in the log-log plot. The percentile corresponding to
the value xpax = x, — 5 x 1072 is as high as 99.996. For example, the
second vertical line corresponds to the 99.9th percentile. These lines
are meant to indicate that the power-law behavior around the endpoint
can begin very far into the tail of the density.

Fig. 4 demonstrates the effects that motivated this study: obser-
vation of a heavier tail of the peaks distribution of a response of a

nonlinear dynamical system, while the presence of an unstable equilib-
rium (and possibility of capsizing) indicates a right finite upper bound
and light tail. Analysis of peaks of the piecewise linear system with
similar phase plane topology reproduces this effect. The tail actually
has both properties — it is heavy for most of the distance to the
unstable equilibrium, but it becomes light in the immediate vicinity
of the end point. The reasons why this is occurring and how topology
of the phase plane defines the tail structure is addressed in Section 3.

2.2.4. Transition to flat stiffness

Some aspects of dynamics of piecewise linear system with a flat
portion of stiffness (i.e. trapezoid) was examined by Belenky et al. [30]
following the discussion by Reed [31].

Consider the influence of a flat portion of the stiffness on the
tail structure (the flat portion of stiffness is extended to infinity after
the “knuckle” point). Assume no damping and excitation after the
“knuckle” point. Take the density (2.23) and let k, approach 0, while
keeping x,, fixed.

Note first that

1+k X
— ' and x,- i

= 2.24
X X 3 (2.24)

Xy = Xy

Moreover, A2 = w(z)kl. Then, the density (2.23) becomes

2

2
(xp=x)"

P 2 2 2
p—e [Gepy=x)"=(xp=x,,)"]
2 2 v v *m
lz(xu — X)e % 2%

_ Az(xv — x)e %

2 2
5 (xp=xXp)
o*
X

2 5
== (xp=Xp,)
2 202
ai(e 7%

-1 o(l-e

2
s 25 (== =ty =2
A*(x, — x)e %

a2

(xXp=Xp)
> 352 T m
G.(l—e x

2 2
5 2—2[2(x,,—xm)(xm—x)+(xm—x) 1
A (x, — x)e %

12
2 —ﬁ(xvfxm)z
oci(l—e x
X
Wl wlky
—— (xp—x)

(xp=x)?
~ wg(xm(l +ky) — xk))e % e %

2,

%2
G?((l —e )

Wl
Wix,, -5 (x=x,)
o

e % ,

X>x,, ask |0, (2.25)

that is, the density converges to the exponential pdf with parameter
I,UZX
oXm

>—. This is illustrated in Fig. 5. The slope —k; of the decreasing part

o
of ‘the stiffness function is changed systematically from —1 to 0, as
shown in the left plot of the figure. The right plot of the figure shows
the corresponding changes in the distribution of the maximum. The
heavy part of the tail becomes lighter, until it reaches the exponential
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Fig. 5. Left: The stiffness function for varying choices of k,. Right: The density f(xmax) of the maximum value on the log vertical scale for varying choices of k;.

distribution (2.25) for k; = 0. The “inflection point” moves to the
right, until it eventually disappears when the position x, of the unstable
equilibrium goes to infinity.

The changes in the slope coefficient k; translate into the changes in
the shape of stiffness. Thus, the shape of the stiffness function defines
the shape of the tail after the “knuckle” point, while the position x, of
the unstable equilibrium defines the position of the “inflection point”.
The softening nonlinearity (k; > 0) thus seems to be responsible for the
“two-tails” (heavy and light) structure of the tail. It disappears when
k, becomes zero.

2.3. The distribution of the response

Section 2.2 concerned the distribution of the maximum value of the
solution (2.1). Here, the focus is on the density of the response (2.1)
itself, that is, the distribution of the excursion values of x(r) above x,,
over time ¢, <t < t,, where x(t;) = x,,. This density can be expressed as

Xer
Sfry() =C, / ] g%, X)) fy, Gy, X, <X <X, (2.26)
G l(x)
where %, is given by (2.4), f%,(x,) appears in (2.9), G™! is the inverse
of the function G in (2.11) and

sCrs) ™ = X0l 2.27)

tix(t)=x"
emphasizing the dependence on %, in the notation g(x, x,). The role of
g(x,x)) is illustrated in Fig. 6, left plot. The normalizing constant can

be expressed as
1 1 XC[’
' = 5/0 to(i)) e, ()

where 1, =

(2.28)
to(x;) > O satisfies x(z,) = x,, as above.

2.3.1. Special case of no damping

The density (2.26) can be evaluated more explicitly in the case of
no damping. In this case, the function G~!(x) is given by (2.22). The
function g(x, x;)~! can be expressed as

N . _ . -1 xv_x)>
g(x,%;)”" = H sinh(At + €) | :l( sl (22 = Hsmh(cosh (_—H

X~ — — 2 — 2 _ — )2
\/ " 1= \/x A2 ((x, = x,,) (x, —x)?)
A% % 1(x)2
since —H = 2(AB)'/? = y/(x, — x,,)% — x2/42. Then, letting G~!(x) = g,

the density (2.26) becomes, after a series of changes of variables,
72

u:

Xer 72
!
fx(,)(x) =C ———dz=C
V22 _az pel ./ _az
2 22 A/ 2
’ _2‘;72 TaTh 26 " 21 xcr_uz _2IT
=C'e du=C"¢ % e “xdv.
0 u 0

By recalling that a®> = G~!(x)? = A*((x,, — x,,)*> — (x, — x)?) and using the
fact that %2 — a* = /lz(xv — x)?, the density can be expressed as

2 2
Ax, —x)\ 5,2 XX
Tt = Coerf< IT )ez %

Oy

. X, <X <X, (2.29)

where erf(u) = \/i; /0" e~ dz is the error function and C, is a normaliz-
ing constant.

The difference between the densities of the response and the maxi-
mum in (2.29) and (2.23), respectively, is only in the terms erf(A(x, —
x)/\/iax.) in (2.29) and x, — x in (2.23). Note, in particular, that these
two terms have the same asymptotic behavior up to a constant as x 1 x,,
or x,—x | 0, since erf(u) behaves as 2u/ \/; for small u. The two densities
are depicted in Fig. 6, right plot, for the same parameter values as in
Fig. 4.

2.4. Power-law tail

Further insight can be gained from Fig. 7 where the densities of the
response and the maximum are depicted in the log-log plot. The densi-
ties now appear almost linear, especially that of the maximum density,
over a wide range of values. This suggests a power-law behavior of the
densities, that is, the behavior f(x) ¥ Cx~*"! over a range of values x,
with a > 0.

On the other hand, the power-law behavior is not apparent from the
analytic expressions of the densities of the response and the maximum
in (2.23) and (2.29). This can nevertheless be explained through the
following argument. Consider the case of the density of the maximum
in (2.23). This density should appear linear at least around the value
x = x,, in the log-log plot (which it does according to Fig. 7), supposing
that a certain condition holds.

Indeed, by considering the log of the density (2.23) around x = x,,
and keeping track of the first and second order terms only in the
approximations below, observe that

}12
108 g () = €1 +l0g(x, =) 4+ 25 (x, = x)*
X

] >+ Zi —(x, — x )2<1— i )2

—Xm 22 Xy = Xp

X
=c +10g(1 -

Xy

Q

o X = Xy _l()c—xm >2—£(x VRV
2 x,-x, 2\x,-x, s2 V" "

12
+2 (- x,)

x

1 A2 ) ( x
=c- + 5 (x, - X 1)
“ (xv ~Xm 0'% (XU XM) m Xm

2 2
()R
267 2x,—xp) X

~ c3—(a+1)log xi’

m

(2.30)
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Fig. 6. Left: Illustration of the role of g(x,x,). Right: The densities f,, and f, of the response and the maximum value on the log vertical scale.
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provided for the last approximation that
1

a+1z<—
X, = X,

A2 A2 1 2
+ g(xu - xm))xm & 2(27_% - —Z(XU - )xm. (2.31)
The exponent a + 1 then defines the slope of the line in the log-log
plot of the density around x = x,,. The power-law behavior is analyzed
further in Section 4.2.

3. White noise excitation and interpretation of the tail structure

In this section, the system (1.1) is considered again but now sub-
jected to white noise excitation, y(t) = sW (1), where W is a standard
Brownian motion and s is the intensity of the white noise excitation.
Despite the broadband character of the stochastic forcing, which is
not realistic for the description of wave excitation, its mathematical
structure allows for the derivation of closed-form expressions for the
non-Gaussian pdf of the response. One of the objectives of this work
is to understand whether the derived results, based on white noise
excitation, can be related to the corresponding results when the ex-
citation is correlated. Such a conjecture follows from the observation
that in ship motion, inertia plays a dominant role, and therefore high
frequency content in the excitation is “filtered out” naturally by the
system. That would immediately imply that the primary factor defining
the properties of the pdf tail is not the correlation structure of the
excitation, but rather the intrinsic dynamics of the system (in this case
the restoring force). Such a conclusion will help interpreting the non-
Gaussian properties of the tail (for both white and colored noises) and
directly relating its form with the phase portrait of the unforced and
undamped dynamical system.

For single-degree-of-freedom systems like (1.1), the full (uncon-
ditional) pdf can be found for the statistical steady state by direct
solution of the associated Fokker-Planck-Kolmogorov (FPK) equation.
More specifically, the pdf in the statistical steady state is given by

%H(x,ic)’

foolx,%)=Ce (3.1)

, Log density of maximum and fitted straight line
102

f(x)

0.55 06 065 07 075 08 085 09 095 1
v

of the response and the maximum value in the log-log plot.

where
H(x, x) = %xZ +V(x)

is the Hamiltonian of the system, and C is a normalizing constant (e.g.
[32], Theorem 1.6, p. 34 or p. 334). Based on the unconditional pdf
(3.1), the constrained pdf for the response x can now be expressed
inside the separatrix, that is, within the two heteroclinical orbits that
enclose the stable center and connect the two unstable equilibria in the
phase space as in Fig. 1. Denote the locus of the separatrix points by
(x4, X,). This separatrix is defined implicitly through the Hamiltonian
function if the unstable equilibria +x,, is known:

H(x,, %,) = H(zx,,0) = H*. 3.2

TXps

The last equation can be solved explicitly for x,:

X5(x) = V2 ([H* - V(x). (3.3)

In this way, the conditional pdf within the separatrix is obtained as

+5,(%)

[ (x) = C/ foo (X, X)dx, —x,<x <X, (3.4)
—X;(x)

where C is another normalizing constant. Although the analysis is valid

for a general potential function V (x), for the sake of presentation, the

focus is on the special case of the piecewise linear system considered

in Section 2.

In Fig. 8 (upper left plot), the potential of the system is presented
and compared to the corresponding linear system (i.e. the one char-
acterized by a linear restoring function r(x) = w(z)x). In the same
figure, the pdf of the response (under the condition of non-capsizing,
i.e. non-crossing of the separatrix) is also presented and compared to
the Gaussian pdf that corresponds to the same system but with linear
restoring function. As can be observed, the tail of the constrained
nonlinear oscillator consists of three different regimes:

(i) a Gaussian core,
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System potential V' (z) pdf for the position or rate of z-upcrossing

Fig. 8. Upper left: Potential function for the piecewise linear system (solid curve)
and the corresponding linear system (dashed curve); Lower left: Phase portrait for the
piecewise linear system and the linear system; Right: Probability density function f,(x)
for both systems considered with the three regions (i), (i) and (iii). Dotted lines indicate
+x,, throughout.

(ii) a heavy-tail region, and
(iii) a light-tail region.

A detailed interpretation of this pdf form in connection with the
dynamical properties of the system is provided below.

3.1. Gaussian core and heavy-tail regime

The phase portraits for the two systems are shown in the lower left
plot of Fig. 8. For |x| < x, the two systems are identical resulting
in (at the statistical level) the presence of a Gaussian “core” for the
nonlinear system, which dominates the response statistics close to the
stable equilibrium.

When moving to higher energies, trajectories begin to depart from
the linear regime and enter the nonlinear regime, with a deformation of
the linear-system phase portrait due to the presence of softening nonlin-
earity. The softening nonlinearity results in stretching of the trajectories
to higher values of x compared with the trajectories of the linear system
with equal energy. At the same time, the probability of occurrence
of each of those nonlinear trajectories is governed by the Gaussian
“core”, which is fairly identical for the two systems, i.e. trajectories
having the same energy have equal probability of occurrence in the
two systems. From these two observations, the phase space stretching
of the nonlinear system will be reflected in the response pdf through
increase of the probability for higher values of x.

Indeed, as observed in the right plot of Fig. 8 where the pdfs of the
two systems are shown, when moving away from the Gaussian “core”,
i.e. for values |x| > x,, the pdf exhibits a heavy tail structure. This heavy
tail is a direct manifestation of the deformation (stretching) of the phase
space (due to the presence of nonlinearity) which has the following
characteristics: it is zero or negligible for small values of |x| so that
the Gaussian core of the statistics is not influenced, and it is more
pronounced for larger values of |x| leading to larger responses of high
energy trajectories compared to the linear system. In this sense, the
nonlinearity of the system acts so that it does not change the probability
of occurrence of each trajectory (or of each energy level) but only their
shape, giving higher probability to larger responses.
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3.2. Light-tail regime

As discussed in Section 3.1, suitable nonlinearity can lead to the
formation of heavy tails. However, the heavy tail must turn light at a
certain point as more and more trajectories lead to the second stable
equilibrium. Thus, for the conditional response pdf, a saturation point
exists where the heavy-tail behavior ceases to exist and light tails
emerge eventually. This is the transition from the region (ii) to (iii)
in the right plot of Fig. 8. To understand this transition better, the
conditional pdf is expressed in terms of the system characteristics. By
the relations (3.1) and (3.4),

2
45 +X5(x) .
fi)=Ce 2 / Cie i dx, (3.5)
—5,(0)
where
2
2 _ 57
o, = Y (3.6)

and C,,C; are the normalizing constants for the two corresponding
marginals.

The first term in the above product expresses the contribution
of the nonlinear restoring force and contains information about the
deformation of the phase space. It is the term that results in the heavy
tail character of the distribution away from the Gaussian “core”. The
second term is related exclusively to the conditioning that is imposed
so that the system response does not cross the separatrix. For system
energy where o is small, compared with the vertical separatrix radius,
the integral term is approximately equal to 1. This is because the inte-
gral extends over the full effective support of the Gaussian distribution
for the velocity.

However, when moving closer to the unstable equilibria +x,, i.e. the
value of x becomes large, the integral term deviates from 1 since the
local width of the separatrix becomes comparable with or even smaller
than the effective support of the velocity marginal. The integral term
becomes much smaller, thereby reducing significantly the pdf value.
This is the underlying reason for the eventual formation of light tails
when approaching the unstable equilibria.

3.2.1. Estimation of the light-tail domain

To quantify a distance from x, where the influence of the second
term in (3.5) becomes important, the local width of the separatrix
%(x) around x,, is compared to the effective support of the x marginal,
measured through the standard deviation o,. First, approximate x(x)
around x, by a Taylor expansion:
0%,
ox
Clearly, x,(x,) = 0 and now the slope of the separatrix close to the
unstable equilibrium has to be estimated. From the relation (3.2) that
defines the separatrix,

(%) = X, () + == (x,)(x = x,) + O ((x — x,)?) . 3.7

oH oH

—d —dx =0,

ax T o ¥

which implies that
oH

By o

ox xtx, OH '
ox

Substitution of the Hamiltonian and application of L’Hospital’s rule
yield

. v v
axs li 0x 2x
— =—-—lm — = ——.
ox xtx, X 0%y

ox
Therefore,

(3.8)

<0xs(xv) )2 _ V()

ox 02x
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By the expression (3.8), the separatrix in the vicinity of the unstable
equilibrium can be approximated as follows. The integral term in the
conditional pdf becomes important when the width of the separatrix is
comparable (i.e. sufficiently small) with the standard deviation for the
velocity o,. In particular,

X,(x) ~ oy (3.9)

By the Taylor expansion (3.7) for the separatrix and the relation (3.8),
the condition (3.9) takes the form

0%V (x,)
i Ax ~ oy,

where Ax = x — x* is the size of the layer over which the light tail is
formed. This yields

(3.10)

0.
Ax v — %
V()

92x

(3.11)

The derivation of (3.11) relies on the smoothness of the separatrix
as well as the Gaussian distribution of the velocity marginal. To this
end, the analysis is valid also for systems of the same form where the
excitation is a correlated stochastic process (see Section 3.2.2 below).
For the special case of white noise considered here, ¢ is given by (3.6)
and hence (3.11) becomes

Axm —— 5 (3.12)

[y
—45 =0

3.2.2. Connection to piecewise linear system with correlated excitation

As indicated above, the derivation leading to (3.11) is expected to
work for nonlinear systems driven by correlated excitations. Indeed,
this is illustrated here on the piecewise linear system (1.1)-(1.3) con-
sidered in Section 2. For the potential function V' (x) of the piecewise
linear system given in (1.3), the width of the light-tail regime (3.11) is
given by

(3.13)

For the case of no damping and no excitation above the ‘“knuckle”
point, this can be expressed as
o,

Ax ~ = 3.14
X~ — (3.14)

On the other hand, consider the pdf of the maximum value given
by (2.23). The logarithm of the pdf (2.23) has an inflection point given
by

o,

Xinfl = X, — 7x (3.15)

Thus, even from the perspective of (2.23) and the location of the
inflection point, the light tail width can be thought as ‘77*, which is
exactly the same as the right-hand side of (3.14). In the next section,
the role of the light-tail region on the POT approach in extreme value
analysis is examined.

4. Extreme value analysis using generalized Pareto distribution

As the distributions of response and maxima of the piecewise linear
oscillator (1.1)-(1.3) are known, a question of interest here is how
standard extreme value analysis based on the POT and the GPD (1.4)
performs on the data generated by (1.1)-(1.3). Comparing features of
the known distribution tail to the results of the POT analysis [19,20]
should lead to a better understanding about the performance of the
approach applied to ship motions, as well as to other oscillator-like
systems.

The POT approach and the GPD fits are studied below for the
random oscillator (1.1)-(1.3) from several angles. In Section 4.1, the
behavior of the estimates of the shape parameter as a function of
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threshold for a range of values of the oscillator model is examined.
In Section 4.2, the power-law behavior of the distribution tail of the
oscillator noted in Section 2.4 is revisited. In Section 4.3, the question
is when the point of vanishing stability x, can be estimated through
the POT approach, which relates the findings to the light-tail region of
the oscillator discussed in Sections 2 and 3.

4.1. Shape parameter estimates

The definition (1.4) of the GPD and the discussion following it point
to the special role played by the shape parameter ¢. In particular, the
cases of positive and negative shape parameters are quite different.
A negative shape parameter £ < 0 corresponds to the GPD having a
finite endpoint at x = u + o/(=¢). The distribution of the maximum or
the response of the oscillator (1.1)—(1.3) derived in Section 2 naturally
has such an endpoint at the point of vanishing stability x,. Moreover,
& > 0 is associated with the power-law behavior of the GPD pdf with
the exponent —1/¢& — 1 around the endpoint. In view of (2.18), for the
oscillator (1.1)-(1.3),

1 _ Mk
por=t R,
that is,
E= i . (-1,0). 4.1
Al =4y

In the case of no damping above the “knuckle” point,

1
&= ~5- (4.2)

Despite the distribution of the maximum or the response of the
oscillator (1.1)-(1.3) always having an endpoint at x,, a negative shape
parameter ¢ < 0 will not necessarily be estimated from data. As already
observed in Section 2.4, a power-law tail is expected in some cases.
The power-law tail with the exponent a as in Section 2.4 is associated
with the positive shape parameter value & = 1/a > 0 of the GPD. From
another perspective, as discussed in Section 2.2.2, the region of the
power-law behavior around the endpoint can occur too far into the tail
from a practical standpoint.

For simplicity, focusing on the pdf (2.23) of the oscillator maximum
response in the case of no damping above the “knuckle” point, charac-
terized by the shape parameter ¢ in (4.2), the pdf can be examined
through the lens of the GPD as follows. In Fig. 9, the plots of the
average estimated shape parameter values are presented as functions
of threshold, as explained in greater detail below. (The estimates are
obtained through the maximum likelihood estimation as in [5,20].) A
varying threshold is considered since in practice it is selected through
a data driven method.

The underlying oscillator parameters are the same as those used at
the end of Section 2.1 except that a range of the parameters o, and k,
is considered: the first plot of Fig. 9 corresponds to o; = 0.03 rad/s,
the second plot to o; = 0.08 rad/s, and the third plot to o, = 0.13
rad/s. In each of these plots, three different values of k; are considered:
ky = 0.5, 1 and 2. Thresholds u are taken above the “knuckle” point
x,, = x/6 = 0.5236 rad but below 0.95x,, where x, = x,,(1 + k;)/k;
is the point of vanishing stability in (2.24). For each set of the fixed
parameters of the oscillator model and a threshold, 100 datasets of
length 400 are generated above the threshold according to the pdf
(2.23) and the average value of the shape parameter estimates over
these 100 datasets are plotted. The vertical lines in the plots correspond
to the points of vanishing stability x, (dashed lines) and the inflection
points x;,q (dotted lines) calculated according to (3.15).

The average value of the shape parameter estimates grows and then
falls sharply with the increase of the threshold for ¢, = 0.03 rad/s; this
tendency is observed for all three values of the slope k; when ¢, = 0.03
rad/s. The effect of the stretching phase plane in Fig. 8 is stronger
with larger amplitude of the response. Increasing the threshold excludes
small peaks and leaves large ones. Thus, the increased influence of
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Fig. 9. Average shape parameter estimates as functions of threshold, for ¢, = 0.03 rad/s, 0.08 rad/s, 0.13 rad/s and k; =0.5, 1, 2.

the effect of phase plane stretching leads to an increase in the shape
parameter estimate until the population of larger peaks starts to drop
because of a transition to another stable equilibrium (“capsizing”).

Continuing consideration of the case with o, = 0.03 rad/s, the
decrease of the slope coefficient k; does not change the shape of the
curve, but stretches and shifts it to the right. This is expected as the
position of the unstable equilibrium x, moves to the right with the
decrease of the slope coefficient k,; see Fig. 5. In the limit of k; = 0,
the distribution of peaks becomes exponential (see (2.25)), from which
zero values of the shape parameter estimates are expected for all the
thresholds. On the other hand, Fig. 5 shows a heavier tail when k;
increases; this makes the shape parameter estimates grow faster for
smaller thresholds, which is also seen in the left plot of Fig. 9.

Consider now the effect of increasing o, from 0.03 to 0.08 rad/s
on the curve corresponding to k; = 0.5, shown in the first two plots of
Fig. 9. Increase of the standard deviation of the velocities corresponds
to the increase of the excitation, and hence to larger velocities at the
crossing of the “knuckle” point. Naturally, this leads to the growth of
the population of larger peaks and is reflected in the faster increase
of the shape parameter estimates. Indeed, with the increase of excita-
tion, capsizing is more probable, so its influence is “felt” for smaller
thresholds. Regarding the effect of increasing k,, similarly to above,
the curve is shrunk and shifted to the left; however, shrinkage seems
to be prevalent. Finally, the case o, = 0.13 rad/s (the last plot in
Fig. 9) can be seen as a part of this tendency, only the increase has
been “shadowed” by the “knuckle” point. The behavior of the curves
corresponding to k; = 1 and k; = 2 does not contradict this description.

The inflection point (represented by dotted lines for the various
cases) seems to be overestimated by (3.15), as negative parameters
are estimated for lower thresholds. This means that the “capsizing”
influence starts to affect the distribution before the vertical distance
to the separatrix decreases to o, (see Section 3.2.1). The inflection
point was searched from the condition of comparability, i.e. with the
accuracy of up to a constant. The numerical relationship of the position
of the inflection point and o still needs to be studied. For a threshold in
the light-tail region of the distribution (that is, larger than the inflection
point), the shape parameter estimates are quite close to the value —0.5,
which is expected according to (4.2) as discussed above.

In general, the plots of Fig. 9 illustrate the fact that depending on
the underlying oscillator parameters and the likelihood of the transition
to another stable equilibrium, the structure of the pdf (2.23) is quite
different.

4.2. Power-law tail behavior revisited

Recall from Section 2.4 that the distribution of the maximum or
the response of the oscillator (1.1)-(1.3) can appear to have a power-
law tail. In the POT framework, a power-law tail corresponds to the
GPD with a positive shape parameter ¢ > 0, with a larger & > 0
corresponding to a heavier power-law tail. In particular, Fig. 9 in

10

estimated shape parameters

0.2

Fig. 10. Estimated shape parameters from samples of 400 data points from the GPD
fitted to Srmax M (2:23), for o, = 0.03 rad/s, 0.08 rad/s and 0.13 rad/s. Circles
correspond to the values of k, satisfying the equality of the right two expressions
in (2.31).

Section 4.1 shows that depending on the choice of a threshold and
the underlying oscillator parameters, a positive shape parameter can
be estimated. Several basic questions related to the power-law tail
behavior are of interest here. How large & > 0 can be observed with
the oscillator (1.1)—(1.3)? What system parameter values are associated
with the largest & > 0?

To answer these questions, random samples are generated from the
pdf (2.23) of the maximum value of the oscillator in the case of no
damping above the “knuckle” point over a range of parameter values
o; = 0.03 rad/s, 0.08 rad/s and 0.13 rad/s, and 0 < k; < 10 with step-
size 0.005. (The rest of the oscillator parameters are the same as at the
end of Section 2.1.)

Both positive and negative shape parameters can be estimated for
many different values of o, and k, in Fig. 10. The largest values of & in
the figure are around 0.1. From the GPD perspective, a distribution tail
with £ = 0.1 is not very “heavy”: such distribution has all its moments
finite up to order 10.

Examination of the figure in view of the discussion in Section 2.4
is also interesting. The equality of the right two expressions of (2.31)
yields a relationship between k, and o, with the corresponding value
of @ in (2.31) and hence 1/a = £. For the three choices of ¢, in Fig. 10,
the corresponding values of k; (making the right two expressions
of (2.31) equal) are depicted by circles in the figure. Note that the
estimated values of & at the circles are not necessarily positive (nor
necessarily the largest values of £ observed for a fixed value of o,). That
is, the analysis carried out in Section 2.4 is not sufficient to observe a
power-law behavior (estimate a positive shape parameter). As argued
in the next section, observing a power-law behavior also depends on the
scope of the light-tail region. Finally, Fig. 10 is consistent with Fig. 9.
For example, for k; = 2, the estimate of ¢ in Fig. 9 with the “knuckle”
point as the threshold is negative for o; = 0.13 rad/s.
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Fig. 11. Proportion of negatively estimated shape parameters in 150 to 300 records of the oscillator data. Left: H, =9 m; right: H, = 10 m.

Blue: 50 h; purple: 100 h; red: 200 h

. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.3. Estimating the point of vanishing stability

As discussed in Section 4.1, the distribution of the maximum or the
response of the oscillator (1.1)-(1.3) derived in Section 2 is associated
with the GPD having a negative shape parameter ¢ < 0 in (4.1) (and
& = —0.5in (4.2) in the case of no damping above the ‘“knuckle” point).
Moreover, Fig. 9 of that section shows clearly that a negative shape
parameter is not necessarily estimated in practice. The basic question
is then: when will a negative shape parameter be in fact estimated from
data? As Fig. 9 already suggests, this might be related to the light-tail
region, which is the region above the inflection point (3.15) discussed
in Sections 2 and 3.

To address these issues, the frequency of the estimation of the
negative shape parameters is examined on the data simulated from the
oscillator (1.1)-(1.3). For each of the values of the significant wave
height H; = 6 m, 9 m and 10 m, and the slope k; = 0.5,1,1.5,2,2.5,3 and
4, 30,000 h of the data from the oscillator (1.1)—(1.3) are generated.
The values of H; = 6 m, 9 m and 10 m correspond to o, = 0.0632 rad/s,
0.0948 rad/s and 0.105 rad/s, respectively, which are comparable to
the values of o, considered in Figs. 9 and 10 for the pdf (2.23). (Unlike
in Sections 4.1 and 4.2, the data here were actually generated from
the oscillator.) The data were then split into shorter records; either 600
records of 50 h each, 300 records of 100 h each, or 150 records of 200 h
each. Within each record, the POT approach was applied to estimate the
shape parameter ¢£. Threshold values were selected automatically as in
[5,20], and the maximum likelihood estimate for the shape parameter
& was calculated, as well as the length of the data above the inflection
point (3.15). In the latter expression, the theoretical values of ¢ listed
above were employed (see Section 2.1).

Fig. 11 summarizes the results by comparing the mean number
(across all records of a given set of oscillator parameters) of points
above the inflection point to the proportion of records which estimated
a negative shape parameter. Notably, enough information in the record
to correctly estimate a negative shape parameter is contained at around
10 data points above the inflection point. For records with very few
points above the inflection point, shape parameters are estimated posi-
tively and negatively with close to equal proportion, which is consistent
with an exponential fit (i.e. with & = 0). This was the case when H, =6
m (not shown) and for the lower slopes when H; = 9 m or 10 m. In
conclusion, a primary indicator of the ability to estimate a negative
shape parameter and, in turn, a finite endpoint of the maximum of the
oscillator is the presence of data above the inflection point (that is, in
the light-tail region). In particular, parameters which give a pdf that has
a shorter region from x,, to the inflection point relative to the region
from the inflection point to x, contribute to estimating a negative shape
parameter, due to the greater probability above the inflection point.
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5. Summary and conclusions

To understand the structure of the tail of a nonlinear dynamical
system, the oscillator (1.1)-(1.3) with a piecewise linear restoring
force was considered. This oscillator is known to model most principal
properties of a dynamical system with softening nonlinearity [2].

The response of (1.1)-(1.3) below or above the “knuckle” point was
expressed in closed form. This allows solving for the response pdf (2.26)
above the “knuckle” point if the excitation above the “knuckle” point is
neglected. The influence of the excitation above the “knuckle” point is
small anyway, as the resonance is not possible there [21]. If damping
above the “knuckle” point is also neglected, the response pdf can be
expressed in closed form; see (2.29).

Analogously, a closed form solution was derived for the maxima
of the response for the no-damping case; see (2.23). If the damping
is present, the maxima pdf can be expressed by (2.12). However, a
closed form solution is still available in the vicinity of the unstable
equilibrium, described by the relation (2.18).

The other simplification used in this study is neglecting correlation
in the excitation, by modeling it as white noise and thus assuming
that the response distribution tail structure is mostly the result of
nonlinearity of the oscillator rather than internal dependence on the
excitation. The pdf of the response becomes available as a solution of
the associated FPK equation; see (3.1).

Analysis of the pdf of the response and its maxima above the
“knuckle” point using both approaches has shown that the tail first
becomes heavy because of stretching of the phase plane and then
becomes light because more and more trajectories lead to capsizing.
The following arguments are presented to support this conclusion:

(i) The computed pdf of the response maxima is above the pdf of
the corresponding linear system. It is described by a heavy-tail
(possibly power-law) region and then a collapse towards the
unstable equilibrium (a light-tail region) — see Section 2.2 and
Fig. 4, in particular.

(ii) Similar findings apply to the pdf of the response — see Sec-
tion 2.3 and Fig. 6, in particular.

(iii) Changing the shape of stiffness changes the tail: decrease of
the slope after the “knuckle” point makes the tail lighter, with
a limit of exponential tail for a flat restoring term — see
Section 2.2.4 and Fig. 5, in particular.

The distribution of a white noise-excited system shows a heavy
tail above the “knuckle” point due to the phase plane stretching
— see Section 3.1 and Fig. 8, in particular.

The probability of a non-capsizing trajectory is dramatically
decreased when approaching the unstable equilibrium, where
the distance to the separatrix becomes comparable with the
conditional standard deviation of the derivative of the response;

@iv)

W)
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the latter condition is used to estimate a position of the “inflec-
tion” point, where the tail switches from heavy to light — see
Section 3.2.

Monte Carlo simulated samples were used to fit the GPD pa-
rameters; the combination of positive and negative values of
the shape parameter estimates were found where heavy and
light tails were expected — see Section 4, Figs. 9 and 10, in
particular.

(vi)

In other words, softening nonlinearity leads to a heavy and light tail
combination for the non-capsizing response and its maxima.
What are implications and practical importance of this conclusion?

(i) The question posed at the end of Section 1 was answered:
observing heavy tails when light tail may be expected while
extrapolating roll peak data is natural and related to the fact
that ship rolling is described by softening nonlinear system (as
a ship usually has a limited range of stability).

Statistical uncertainty associated with extrapolation of practical
volume of ship motion samples is rather large (e.g. [33]). As
shown by Glotzer et al. [20], introducing a physical information
by relating the GPD parameters allows a significant decrease
of the confidence intervals. To do this, the structure of the
distribution tail should be known.

(i)

Where can this work be taken from here?

(i) More study is needed on the inflection point; while the principle
is clear, the accuracy of the prediction needs to be improved.

(ii) Glotzer et al. [20] have related shape and scale parameters for
the case of the light tail by postulating the upper bound of the
distribution. How can this be done for the heavy tail where an
upper bound does not exist?

Another principal issue is related to the modeling of excitation. The
spectral-based model (see Appendix for details), while conventional
in Naval Architecture [34,35], is known to work up to the second
moments. The adequacy of this model is not clear for the extreme value
problems. One of the alternatives is the autoregressive model (ARM)
that has seen wide application in other engineering fields, and while it
was considered for modeling waves in the 1980s [36], the interest was
renewed recently [37,38]. Degtyarev and Reed [39] have shown that
ARM reproduces nonlinear properties embedded in its auto-covariance
function, so it may work well for extreme events.
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Appendix. Spectral density of correlated excitation
The parameters in use for the single-degree-of-freedom random

oscillator given by (1.1) are described here. To keep a qualitative
relevance to ship rolling in waves, the excitation of (1.1) is modeled
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as a linear function of wave slopes. The latter is computed from a
spectral density of wave elevations, s, defined with the Bretschneider
formula (following recommendations of the 15th International Towing
Tank Conference in 1978):

Sp(@) = Aw™? exp(—Ba)_4), >0, (A.1)

where  is a wave frequency. The parameters include A = 173H52T1‘4
and B = 691Tl‘4, where H, is the significant wave height, i.e. twice
the amplitude of the highest one-third of waves, and T is the period
corresponding to the mean frequency of waves.

Within the linear wave theory, the wave slope is expressed as the
spatial derivative of wave elevation. Thus, the spectral density of wave
slope angles, s,, is given by

2\ 2
So(@) = <%> spw), >0, (A.2)
where g = 9.807 m/s” is the gravitational acceleration and w?/g is the
wave number or spatial frequency of linear waves.

Roll motions of a ship are excited by a moment of hydrodynamic
pressure forces; neglecting effects of wave diffraction and radiation and
expressing the moment in terms of angular acceleration, the spectral
density is

sy(w) = wgsa(w), w >0, (A.3)

where w, is natural frequency of small undamped roll oscillations in
calm water.

The range of w is truncated to 0.65@.x < ® < 0.6505.4 + 20max,
where w,,,, is the peak frequency. Throughout this paper, unless stated
otherwise, the values taken are H;, = 9 m, T} = 11.595 s and wp,; =
0.419 rad/s. By convention, the autocovariance function y(¢) is related
to the spectral density through the Fourier transform as

y() = /°° s(w) cos(w)dw, tER. (A.4)
0

Finally, the spectral density of the solution of the linear system (1.1)
with r(x) = wjx is given by

i) = 5(©) (A5)

wg —?)? + (26w)2’

Hence, the variance a?( of the linear solution (i.e. below the “knuckle”
point) can be computed as

[se]
0')%:/ wzs,(w)da).
0

In (A.5) and (A.6), the damping parameter 6 affects the oscillations of
the system.

(A.6)
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