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Closed-loop adaptive control of extreme events in a turbulent flow
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Extreme events that arise spontaneously in chaotic dynamical systems often have an adverse impact on the
system or the surrounding environment. As such, their mitigation is highly desirable. Here, we introduce a
control strategy for mitigating extreme events in a turbulent shear flow. The controller combines a probabilistic
prediction of the extreme events with a deterministic actuator. The predictions are used to actuate the controller
only when an extreme event is imminent. When actuated, the controller only acts on the degrees of freedom
that are involved in the formation of the extreme events, exerting minimal interference with the flow dynamics.
As a result, the attractors of the controlled and uncontrolled systems share the same chaotic core (containing
the nonextreme events) and only differ in the tail of their distributions. We propose that such adaptive low-
dimensional controllers should be used to mitigate extreme events in general chaotic dynamical systems, beyond

the shear flow considered here.
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I. INTRODUCTION

Many chaotic dynamical systems exhibit spontaneous ex-
treme events which cause abrupt changes in the state of the
system [1-3]. Well-known examples include extreme weather
patterns, oceanic rogue waves, earthquakes, and shocks in
power grids. Since extreme events cause adverse humanitar-
ian, environmental, and financial impacts, their mitigation is
of great interest.

In order to design control strategies that mitigate the
extreme events, it is crucial to understand the mechanisms
that generate them. The controller should either disrupt these
mechanisms or counteract their effects.

Recent studies show that, in many systems, only a few
degrees of freedom contribute to the formation of extreme
events, even though the system as a whole may be very
high dimensional [4-9]. This raises the prospect of de-
signing simple low-dimensional controllers that mitigate the
extreme events by only acting on these few degrees of
freedom.

Here, we explore the feasibility of such simple controllers.
We require the control design to have two specific features:
(1) Low dimensionality: The controller should only act on
those degrees of freedom that are involved in the formation of
extreme events. This allows for the simplest possible control
design and, therefore, facilitates its practical implementation.
(ii) Adaptivity: We require the control to automatically actuate
only when there is a high probability of an imminent extreme
event. In other words, the control is inactive most of the time.
Shortly before an extreme event takes place, it becomes active,
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mitigating the event. The control becomes inactive again after
the extreme event episode. This requires a real-time prediction
scheme for the extreme events. This adaptive property is
similar to the occasional proportional feedback control [10]
used to stabilize equilibria and periodic orbits, except that we
use a Bayesian probabilistic prediction for the occurrence of
extreme events.

These requirements distinguish our approach from classi-
cal control strategies that seek to suppress the chaotic behavior
of the system altogether by stabilizing a particular equilibrium
state or a periodic orbit [11-17]. Instead, our approach leaves
the chaotic core of the attractor (corresponding to the nonex-
treme events) intact and only prunes the small portion of the
attractor that corresponds to extreme events (see Fig. 1, for an
illustration).

Here, we demonstrate the feasibility of such extreme
event mitigations on a canonical turbulent flow: the two-
dimensional Navier-Stokes equation driven by a sinusoidal
body force, usually referred to as the Kolmogorov flow
[18-20]. Extreme events are a common feature of moderate
and high Reynolds number fluid flow regardless of the exter-
nal forcing or boundary conditions [21-27]. These extreme
events can be divided into two broad categories: local and
global. Local extreme events correspond to unusually high
velocity gradients in a subset of the fluid domain [23,25].
In contrast, global extreme events cannot be pinpointed to a
localized event; instead they correspond to the space-averaged
quantities of the flow [24,26].

The extreme events in Kolmogorov flow are of the global
type and appear as intermittent bursts of the total energy
dissipation rate. Controlling local extreme events in turbu-
lence requires a predictive scheme that, in real time, tracks
the location of the extremes in the fluid domain. As such,
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FIG. 1. Schematic of the system attractor. The thick black curve
shows a trajectory of the uncontrolled system undergoing an extreme
event. The thin red curve marks the trajectory of the controlled
system which evades the extreme event. The black dot marks the
initial state of the system.

mitigation of the local extreme events seems out of reach at
the moment.

II. PROBLEM SETUP

We consider the incompressible Navier-Stokes equations
on the two-dimensional domain = [0, 2] x [0, 27 ] with
periodic boundary conditions. Our control strategy is best
described in the Fourier space. We denote the components
of the velocity field by u;(x,¢) (i = 1,2) and their Fourier
transforms by #;(k, 1) = [, ui(x,t)exp(—ik - x)d*x/(27)?
where k = (ki, ky) € Z2, x = (x1,x) € @ and 1= /—1.
The Navier-Stokes equation in the Fourier space reads [28]

ik, 1) = —TknPy(k) Y (P, 0)it;(q. 1)

p.qeZ’
pt+q=k

— vk, 1) + fik) + &k, 1), (1)

where a summation over repeated indices is implied. Here,
Pij(K) = 68;; — kik;/ |k|> denotes the Leray projection onto
divergence-free vector fields where §;; is the Kronecker §
function. The dimensionless parameter v = Re™! is the in-
verse of the Reynolds number Re. The external forcing f(x) =
[sin(kyx,), O] is a time-independent shearing body force with
the forcing wave number ky = 4. The term éi(k, t) denotes the
control to be discussed shortly.

To solve system (1) numerically, we use a standard pseu-
dospectral method with 2/3 dealiasing [29]. At the lowest
Reynolds number considered here (Re = 40), we use 128 x
128 Fourier modes, whereas, at higher Reynolds numbers, we
use 256 x 256 modes. For the temporal integration, we use the
adaptive Runge-Kutta scheme RK5(4) of Dormand and Prince
[30] with relative and absolute tolerances set to 107>,

III. UNCONTROLLED SYSTEM

Much is known about the uncontrolled system where
& = 0. In particular, at Reynolds numbers Re > 35, the un-
controlled system is chaotic with sporadic bursts of the energy

10x10°

FIG. 2. The time series of the energy dissipation rate D at
Reynolds number Re = 40. (a) Uncontrolled system and (b) con-
trolled system.

dissipation rate [31],

_ v 220 _ 214 (112
D= (zn)2/Q|Vu| d’x=v Y [kPlak)’. (2

keZ?

During these bursts, the energy dissipation D increases to
several standard deviations above its expected value [see
Fig. 2(a)]. Using a variational method, Farazmand and Sapsis
[6] showed that these bursts are preceded by a nonlinear en-
ergy transfer from the Fourier mode G(1, 0) to mode @ (0, 4).

Shortly before an extreme energy dissipation event is
observed, most of the energy content of the Fourier mode
a(1, 0) is transferred to the Fourier mode @(0, 4). This transfer
of energy from the lower mode (1,0) to the higher mode
(0,4) leads to an increase in the energy dissipation rate D.
Examining the last identity in Eq. (2) reveals why such an
energy transfer leads to an increase in the energy dissipation.
Since higher Fourier modes are weighted by a larger prefactor
|k|?, transfer of energy from any lower Fourier mode to
a higher Fourier mode leads to an increase in the energy
dissipation rate D (assuming that the total kinetic energy does
not change significantly). In principle, any such a downscale
transfer of energy will increase the energy dissipation rate. In
Kolmogorov flow, however, it is the particular abrupt transfers
from the lower Fourier mode @i(1, 0) to the higher Fourier
mode 1(0, 4) that is responsible for the bursting behavior of
the energy dissipation rate [6].

One can go one step further and ask: What triggers this
abrupt transfer of energy? Unfortunately, the answer to this
question is still unknown. Recent results on Burgers equation
[32,33] suggest that the answer lies in resonances between
the phases of the Fourier modes involved in the energy
transfer. However, for Kolmogorov flow, this possibility re-
mains to be investigated. Nonetheless, we show that even the
available partial knowledge about the precursors to extreme
events is sufficient for their prediction and suppression in the
Kolmogorov flow.
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FIG. 3. Prediction of extreme events at Re = 40. (a) Conditional probability density function (PDF) of 5([) = MaXser+1,.0+1,+A7,] D(S)
given as (1, 0, ¢). (b) Probability P,. of an extreme dissipation event occurring over the future time interval [t + 7,,t + 7, + A7,] given the

current value of [a(1, 0, t)|.

In particular, the energy content of mode @i(1, 0) can be
used as a predictive indicator for upcoming extremes of the
energy dissipation rate D. To quantify the predictive skill
of this indicator, we use the conditional probability of D(z)
given A(t) = |0(1,0,¢)| at a given time ¢, where D(t) =
MaXse[r+1,.0+1,+A17,] D(s) is the maximum value of the energy
dissipation rate D over the short future time interval [f 4
Tp,t + 1, + Atp]. The prediction time 7, determines how far
in advance the extreme events are predicted. Here, we set
7, = At, = 1.0 = 27, which is approximately equal to two
eddy turnover times, 7, = +/V/E[D]. Here, E denotes the
expected value.

Figure 3(a) shows the conditional probability density
Ppp. = Pb.,/p» Where p; is the probability density of 2, and
Pp.; 18 the join probability density of D and A = |a(1,0)|.
This conditional PDF is estimated from long term direct
numerical simulations.

The vertical dashed line in Fig. 3(a) marks the threshold D,
for extreme dissipation events such that D > D, constitutes
an extreme event. Here, the threshold is set to the mean
plus two standard deviations of the dissipation, i.e., D, =
E[D] + 20 (D) ~ 0.2. The horizontal dashed line marks the
corresponding threshold X, for the indicator A = [G(1, 0)].
These two lines divide the conditional PDF plot into four
quadrants I-IV as marked in Fig. 3(a). Below, we describe
the significance of each quadrant.

Quadrant I (correct rejections): Most of the density of the
conditional probability pg, is concentrated in this quadrant

where [Q(1, 0)] > A, and D < D,. The relatively large values
of [a(1, 0)| indicate that no significant nonlinear transfer of
energy from mode G(1, 0) to mode @(0, 4) has taken place
and, therefore, no upcoming extreme events are expected.
Since, in this quadrant, we also have D < D,, this implies that
the indicator correctly predicted no upcoming extreme events.

Quadrant II (correct predictions): In this quadrant, we have
[a(1,0)] < A, and D > D,. As mentioned earlier, prior to an
extreme event, |@(1, 0)| becomes small since most of its en-
ergy is transferred to mode @(0, 4) through internal nonlinear
interactions. Therefore, [a(1, 0)| < A, signals an upcoming
extreme event. Since, in this quadrant, we also have D > D,,
the indicator has correctly predicted the upcoming occurrence
of an extreme event.

Quadrant III (false positives): This quadrant corresponds to
false positive predictions. Since (1, 0)| < 4., the indicator
predicts an upcoming extreme event. However, we have D <
D, which implies no extreme events actually took place.

Quadrant IV (false negatives): This quadrant corresponds
to false negative predictions. Since |G(1, 0)| > A., the indica-
tor predicts no upcoming extreme events. However, we have
D > D, which implies that an extreme event actually took
place.

Clearly, quadrants III and IV are undesirable since the
indicator incorrectly predicts the extremes or lack thereof.
However, only a small portion of the conditional density pj;
resides in these quadrants, implying that [G(1, 0)| serves as
a reliable indicator of extreme dissipation events. In fact, the
rate of false positive and false negative predictions are 0.85%
and 0.26%, respectively, that is, the overwhelming majority of
extreme events are predicted correctly.

We also define the probability that an extreme dissipation
event (D > D,) takes place over the future time interval
[t +7p,t+ 1, + At,] given A = |0(1,0,¢)| at the current
instant 7. We denote this quantity by P,. and refer to it as the
probability of upcoming extreme events which is defined by
taking the marginal of the conditional probability pg),, i.e.,

Pee()\) = /; pﬁ\k(gv )‘)dé‘ (3)
For a given A = |(1, 0, ¢)|, P..(X) measures the probability
that D(s) > D, for some time s € [t + 7,7 + 7, + AT)].

Figure 3(b) shows the probability of upcoming extreme
dissipation events for the Kolmogorov flow. For relatively
large values of |@(1, 0)|, the probability of upcoming extremes
is virtually zero. As mode (1, 0) transfers its energy to mode
(0, 4) and, therefore, |G(1, 0)| becomes relatively small, the
probability of upcoming extremes approaches one, signaling
the high likelihood of an upcoming extreme event. Below, we
use the predictions obtained by P,, to decide whether or not to
actuate the control.

IV. CONTROLLED SYSTEM

Recall that the extreme energy dissipation events are insti-
gated by a nonlinear transfer of energy from mode (1, 0) to
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FIG. 4. The block diagram of the control strategy. The Fourier
transforms of the external forcing, the velocity field, and the control
term are denoted by f, @, and £, respectively. The Fourier mode
0(1,0) is used to measure the probability of upcoming extreme
events P,.. The control is proportional to the Fourier mode @(0, 4)
where coincidentally k; = (0, 4) is the wave number of the external
forcing.

mode (0, 4). Therefore, it is natural to attempt to mitigate
these extreme events by removing the excess energy from
mode (0, 4). We accomplish this by designing the control
term & to have the form of a damping on mode (0, 4). To
this end, we set &(k, t) oc —[f; (K, )3k k, + Ky, 1)k —k,]
where ky = (0, 4). The complex conjugate term acting on the
wave number —K is necessary to ensure that the resulting
velocity field u(x, ¢) is real valued.

Note that this control only acts on the Fourier mode ti(ky)
[and its complex conjugate counterpart i(—ky)]. Examining
Eq. (1) and neglecting the Navier-Stokes dynamics for the
moment, the controller acts on this mode as 9,0(ky, )
—1ti(ky, t) which damps the excess energy content of the mode
exponentially fast [Gi(ky, )] oc e™".

We also would like the control to be actuated only when an
extreme event is about to take place. To this end, we define

N 1 -
Silk, 1) = ——Pee (Ol 1Ky, 1), + tti(Ky, D)o i, 1. (4)

where P,.(t) is shorthand for P,.[|G(1, 0, ¢)|] [see Fig. 3(b)].
When the probability of upcoming extreme events is zero, the
control is inactive since P,, = 0. However, as that probability

(@ 1r ‘ 1 (b
05! z i
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=l

0 S

[=]

D’(

Controlled

increases, the control term becomes active gradually until P,,
approaches one, and the controller becomes fully active. After
the extreme event episode, the probability P,, decays back to
zero, and consequently, the controller turns off. The parameter
7. is the time lag between the control becoming fully active
(P, = 1) and the turbulent velocity field responding to the
action of the control. Here, we set 7. = 7, = 1.0. Figure 4
summarizes the control strategy in a block diagram.

Taking the inverse Fourier transform, the control can be
written in the physical space as

§i(X,1) = —[2Pee(t)/Tc]ri(t) coslkpxy + di(0)],  (5)

where r; and ¢; are the amplitude and phase of the Fourier
mode #;(Ks, 1), respectively, so that #;(ky) = r;e'. Since
the velocity field is divergence free k; - li(k;) = 0, we have
ry(t) = 0. As a result, & (X, t) = 0, and the control only acts
on the horizontal component 1 (x, t) of the velocity field.

Furthermore, numerical simulations suggest that, in the
uncontrolled system, the phase ¢; oscillates around —m /2
with a small standard deviation. For instance, at Re = 40,
we have o(¢;) =~ 0.037, where o(¢;) denotes the standard
deviation of ¢;. As a result, the controller can be further
simplified by assuming ¢, = —m /2 which implies

E1(X,1) = —[2Pe(1)/Tc]r1 (1) sin(kyxz),  &2(x,1) = 0. (6)

We note that this simplified control is a scalar multiple of the
external forcing f. The corresponding probability distributions
of the energy dissipation D are nearly identical whether we
use the full control (5) or its simplified form (6).

Figure 5 shows the closeup view of an extreme event at
Re = 40; it compares the uncontrolled and controlled system
trajectories starting from the same initial condition. Initially,
the probability of upcoming extreme events is zero (P,, = 0),
and therefore, the control is inactive. As a result, the trajec-
tories of the uncontrolled and controlled systems coincide.
Around time ¢ >~ 30, the probability P,. increases towards one,
the control becomes active, and the trajectory of the controlled
system deviates from the uncontrolled system. Shortly after
t = 30, the uncontrolled system undergoes an extreme event

FIG. 5. Controlled versus uncontrolled systems at Re = 40. (a) Energy dissipation rate D of the uncontrolled (black circles) and controlled
(solid red) systems as a function of time. The horizontal dashed line marks the threshold D, = 0.2 for the extreme events. The top panel shows
the probability P,, of upcoming extreme events. (b) The corresponding vorticity fields at times ¢, = 27.0, t, = 35.2, and 13 = 43.0.
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FIG. 6. The PDF of the uncontrolled (black circles) and controlled (solid red) systems at Reynolds numbers Re = 40, 60, 80 and 100. Each

PDF is estimated from 50 000 data points.

(D > D, ~ 0.2). However, the controlled system successfully
evades any such event, and its energy dissipation rate remains
below the threshold D,. A longer time series of the energy
dissipation of the controlled system is shown in Fig. 2(b).

Figure 6 shows the PDF of the energy dissipation estimated
from long term simulations at Reynolds numbers Re = 40,
60, 80 and 100. The PDFs corresponding to the uncontrolled
system have heavy tails due to the extreme dissipation events.
However, the PDFs of the controlled systems have no such
heavy tails, indicating the successful mitigation of extreme
events. Furthermore, the core of the PDFs (corresponding to
nonextreme events) are very similar for both controlled and
uncontrolled systems. This implies that the controller does not
fundamentally change the nature of the flow; it only mitigates
the extreme events, forcing the turbulent trajectories to stay on
the core of the turbulent attractor (cf. Fig. 1).

Note that, although our controller acts on mode (0, 4),
its activation is decided based on P,, which depends on the
precursor (1, 0)|. We have also tried to actuate our controller
based on the modulus of the controlled mode [G(0, 4)| instead
of |@(1, 0)|. Although this control strategy suppresses some
of the extreme events, it fails to remove the heavy tail events
altogether.

We conclude by commenting on the possible experimen-
tal implementation of our control strategy. Kolmogorov-like
flows have been studied in the laboratory experiments by
electromagnetically driving a thin layer of the electrolyte
[34-36]. The electromagnetic force is exerted by an array
of magnets with alternating magnetization, generating the
sinusoidal forcing in Eq. (1).

These laboratory experiments differ from our Kolmogorov
flow in their boundary conditions and that they are not strictly
two dimensional. As such, the mechanism underlying the
extreme events in the laboratory experiments should be in-
vestigated based on more accurate models, such as the quasi-
two-dimensional model developed in Ref. [37]. If the extreme
event mechanisms turn out to be similar to our Kolmogorov
model, then our results are relevant to the experiments.

Since our control only acts on the same wave number as
the external forcing, actuating the control in the laboratory ex-
periments amounts to adjusting the magnitude of the external
forcing (or equivalently the magnitude of the external mag-
netic field). This magnitude would depend on the probability
P,. which, in turn, depends on the magnitude of the Fourier
mode @(1, 0). Therefore, experimental implementation of our
control strategy would require high-speed velocimetry [38,39]
so that the control can be actuated in time to counteract
the extreme events. Since the precursor |{i(1, 0)| corresponds
to large scales [or equivalently, the small wave number
k = (1, 0)], only a low-pass filtered measurement of the ve-
locity is sufficient.

V. CONCLUSIONS

A plethora of high-dimensional chaotic dynamical sys-
tems exhibits spontaneous extreme events. Recent advances
in quantification and prediction of extreme events show that
only a few degrees of freedom might be directly involved
in the formation of these events. This raises the prospect of
designing low-dimensional controllers that only act on these
few degrees of freedom in order to mitigate the extreme
events.

Here, we demonstrated the feasibility of such simple con-
trollers on a turbulent fluid flow. Although acting on a single
Fourier mode, our controller succeeded in suppressing all the
extreme dissipation events.

We emphasize two important features of our controller:
low dimensionality and adaptivity. The low dimensionality
of the controller is desirable as it facilitates its practical
implementation. This is feasible due to the inherent low
dimensionality of the precursors to extreme events. Adaptivity
refers to the fact that the controller is off most of the time and
becomes active only when there is a probabilistic prediction
of an imminent extreme event. Unlike classical methods for
controlling chaos, our controller does not attempt to suppress
chaos altogether. Instead, it only acts for relatively short
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periods of time and exerts minimal interference with system
dynamics. As such, the controlled system is still chaotic but
contains no extreme events.

We propose that these two features (namely, low dimen-
sionality and adaptivity) should form the basis of controlling
extreme events more generally, beyond our fluid system.
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