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For many important problems the quantity of interest
is an unknown function of the parameters, which
is a random vector with known statistics. Since
the dependence of the output on this random
vector is unknown, the challenge is to identify its
statistics, using the minimum number of function
evaluations. This problem can be seen in the context
of active learning or optimal experimental design. We
employ Bayesian regression to represent the derived
model uncertainty due to finite and small number
of input–output pairs. In this context we evaluate
existing methods for optimal sample selection, such
as model error minimization and mutual information
maximization. We show that for the case of known
output variance, the commonly employed criteria in
the literature do not take into account the output
values of the existing input–output pairs, while for
the case of unknown output variance this dependence
can be very weak. We introduce a criterion that takes
into account the values of the output for the existing
samples and adaptively selects inputs from regions
of the parameter space which have an important
contribution to the output. The new method allows
for application to high-dimensional inputs, paving
the way for optimal experimental design in high
dimensions.

1. Introduction
For a wide range of problems in engineering and
science it is essential to quantify the statistics of
specific quantities of interest (or output) that depend on
uncertain parameters (or input) with known statistical
characteristics. The main obstacle towards this goal is
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that this dependence is not known a priori and numerical or physical experiments need to be
performed in order to specify it. If the problem at hand allows for the generation of many input–
output pairs then one can employ standard regression methods to machine learn the input–output
map over the support of the parameters and subsequently compute the statistics of the output.

However, for several problems of interest it is not possible to simulate even a moderate
size of parameters. In this case it is critical to choose the input samples carefully so that they
provide the best possible information for the output of interest [1–3]. A class of problems that
belong in this family is the probabilistic quantification of extreme or rare events rising from
high dimensional complex systems such as turbulence [4–8], networks [9], waves [10–12], and
materials or structures [13,14]. Of course the considered set-up is not limited to extreme or rare
events but it is also relevant for any problem where the aim is to quantify the input–output
relationship with very few but carefully selected data points.

The described set-up is a typical example of an optimal experimental design or active learning
problem [1]. Specifically, we will assume that we have already a sequence of input–output data
and our goal will be to sequentially identify the next most informative input or experiment that
one should perform in order to achieve fastest possible convergence for the output statistics.
The problem has been studied extensively using criteria relying on mutual information theory or
the Kullback–Leibler (KL) divergence (e.g. [15]). More recently another criterion was introduced
focusing on the rapid convergence of the output statistics [16]. A common characteristic of these
methods is the large computational cost associated with the resulting optimization problem that
constrains applicability to low-dimensional input or parameter spaces.

The first objective of this work is to understand some fundamental limitations of popular
selection criteria widely used for optimal experimental design (beyond the large computational
cost). Specifically, we will examine how well these criteria distinguish and promote the
parameters that have the most important influence to the quantities of interest. The second
objective is the formulation of a new, output-weighted selection approach that explicitly and in
a controllable manner takes into account, beyond the uncertainty of each parameter, its effect
on the output variables, i.e. the quantities of interest. This is an important characteristic as it
is often the case that a small number of parameters controls a specific quantity of interest. The
philosophy of the developed criterion is to exploit the existing samples in order to estimate which
parameters are the most influential for the input and then bias the sampling process using this
information. Therefore, while traditional criteria tend to estimate the regression parameters with
uniform accuracy over all input parameters (even those that do not contribute to the output), the
introduced criterion adaptively detects the most influential input parameters and allocates more
samples to reduce the regression error over these important input directions.

Beyond its intuitive and controllable character on selecting parameter values according to their
effect to the output statistics, the new criterion has a numerically tractable form which allows for
easy computation of each value and gradient. The latter property allows for the employment
of gradient optimization methods and therefore the applicability of the approach even in high-
dimensional input spaces. We demonstrate ideas through several examples ranging from linear
to nonlinear maps with low- and high-dimensional input spaces. In particular, we show that the
important dependencies of given quantities of interest can be identified and quantified using a
very small number of input–output pairs, allowing also for quantification of rare event statistics
with minimal computational cost.

2. Set-up
Let the input vector x ∈ Rm denote the set of parameters or system variables and y ∈ Rd be the
output vector describing the quantities of interest. The input vector can be thought of as high-
dimensional with known statistics described by the probability density function (pdf) p(x) that
corresponds to mean value µx and covariance Cxx (or correlation Rxx). In what follows we will
use p to denote pdf and an index will be used only if the random variable is not automatically
implied by the argument.
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A map from the input to the output variables, y = T(x), exists and our aim is to approximate
the statistics of the output, p(y), using the smallest possible number of evaluations of the map
T. We will assume that we have already obtained some input–output pairs, which we employ in
order to optimize the selection of the next input that one should evaluate. This problem can be
seen as an optimal experimental design problem where the experimental parameters that one is
optimizing coincide with the random parameters. All the results/methods presented in this work
can be formulated in the standard set-up of optimal experimental design in a straightforward way.

The first step of the approach is to employ a Bayesian regression model to represent the map
T. Our choice of the Bayesian framework is dictated by our need to have a priori estimates for
the model error, as those will be employed for the sample selection criteria. For simplicity we will
present our results for linear regression models, although the extension for regression schemes
with nonlinear basis functions or Gaussian process regression schemes is straightforward. We
formulate a linear regression model with an input vector x that multiplies a coefficient matrix
A ∈ Rd×m to produce an output vector y, with Gaussian noise added:

y = Ax + e,

e ∼N (0, V)

and p(y | x, A, V) =N (Ax, V). (2.1)

We emphasize that for what follows we consider the case of a known noise variance V ∈ Rd×d.
From the perspective of applications, the motivation for known variance is that for a wide range
of engineering problems in mechanics, fluids, vibrations, materials, etc. there are well-established
experimental methods or high-fidelity simulation methods, which are very accurate but with very
large cost. For problems like these the challenge is not to estimate the output or measurement
noise (which is typically estimated or calibrated beforehand) but to identify the effect of the
uncertain parameters of the problem to the quantities of interest. For this reason we focus on
the case of known noise variance. The case of unknown covariance matrix V is discussed in the
electronic supplementary material, appendix D. The basic set-up involves a given dataset of pairs
D = {(y1, x1), (y2, x2), . . . , (yN , xN)}. We set Y = [y1, y2, . . . , yN] and X = [x1, x2, . . . , xN].

For the matrix A we assume a Gaussian prior with mean M ∈ Rd×m and covariance K ∈ Rm×m

for the columns, and V for the rows. This has the form:

p(A) ∼N (M, V, K) = |K|d/2

|2πV|m/2 exp
(

−1
2

tr((A − M)TV−1(A − M)K)
)

. (2.2)

Then one can obtain the posterior for the matrix A [17,18]

p(A | D, V) ∼N (SyxS−1
xx , V, Sxx), (2.3)

where,
Sxx = XXT + K

and Syx = YXT + MK.




 (2.4)

Essentially, XXT is the data correlation of the sample input points xi, i = 1, . . . , N. We choose
K = αI (I is the identity matrix) and M = 0, where α is an empirical parameter that will be
optimized. Therefore, the above relations take the form

Sxx = XXT + αI

and
Syx = YXT.

Based on the above we obtain the probability distribution function for new inputs x:

p(y | x, D, V) =N (SyxS−1
xx x, V(1 + c))

and c = xTS−1
xx x.




 (2.5)
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Then we can obtain an estimate for the probability density function of the output as

p(y | D, V) =
∫

p(y | x, D, V)p(x) dx. (2.6)

It is important to emphasize that the output y is random due to two sources: (i) the uncertainty
of the input vector x, and (ii) the uncertainty due to the model error expressed by the term c. The
latter is directly related to the choice of data points xi, i = 1, . . . , N and the goal is to choose these
points in such a way so that the statistics of y converge most rapidly.

The most notable property for this model is the fact that the model error is independent
of the expected output value of the system. This fact holds true also for Gaussian Process
regression (GPR) schemes or regression models that use nonlinear basis functions. This property
will have very important consequences when it comes to the optimal input sample selection for
the modelling of the input–output relation.

(a) Properties of the data correlation Sxx
One can compute the eigenvectors, r̂i, and eigenvalues, σ 2

i , of the data correlation matrix, Sxx,

R̂ = [r̂1| · · · |r̂m] ∈ Rm×m and σ 2
i , i = 1, . . . , m.

By applying a linear transformation to the Sxx eigendirections, X = R̂Tx we have

xTS−1
xx x =

m∑

i=1

χ2
i

σ 2
i

.

Thus, the eigendirections of Sxx indicate the principal directions of maximum confidence for
the linear model. The eigenvalues quantify this confidence: the larger the eigenvalue the slower
the uncertainty increases (quadratically) as χ2

i increases. For a new, arbitrary point, xN+1 = h,
added to the family of x points we will have X′ = [X | xN+1]. By direct computation we obtain

S′
xx =

N∑

i=1

xixT
i = Sxx + hhT. (2.7)

If the new point belongs to the j eigendirection, xN+1 = κrj, where κ ∈ R then the new data
correlation will be,

S′
xx = Sxx + κ2rjrT

j .

It can be easily checked that under this assumption the new matrix S′
xx will have the same

eigenvectors. Moreover the j eigenvalue will be σ ′2
j = σ 2

j + κ2, while all other eigenvalues will
remain invariant. Therefore, adding one more data point along a principal direction will increase
the confidence along this direction by the magnitude of this new point.

The larger the magnitude of any point we add, the larger its impact on the covariance.
One can trivially increase the magnitude of the new points but this does not offer any real
benefit. Moreover, in a typical realistic scenario there will be magnitude constraints. To avoid this
ambiguity, typical of linear regression problems, we will fix the magnitude of the input points, i.e.
x ∈ Sm−1 = {x ∈ Rm, ‖x‖ = 1}, so that we can assess the direction of the new points, without being
influenced by the magnitude. For nonlinear problems the input points should be chosen from a
compact set, typically defined by the mechanics of the specific problem.

3. Fundamental limitations of standard optimal experimental design criteria
Here we consider two popular criteria that can be employed for the selection of the next most
informative input sample xN+1. The first one is based on the minimization of the model error
expressed by the parameter c (equation (2.5)), while the second one is the KL divergence or
equivalently the maximization of the mutual information between input and output variables,
which is the standard approach in the optimal experimental design literature [1].
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We hypothesize a new input point xN+1 = h. As the corresponding output is not a priori known
we will assume that it is given by the mean regression model, yN+1 = SyxS−1

xx xN+1. The new pairs
of data points will be D′ = {D, (xN+1, yN+1)}. Under this set-up the new model error will be given
by c(x; h) = xTS′−1

xx x, where the new data correlation matrix is given by (2.7). In addition, the mean
estimate of the new model will remain invariant since,

S′
yxS′−1

xx = [Syx + SyxS−1
xx hhT][Sxx + hhT]−1

= SyxS−1
xx [Sxx + hhT][Sxx + hhT]−1

= SyxS−1
xx . (3.1)

(a) Minimization of the mean model error
The first approach we will employ is to select h by minimizing the mean value of the uncertainty
parameter c (equation (2.5)). Using standard expressions for quadratic forms of a random variable
[19] we obtain a closed expression, valid for any input distribution. More specifically, we will
have:

µc = E[xTS′−1
xx x] = tr[S′−1

xx Cxx] + µT
x S′−1

xx µx = tr[S′−1
xx Rxx]. (3.2)

Moreover for the case of Gaussian input we also obtain [19]

σ 2
c = Var[xTS′−1

xx x] = 2tr[S′−1
xx CxxS′−1

xx Cxx] + 4µT
x S′−1

xx CxxS′−1
xx µx. (3.3)

We note that the model uncertainty depends only on the statistics of the input x (expressed
through the covariance Cxx) and the samples X (expressed through the constant (i.e. non-
dependent on x) matrix S′

xx). In other words, the matrix Y and the output distribution play no
role on the mean model uncertainty.

To understand the mechanics of selecting input samples using the mean model error we
assume that Rxx is diagonal with eigenvalues σ 2

i + µ2
xi

i = 1, . . . , d, arranged with increasing
order. We also assume that samples are collected only along the principal directions of the input
covariance. In this case the quantity that is minimized takes the form

µc(h) = tr[S′−1
xx Rxx] =

m∑

i=1

σ 2
i + µ2

xi

ni + δik
, hi = δik ∈ Sm−1,

where ni denotes the number of samples in the ith direction. One should choose h, or equivalently
k, according to the value of the derivative of µc(h). In particular,

hi = δik, k = arg min
i

(

−
σ 2

i + µ2
xi

n2
i

)

.

If all directions have been sampled with an equal number (e.g. each of the directions have
ni = 1), sampling will continue with the most uncertain direction. After sufficient sampling in this
direction, the addition of a new sample will cause a smaller effect than sampling the next most
important direction and this is when the scheme will change sampling direction. This behaviour
guarantees that the scheme will never get ‘trapped’ in one direction. It will continuously evolve,
as more samples in one direction lead to a very small eigenvalue of S′−1

xx Rxx along this direction,
and therefore sampling along another input direction will cause a bigger contribution to the trace.

It is clear that sampling based on the uncertainty parameter c searches only in x-directions with
important uncertainty, while the impact of each input variable is completely neglected. Therefore,
even directions that have zero effect on the output variable will still be sampled as long as they are uncertain.
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(b) Maximization of the mutual information
An alternative approach for the selection of a new sample, xN+1 = h ∈ Sm−1, is maximizing the
entropy transfer or mutual information between the input and output variables, when a new
sample is added [1]:

I(x, y | D′, V) = Ex + Ey | D′ − Ex,y | D′ . (3.4)

where each of the entropies above are defined as,

Ex =
∫

p(x) log p(x) dx, Ey | D′ =
∫∫

p(y | D′, V) log p(y | D′, V) dy,

Ex,y | D′ =
∫∫

p(y, x | D′, V) log p(y, x | D′, V) dx dy.

This is also equivalent to maximizing the mean value of the KL divergence [2]

Ey[DKL[p(x | y, D′)||p(x)]] =
∫

y

∫

x
p(x | y, D′, V) log

p(x|y, D′, V)
p(x)

dxp(y | D′, V) dy

=
∫

y

∫

x
p(x, y | D′, V) log

p(x, y | D′, V)
p(x)p(y | D′, V)

dx dy

= I(x, y | D′, V).

We first compute the entropy of p(x, y | D′, V):

Ex,y(h) =
∫∫

p(y, x | D′, V) log p(y, x | D′, V)dxdy

=
∫∫

p(y | x, D′, V)p(x) log p(y | x, D′, V) dx dy +
∫∫

p(y | x, D′, V)p(x) log p(x) dx dy

=
∫
Ey | x(x; h)p(x) dx +

∫
p(x) log p(x) dx

= Ex[Ey | x(x; h)] + Ex.

We focus on computing the first term on the right-hand side. For the linear regression model,
the conditional error follows a Gaussian distribution. From standard expressions about the
entropy of a multivariate Gaussian we have

Ey | x(x; h) = 1
2

log(1 + c)d|2πeV| = d
2

log(1 + c(x; h)) + 1
2

log |2πeV|.

Therefore,

Ex[Ey | x(x; h)] = d
2

Ex[log(1 + c(x; h))] + 1
2

log |2πeV|.

In the general case, we cannot compute the entropy of the output, conditional on D′. To this
end, the mutual information of the input and output, conditioned on D′, takes the form

I(x, y | D′, V) = Ey(h) − d
2

Ex[log(1 + c(x; h))] − 1
2

log |2πeV|. (3.5)

This expression is valid for any input distribution and relies only on the assumption of
Bayesian linear regression. To compute the involved terms, one has to perform a Monte Carlo
or importance sampling approach, even for linear regression models and Gaussian inputs. This,
of course, limits the applicability of the approach to very low-dimensional input spaces. We note
that the above expression is valid for the case of known noise variance, V. The case of unknown
variance V is considered in the electronic supplementary material, appendix D.
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(i) Gaussian approximation of the output
To overcome this computational obstacle one can consider an analytical approximation of the
mutual entropy, assuming Gaussian statistics for the output. This assumption is not true in
general, even for Gaussian input, because of the multiplication of the (Gaussian) uncertain model
parameters (matrix A) with the Gaussian input (vector x).

We focus on the computation of the entropy of the output y, so that we can derive an
expression for the mutual information. We will approximate the pdf for y through its second-
order statistics. Given that the input variable is Gaussian and the exact model is linear the
Gaussian approximation for the output is asymptotically accurate. Still, it will help us to obtain
an understanding of how the criterion works to select new samples.

We express the covariance of the output variable using the law of total variance

Cyy(D′, V) = Ex[Cyy | x(D′, V)] + cov[Ey(y | x, D′, V)]. (3.6)

The first term is the average of the updated conditional covariance of the output variables
and it is capturing the regression error. The second term expresses the covariance due to the
uncertainty of the input variable x, as measured by the estimated regression model using the
input data in D′.

As we pointed out earlier the mean model using either D or D′ remains invariant. Therefore,
we have

Cyy(D′, V) = V(1 + µc(h)) + SyxS−1
xx CxxS−1

xx ST
yx.

In this way we have the approximated entropy of the output variable using a Gaussian
approximation, which is also an upper bound for any other non-Gaussian distribution with the
same second-order statistics

Ey(h) = 1
2

log |V(1 + µc(h)) + SyxS−1
xx CxxS−1

xx ST
yx| + d

2
log(2πe).

Therefore, we have the second-order statistics approximation of the mutual information in
terms of the new sample h ∈ Sm−1, denoted as IG:

IG(x, y | D′, V) = 1
2

log |V(1 + µc(h)) + SyxS−1
xx CxxS−1

xx ST
yx| − 1

2
log |V|

− d
2

Ex[log(1 + c(x; h))]. (3.7)

We observe that the second-order approximation of the mutual information criterion has
minimal dependence on the output samples Y. Specifically, (3.7) depends on the uncertainty
parameter c and its statistical moments, as well as the term SyxS−1

xx CxxS−1
xx ST

yx. However, the
latter is not coupled with the new hypothetical point h and to this end the minimization of this
criterion does not guarantee that the output values will be taken into account in a meaningful
way. Instead, the selection of the new sample depends primarily on minimizing µc = tr[S′−1

xx Rxx],
always under the constraint ‖h‖ = 1, a process that depends exclusively on the current samples X
and the statistics of the input x.

Therefore, regions of x associated with large or important values of the output y are not
emphasized by this sampling approach and the emphasis is given in regions that minimize the
mean model error µc. We note that these conclusions are valid for the second-order approximation
of the mutual information criterion, with known output variance, σ 2

V . When one considers
the mutual information criterion with unknown output variance which has to be inferred
using conjugate priors, there is dependence of the criterion on the output vector Y. However,
this dependence may be very weak or even zero depending on inference parameters that are
optimized based on the data. See the electronic supplementary material, appendix D, for details.



8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20190834

...........................................................

(c) Nonlinear basis regression
Similar conclusions can be made for the case where one uses nonlinear basis functions. In this case
we assume that the input points ‘live’ within a compact set. Specifically, let the input x ∈X ⊂ Rm

be expressed as a function of another input z ∈Z ⊂ Rs where the input value has distribution p(z)
and Z is a compact set. One can choose a set of basis functions

x = φ(z). (3.8)

In this case the distribution of the output values will be given by :

p(y | z, D, V) =N (SyφS−1
φφφ(z), V(1 + c))

and c = φ(z)TS−1
φφφ(z).




 (3.9)

The mean of the model uncertainty parameter c = φ(z)S−1
φφφ(z)T will become

µc = tr[S−1
φφCφφ] + µT

φS−1
φφµφ = tr[S−1

φφRφφ], (3.10)

where

Sφφ =
N∑

i=1

φ(zi)φ(zi)T and S′
φφ = Sφφ + φ(h)φ(h)T,

and
µφ =

∫
φ(z)p(z) dz and Cφφ =

∫
(φ(z) − µφ)(φ(z) − µφ)Tp(z) dz.

Following the same steps as we did for the linear model, we will have, first for the conditional
entropy (assuming that the model noise in the nonlinear case is Gaussian)

Ey|z(z; h) = 1
2

log(1 + c)d|2πeV| = d
2

log(1 + c(φ(z); h)) + 1
2

log |2πeV|.

Therefore,

Ez[Ey|z(z; h)] = d
2

Ez[log(1 + c(φ(z); h)] + 1
2

log |2πeV|.

The exact expression for the mutual information for the nonlinear case will be:

I(x, y | D′, V) = Ey − d
2

Ez[log(1 + c(φ(z); h)] − 1
2

log |2πeV|. (3.11)

To perform the second-order statistical approximation for the entropy Ey, we follow the same
steps as for the linear model case to obtain

IG(x, y | D′, V) = 1
2

log |V(1 + µc(h)) + SyφS−1
φφCφφS−1

φφST
yφ | − 1

2
log |V|

− d
2

Ez[log(1 + c(φ(z); h)]. (3.12)

The sampling strategy is more complicated in this case due to the nonlinearity of the basis
elements. However, even in the present set-up the sampling depends exclusively on the statistics
of the input variable z and the form of the basis elements φ. The measured output values of the
modelled process do not enter explicitly into the optimization procedure for the next sample, in
the same fashion with the linear model.

4. Optimal sample selection considering the output values
We saw that selecting input samples based on either the mean model error or the mutual
information does not effectively take into account the output values of the existing samples. Our
goal is to develop an approach that (i) will give emphasis on the output values of the existing
samples, and (ii) will be computationally tractable. In [16] a similar problem was considered
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where the goal was to design a sampling method that will accelerate the convergence of the pdf
in regions associated with rare events. In particular the following steps were followed in [16]:

(1) Using the existing samples the authors obtain an estimate of the map (denote it as y0(x)),
as well as the map-estimation-error, σ 2

y0
(x), at every point x.

(2) This map-estimate and its error are then used to estimate the output pdf, denoted as
py0 (y), as well as the pdf of the perturbed map along the direction of the map-estimation-
error, denoted as py+

0
(y).

(3) A new hypothetical sample point, h, was assumed and its impact first on the map-
estimation-error, σ 2

y0
(x; h), and then on the pdf of the perturbed map, py+

0
(y; h), was

quantified.
(4) Then the goal was to select the new sample that minimizes the distance of the two pdfs,

i.e. between py+
0

(y; h) and py0 (y). As a distance the authors considered the L1 difference
of the logarithms of the two pdfs, instead of the KL divergence. The reason was that
in the KL divergence the difference of the logarithms is multiplied with the pdf itself
and therefore rare events play a less important role on the value of the criterion. By
considering only the difference of the logarithms gave more emphasis in the regions
associated with rare events.

The approach was very effective on computing the rare event properties (tails of the pdf) for
arbitrary quantities of interest with a very few samples. However, it was limited by the large cost
related to the computation of the two pdfs mentioned above, which was performed with direct
Monte Carlo methods. For this reason the method could be applied in problems with relatively
low-input dimensionality.

In the present work we are going to build on [16] to derive a new criterion that follows the
same principles as the one just described but it is also computationally tractable and can be used
beyond the context of rare events, i.e. for general optimal experimental design problems with a
large number of parameters.

Specifically, we are going to apply the following steps:

(1) We will employ an asymptotic form of the criterion in [16] that will provide, analytically,
the distance of the pdf logarithms, i.e. the pdf of the map-estimate and the pdf of the
asymptotically perturbed map-estimate.

(2) Using standard inequalities for norms of derivatives we will bound the asymptotic form
of the criterion by a more intuitive and tractable form. This new form has an interesting
interpretation as it naturally weights the importance of the estimated map-error by the
pdf of the input but also the inverse of the pdf of the output. In this way more emphasis
is given to inputs associated with large values of the output.

(3) The final step of our analysis is to demonstrate how the derived bound can be analytically
approximated in terms of second-order properties of the input pdf, as well as second-
order properties of the estimated output. This last step is the most cumbersome but also
crucial in order to apply the method in high-dimensional problems, as the analytical
approximation of the criterion allows for the application of gradient optimization
methods.

In figure 1 we provide a sketch of the main idea. A two-dimensional input space is shown
where the output is a function that primarily depends on one input variable. The input variable
has important variance in both dimensions. While methods relying on mutual information
give emphasis primarily on the statistics of the input variable, resulting in an equally good
approximation of the map over all input dimensions through a uniform coverage of all input
dimensions, an output-weighted approach assesses the importance of each candidate input
sample by its effect on the statistics of the output, i.e. the quantity of interest. In this way the
output values for the observable interest are taken into account explicitly and in a controllable
manner.
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sampling focusing on the input

y

x2

x1

y

x2

x1

output-weighted sampling(b)(a)

Figure 1. A schematic of an input space (grey plane), the pdf of the input (coloured contours), and the output surface (white
plane). A criterion that only takes into account the characteristics of the input, x, focuses on sampling the input directions
according to their variance (a). However, not all input dimensions have the same e,ect on the output, y. Here only x1 contributes
to the output. By using a regression trainedwith the existing sampleswequantify the e,ect of each input direction to the output
and select more samples from the important input dimensions (b). This expedites the convergence of the output statistics, py .
(Online version in colour.)

Derivation of the output-weighted criterion
Our goal is to compute samples that accelerate the convergence of the output statistics, expressed
by the probability density function, p(y). To measure how well this convergence has occurred, we
are going to rely on the distance between the probability density function of the mean model

y0 = SyxS−1
xx x, (4.1)

and the perturbed model along the most important direction of the model uncertainty (dominant
eigenvector of V), denoted as rV:

y+ = SyxS−1
xx x + βrV(1 + xTS′−1

xx x), (4.2)

where β ( 1 is a small scaling factor. The corresponding probability density functions, py0 (y) and
py+ (y) will differ only due to errors of the Bayesian regression, which vary as h changes. It is
therefore meaningful to select the next sample that will minimize their distance. Moreover, as
we are interested on capturing the probability density function equally well in regions of low
and large probability we will consider the difference between the logarithms. Specifically, we
define, [16],

DLog1 (y+‖y0; h) =
∫

Sy

| log py+ (y) − log py0 (y)| dy, (4.3)

where Sy is a finite domain over which we are interested to define the criterion. Note that the
latter has to be finite in order to have a bounded value for this distance. It can be chosen so that it
contains several standard deviations of the output process. The defined criterion focuses exactly
on our goal, which is the convergence of the output statistics, while the logarithm guarantees that
even low probability regions have converged as well. This criterion for selecting samples was first
defined in [16] and it was shown that it results in a very effective strategy for sampling processes
related to low-probability extreme events. However, it is also associated with a very expensive
optimization problem that has to be solved in order to minimize this distance. Apart from the
cost, its complicated form does not allow for the application of gradient methods for optimization
and therefore it is practical only for low-dimensional input spaces where non-gradient methods
can be applied. Here one of our goals is to study its relationship with existing criteria. We are also
aiming to bound it by a more trackable form that is applicable for gradient optimization methods.

To study the relationship of the criterion (4.3) with the KL divergence, we note that for bounded
probability density functions the following inequality holds

DKL(y0‖y+; Sy) =
∫

Sy

(log py+ (y) − log py0 (y))py0 (y) dy ≤ κDLog1 (y+‖y0), (4.4)
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where κ is a constant. To this end, the criterion based on the difference of the logarithms is more
conservative (i.e. harder to minimize) compared with the KL divergence (defined over the same
domain).

Our next goal is to bound the DLog1 criterion by one that is more tractable to optimize. We
consider the criterion (4.3) for an asymptotically small value of β. This form of the criterion
essentially expresses the infinitesimal difference between the mean model and the infinitesimally
perturbed model by βσ 2

y . To compute analytically the value of the criterion for β → 0 we employ
an asymptotic result originally obtained in [16] for the study of the criterion for a large number of
input samples, i.e. very small σ 2

y . For this case, or equivalently the case where β is very small that
we are interested in here, we have the asymptotic form (Theorem 1 in [16])

DLog1 (y+‖y0; h) + β

∫

Sy

|(d/ds)E[σ 2
y (x; h) · 1y0(x)=s]|
py0 (s)

ds, (4.5)

where,

σ 2
y (x; h) = tr(cov[y | x, D′]) = tr(V)(1 + c(x; h)),

is the conditional variance (on x) if the output is scalar or the trace of the output conditional
covariance matrix in the general case, while y0(x) is the mean model from the input–output data
collected so far.

Using standard inequalities for the derivatives of differential functions one can bound the
derivative in (4.5). Specifically, if the function E[σ 2

y (x) · 1y0(x)=s] has a uniformly bounded second
derivative (with respect to a hypothetical new point h), and py0 (s) has no zeros or singular points,
there exists a constant κ0 such that ([20], Theorem 3.13, p. 109)

∫

Sy

|(d/ds)E[σ 2
y (x) · 1y0(x)=s]|

py0 (s)
ds ≤ κ0

∫

Sy

E[σ 2
y (x) · 1y0(x)=s]

py0 (s)
ds. (4.6)

Moreover,

∫

Sy

E[σ 2
y (x) · 1y0(x)=s]

py0 (s)
ds = E

[
σ 2

y (x)

py0 (y0(x))

∣∣∣∣∣Sx

]

=
∫

Sx

px(x)
py0 (y0(x))

σ 2
y (x) dx,

where Sx is the inverse image of the domain Sy through the map, y0(x). Based on this we obtain
the output-weighted model-error criterion, which bounds (i.e. it is more conservative) the original
criterion (4.3) as well as the information-based criterion:

Q[σ 2
y ] =

∫

Sx

px(x)
py0 (y0(x))

σ 2
y (x; h) dx. (4.7)

In practice, Sx is chosen as Rm or the support of the input pdf, px. Because of the inequality (4.6)
we can conclude that convergence of Q[σ 2

y ] also implies convergence of the metric DLog1 (y+‖y0).
However, the Q criterion is much easier to compute compared with DLog1 (y+‖y0) and it can be
employed even in high-dimensional input spaces. With the modified criterion the output data and
their pdf are taken into account explicitly. In particular, the conditional variance (or uncertainty)
of the model at each input point x is weighted by the probability of the input at this point, px(x),
as well as the inverse of the estimated probability of the output at the same input point, py0 (y0(x)).

The term in the denominator comes as a result of considering the distance between the
logarithms in (4.3). If we had started with DKL(y0‖y+; Sy), we would have cancellation of this
important term. Note that a relevant approach, based on the heuristic superposition of the
outcome and the mutual information criterion, was presented in [21]. However, there is no clear
way how the two terms should be weighted or in what sense the outcome can be superimposed
to the information content. We emphasize that the presented framework is not restricted to linear
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Figure 2. Illustration of the criterion for sample selection. Themap, T(x), aswell as the input pdf, p(x), are shown in the top row,
while the conditional pdf of the output, py(T(x)), and the weight used for sampling, p(x)/py(T(x)), are shown in the bottom
row. (Online version in colour.)

regression problems and it can also be applied to Bayesian deep learning problems (a task that
will not be considered in this work). In addition, we have not made any assumption for the
distribution of the input x.

A simple demonstration

To illustrate the properties of the new criterion we consider the map

T(x) = 0.1x1 − 0.5x2, where x ∼N (0, I).

Note that the x2 variable is more important than x1 in determining the value of the output,
given that the two input variables have the same variance. It is therefore intuitive to require more
accuracy for the second direction. However, the information distance or entropy-based criteria
take into account only the input variable statistics to select the next sample, in which case, both
directions will have equal importance. This is illustrated in figure 2, where we present contours
of the exact map, T(x), as well as of the input pdf, p(x). We also present the contours of the output
pdf conditional on the input, py(T(x)) (bottom left), and the weight that is used in the criterion Q.
Clearly, relying on the sampling criterion that uses only information about the input will not be
able to approximate the map in the most important directions. On the other hand, we observe that
the weight used in the Q criterion takes into account explicitly the importance of both the input
variable statistics but also the information that one has estimated so far from the input–output
samples. Here we used the exact map T(x) to demonstrate the weight function but in a realistic
scenario the estimated mean model y0(x) will be used to approximate the output pdf.
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(a) Approximation of the criterion for the symmetric output pdf
Our efforts will now focus on the efficient approximation of the criterion Q. To simplify the
presentation we will focus on the scalar output case, d = 1. The first step of the approximation
focuses on the denominator. This term introduces the dependence to the output data and acts as
a weight to put more emphasis on regions associated with large deviations of y(x) from its mean.
We will approximate the weight, p−1

y0 (y), by a quadratic function that optimally represents it over
the region of interest, Sy. Therefore, for the scalar case we will have

p−1
y0

(y) + p1 + p2(y − µy)2, (4.8)

where p1, p2 are constants chosen so that the above expression approximates the inverse of the
output pdf optimally over the region of interest. We use this expression into the definition of Q
(equation (4.7)) and obtain the approximation

Q[σ 2
y ] + p1

∫
p(x)σ 2

y (x) dx + p2

∫
(y0(x) − µy0 )2p(x)σ 2

y (x) dx. (4.9)

Note that the first term does not depend on the output values but only on the input process. It
is essentially the same term that appears in the entropy-based criteria. The second term however
depends explicitly on the deviation of the output process from its mean and therefore on the
output data. Specifically, it has large values in regions of x where the output process has important
deviations from its mean, essentially promoting the sampling of these regions. The two constants
p1, p2 provide the relative weight between the two contributions. They are computed for a
Gaussian approximation of the output pdf in the electronic supplementary material, appendix B.
For the case where the pdf py is expected to have important skewness, i.e. asymmetry around its
mean, a linear term can be included in the expansion of p−1

y0 (y), so that this asymmetry is reflected
in the sampling process.

(b) Linear regression with Gaussian input
For the case of linear regression the first term in the criterion (4.9) will take the form

∫
p(x)σ 2

y (x; h) dx = σ 2
V(1 + µc(h)) = σ 2

V(1 + tr[S′−1
xx Rxx]), (4.10)

where we have considered the case of a scalar output with V = σ 2
V . The second term of the

criterion (4.9) will take the form

1
σ 2

V

∫
(y0(x) − µy0 )2p(x)σ 2

y (x; h) dx =
∫

[(SyxS−1
xx (x − µx)]2(1 + xTS′−1

xx x)p(x) dx

= c0 +
∫

(x − µx)TS−1
xx ST

yxSyxS−1
xx (x − µx)xTS′−1

xx xp(x) dx,

where c0 is a constant that does not depend on h

c0 =
∫

[(SyxS−1
xx (x − µx)]2p(x) dx = tr[S−1

xx ST
yxSyxS−1

xx Cxx].

We observe that the second term depends on fourth-order moments of the input process x but
also on the output values of the samples Y. This term can be computed in a closed form for the
case of Gaussian input. Specifically,

∫
(x − µx)TS−1

xx ST
yxSyxS−1

xx (x − µx)xTS′−1
xx xp(x) dx

=
∫

x′TS−1
xx ST

yxSyxS−1
xx x′x′TS′−1

xx x′p(x′) dx′

+
∫

x′TS−1
xx ST

yxSyxS−1
xx x′x′TS′−1

xx µxp(x′) dx′
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+
∫

x′TS−1
xx ST

yxSyxS−1
xx x′µT

x S′−1
xx x′p(x′) dx′

+
∫

x′TS−1
xx ST

yxSyxS−1
xx x′µT

x S′−1
xx µxp(x′) dx′,

where x′ = x − µx and p(x′) is the zero-mean translation pdf of the original one. The second and
third term on the right-hand side vanish as they consist of third-order central moments of a
Gaussian random variable. For the first term we employ a theorem for the covariance of quadratic
forms, which gives for two symmetric matrices, A and B [19]:

cov(xTAx, xTBx) = 2tr(ACxxBCxx) + 4µxACxxBµx.

Therefore,

E[xTAxxTBx] = 2tr(ACxxBCxx) + 4µxACxxBµx − tr(ACxx)tr(BCxx).

From this equation, it follows,
∫

x′TS−1
xx ST

yxSyxS−1
xx x′x′TS′−1

xx x′p(x′) dx′

= 2tr[S−1
xx ST

yxSyxS−1
xx CxxS′−1

xx Cxx] − c0 tr[S′−1
xx Cxx].

In addition, the last term becomes
∫

x′TS−1
xx ST

yxSyxS−1
xx x′µT

x S′−1
xx µxp(x′) dx′ = µT

x S′−1
xx µx tr[S−1

xx ST
yxSyxS−1

xx Cxx] = c0µ
T
x S′−1

xx µx.

We collect all the computed terms and obtain

Q(h)
1

σ 2
V

= p1(1 + tr[S′−1
xx Cxx] + µT

x S′−1
xx µx) + p2c0(1 + µT

x S′−1
xx µx − tr[S′−1

xx Cxx])

+ 2p2tr[S−1
xx ST

yxSyxS−1
xx CxxS′−1

xx Cxx]. (4.11)

This is the form of the Q criterion under the assumption of Gaussian input for the case of linear
regression. For the case of zero mean input it becomes

Q(h)
1

σ 2
V

= (p1 − p2c0) tr[S′−1
xx Cxx] + 2p2 tr[S−1

xx ST
yxSyxS−1

xx CxxS′−1
xx Cxx] + const. (4.12)

The coefficients p1, p2 are determined using the output pdf of the estimated model through the
samples D (equation (4.8)), i.e. the pdf of y0(x). Note that the exact form of the output pdf, used
in the criterion, is not important at this stage as it only defines the weights of the criterion Q(h).
For a Gaussian approximation of the output process the coefficients are given in the electronic
supplementary material, appendix B.

(c) Nonlinear regression with Gaussian input
For the case of regression with nonlinear basis the first term in the criterion (4.9) will take the form

∫
p(z)σ 2

y (z; h) dz = σ 2
V(1 + µc(h)) = σ 2

V(1 + tr[S′−1
φφ Cφφ] + µT

φS′−1
φφ µφ), (4.13)

where we have considered the case of a scalar output with V = σ 2
V . The second term of the

criterion (4.9) will take the form

1
σ 2

V

∫
(y0(z) − µy0 )2p(z)σ 2

y (z; h) dx =
∫

[(SyφS−1
φφ (φ(z) − µφ)]2(1 + φ(z)TS′−1

φφ φ(z))p(z) dz

=
∫

[(SyφS−1
φφ (φ − µφ)]2(1 + φTS′−1

φφ φ)p(φ) dφ,

where we expressed the integral using the pdf for the basis elements φ. In this way the integral
is now expressed exactly as in the linear regression case. To obtain a closed approximation
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we approximate the pdf for φ through its second-order statistics (i.e. approximate p(φ) with a
Gaussian pdf). The analysis shown for the linear case with Gaussian input is then valid leading
to the following expression for the Q criterion:

Q(h)
1

σ 2
V

= p1(1 + tr[S′−1
φφ Cφφ] + µT

φS′−1
φφ µφ) + p2c0(1 + µT

φS′−1
φφ µφ − tr[S′−1

φφ Cφφ])

+ 2p2tr[S−1
φφST

yφSyφS−1
φφCφφS′−1

φφ Cφφ]. (4.14)

So, for a given basis φ(z) one needs first to obtain the mean vector µφ and covariance Cφφ using
the expressions in §3c and then follow the same steps as in the linear case. The expression for the
gradient of the Q criterion, under general choice of φ(z) is given in the electronic supplementary
material, appendix A.

5. Examples
(a) Linear map with a 2D input space
To demonstrate the properties of the new criterion we first consider the two-dimensional problem

T(x) = â1x1 + â2x2 + ε, where x ∼N
(

0,

[
σ 2

1 0
0 σ 2

2

])

and σ 2
V = 0.05. (5.1)

We consider two cases of parameters

— case I: â1 = 0.8, â2 = 1.3, and σ 2
1 = 1.4, σ 2

2 = 0.6.
— case II: â1 = 0.01, â2 = 2.0, and σ 2

1 = 2.0, σ 2
2 = 0.2.

The two cases are presented in figure 3 in polar coordinates. The black arrows indicate the
principal directions of the input covariance, scaled according to the eigenvalues of the covariance
matrix, while the green arrow indicates the direction of the gradient of the map T(x). While for
the first case the contributions of both input variables to the output are comparable and thus
sampling is important for both of them, for case II the contribution of the first input variable is
negligible. However, this input variable is the one with the highest uncertainty.

For each case we assess four adaptive sampling strategies according to the criteria:

(1) The directly computed mutual information, I(x, y | D′) is maximized in S1,
(2) The second-order statistical approximation of the mutual information, IG(x, y | D′) is

maximized in S1,
(3) The uncertainty parameter, µc(h) is minimized in S1,
(4) The output-weighted model error criterion Q(h) is minimized in S1.

For the Q criterion we choose p1 = 0 and p2 = 1 to emphasize the role of the second, new term that
takes into account the output samples. This case of parameters corresponds to the case where we
optimally approximate p−1

y0 over the full real axis, i.e. β → ∞ using the notation of the electronic
supplementary material, appendix B. We denote this criterion as Q∞. We also compare with a
Monte Carlo approach where samples are randomly generated from the input distribution of x
and then normalized so they belong in S1.

For the adaptive strategies based on µc and Q∞ we use the analytical expressions (3.2)
and (4.12), respectively, together with their gradient computed in the electronic supplementary
material, appendix A. This allowed us to use gradient-based optimization methods. For
the adaptive strategies based on the mutual information, I(x, y | D, h) and its second-order
approximation, IG(x, y | D, h), we used a random sampling approach and equations (3.5) and (3.7),
respectively. Specifically, we generated 105 samples from the input distribution x and used the
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Figure 3. Black arrows indicate direction and magnitude of the principal directions (and corresponding eigenvalues) of the
input covariance Cxx for each case of parameters. The green arrow indicates the gradient of the map T(x). (Online version in
colour.)

exact expression:
Ex[Ey | x(x; h)] = Ex[log(1 + xTS′−1

xx x)],

which was numerically computed as an ensemble average. For the computation of I we also
generated 105 realizations of the vector a = (a1, a2), which according to the linear regression
method follows the normal distribution (2.3):

p(a | D′, σ 2
V) ∼N (SyxS−1

xx , σ 2
VS′−1

xx ).

Next, we computed a pdf approximation for y using the generated samples and the kernel
smoothing functions method [22], and we approximated the entropy of the resulted distribution
by direct numerical integration. Note that this additional step, required for I, has a vast
computational cost. Most importantly, because of the absence of an analytical expression for the
gradient of I, its application to high dimensional inputs is impossible. For this example the next
sample vector was parametrized as h = [cos(θ ), sin(θ )] and the criterion was optimized by direct
selection of the maximum value over a one-dimensional grid for θ ∈ [−(π/2), (π/2)].

All four adaptive strategies are initiated with four random samples drawn from the x
distribution. For each case we present the average error curve over 400 experiments, i.e.
experiments with different sets of initial samples and different realizations of the observation
noise (figure 4: left panels). In particular, for each of these 400 experiments and for every
number of N samples, we compute the conditional output variance, σ 2(y | DN) (obtained using
the estimated map from the N samples), and we compute its difference from the exact output
variance, σ 2(y) (obtained using the exact map). Then we average the absolute difference
|σ 2(y | DN) − σ 2(y)| over all 400 experiments. The standard deviation for each error curve is also
presented in the shaded region. For the four adaptive sampling strategies we also present the pdf
of the orientation of the samples h = (h1, h2), i.e. θ = arctan(h2/h1).

In both cases of parameters we observe that the strategy based on the Q∞ criterion outperforms
the other three adaptive strategies. This difference in performance is even more pronounced for
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Figure 4. Comparison of the four adaptive strategies based on di,erent criteria and the Monte Carlo method. On the left plots
the average error of the output variance is shown with respect to the number of samples used over 400 experiments for each
criterion. The shaded regions indicate 0.2σ based on the 400 numerical experiments. The pdf of these samples is shown for
each adaptive strategy in the plots on the right. The black vectors indicate the eigenvectors of the input covariance Cxx and the
green vector denotes the gradient of the exact map: (â1, â2). (Online version in colour.)

case II, where one of the input variables has negligible contribution but large uncertainty. An
interesting observation is that the Monte Carlo strategy performs as good as the µc criterion and
the mutual information criteria, I and IG. This is not a surprise given that IG depends primarily
on µc and the latter is designed to give more emphasis on input directions with large uncertainty,
without taking into account their expected contributions to the output, similarly with Monte
Carlo. The same conclusions hold even for the full mutual information criterion, an indication
that although I partially incorporates the output samples, it does not do it in a useful way.

Similar observations can be made if we examine the pdf for the input samples obtained from
the four adaptive strategies. We can see that for each case of parameters the strategies based on
µc, I, and IG behave very similarly and tend to place input samples in the direction of larger
uncertainty. On the other hand, the Q∞-based strategy is placing more samples in directions
that compromise between large expected impact to the output variable but also with important
uncertainty. We note that all the cases presented here correspond to a known output variance, σ 2

V .
Results for this example corresponding to unknown variance σ 2

V are presented in the electronic
supplementary material, appendix D.

(b) A high-dimensional linear problem
The next problem to demonstrate the optimal sampling approach is a 20-dimensional linear
function. Note that for this case optimization of the mutual information is an impossible task
given the fact that the full expression for the mutual information is hard to optimize in the absence
of expressions for its gradient.
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curve) for the high dimensional problem (5.2). (Online version in colour.)

Specifically, we consider the system

T(x) =
20∑

m=1

âmxm + ε, where xm ∼N (0, σ 2
m), m = 1, . . . , 20, (5.2)

where the coefficients and input variances are chosen as

âm =
(

1 + 40
( m

10

)3
)

10−3, m = 1, . . . , 20

and

σ 2
m =

(
1
4

+ 1
128

(m − 10)3
)

10−1, m = 1, . . . , 20.

This system represents a typical high-dimensional case, where we have some very influential
degrees of freedom and some that have negligible impact to the output variable. The energy of
these coefficients is typically not related to their influence to the output variable. In figure 5 we
present the coefficients and input variances.

For the observation noise we consider two cases:

— case I: σ 2
ε = 0.05 (accurate observations)

— case II: σ 2
ε = 0.5 (noisy observations)

Given that
∑20

m=1 â2
mσ 2

m = 0.0272 the first case corresponds to relatively accurate observations
while the second is a highly noisy observations case. We expect the adaptive sampling approach
to be more valuable for the second case, given that for the first case we need very few samples
anyway.

We apply the adaptive criteria after we have obtained one sample per input direction, to
guarantee that the matrix Sxx is invertible. Then we run each numerical experiment L = 400 times
to make sure that the randomness due to the observation noise does not favour any method.

In figure 6 we present the performance of the sampling approach based on µc and Q∞, as
well as a direct Monte Carlo approach. For the first case (accurate observations), shown in the left
plot, we note a clear advantage of the Q∞ sampling approach that takes into account the output
samples. This advantage is more pronounced in the second case of noisy observations, where the
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approach using the Q∞ criterion obtains an order of magnitude higher accuracy from the very
first samples. Note that the µc sampling strategy is comparable with the Monte Carlo approach,
since it does not take into account the output samples.

The same conclusions can be obtained if we observe the variance of the hN components,
over different runs of the numerical experiments, l = 1, . . . , L (here L = 400), i.e. over different
realizations of the observation noise:

σ 2(hm) = 1
L

L∑

l=1

(hN,m,l − h̄N,m)2, where h̄N,m = 1
L

L∑

l=1

hN,m,l, m = 1, . . . , 20. (5.3)

Results are shown in figure 7. Sampling according to µc results in a distribution that
is following the shape of the variance σm. Specifically, the scheme iteratively changes input
directions based on their variance, starting from the most energetic (m = 1 and m = 20) and
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moving towards the less energetic ones (m = 10). Then the loop begins again, until all the input
directions are equally well sampled, after which point the sampling is random.

Sampling according to Q∞, on the other hand, is performed in one loop starting from the most
energetic directions, but giving more emphasis in the input directions close to m = 20 that have
both high energy and large contribution to the output y. This ‘asymmetry’ in the sampling results
in significantly faster convergence compared with the Monte Carlo method or the µc criterion.

The effect of the domain selection Sy is discussed in detail in the electronic supplementary
material, appendix C, where a parametric study is also shown. Specifically, if we use a finite
number of standard deviations to optimally approximate p−1

y0 (equation (4.8)), by employing
Qβ (with β finite), the term µc in the criterion improves the behaviour of sampling for large N
(electronic supplementary material, appendix C).

(c) A 2D nonlinear problem with nonlinear basis functions
The next application involves a nonlinear map with a 2D input space. Specifically, we consider
the two-dimensional nonlinear problem

T(z) = â1z1 + â2z2 + â3z3
1 + â4z3

2 + ε, where x ∼N
(

0,

[
σ 2

1 0
0 σ 2

2

])

and σ 2
V = 10−4. (5.4)

We consider two cases of parameters

— case I : â1 = 10−2, â2 = 5, â3 = 0, â4 = 102, and σ 2
1 = 2.10−1, σ 2

2 = 5.10−3.
— case II: â1 = 10, â2 = 5, â3 = 0, â4 = 102, and σ 2

1 = 2.10−3, σ 2
2 = 5.10−3.

In the first case the output has very weak dependence on the first variable although the latter has
very large variance. Moreover, the second variable has significantly smaller variance but plays the
dominant role for the output. On the other hand, for the second case, both input variables play an
important role and their variance is also comparable. The exact pdf computed with an expensive
Monte Carlo simulation is shown in figure 8. Both distributions are characterized by heavy tails.

We set up a nonlinear Bayesian regression scheme with the following odd basis functions:

φ(z) = zi
1zj

2, (i, j) ∈ {(0, 1), (1, 0), (1, 1), (0, 3), (3, 0)}. (5.5)

This set of basis functions contains all the odd monomials with an order less or equal to 3. We
observe that for the nonlinear case although the input space is two-dimensional, the regression is
performed in a five-dimensional space. To avoid an ill-conditioned matrix Sφφ we assume a prior
with covariance K = αI (see equation (2.4)). For the cases considered we set α = 10−1. For each
case we first choose randomly (using the distribution of z) two samples. Then we use the criteria
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based on µc (equation (3.10)) and Q0.01 (equation (4.14)) to optimize 100 samples. For each step
we employed a gradient-based optimization using the expressions presented in the electronic
supplementary material, appendix A and we restricted the samples in the disk to: |z| ≤ 2. For
each criterion we performed 200 optimization cycles, i.e. we computed for each criterion the full
sequence of 100 samples 200 times and we computed the statistics of the error (mean and standard
deviation), so that the results are not sensitive on the randomness due to observational noise or
the initial samples.

The convergence analysis for each criterion is presented in figure 9. The left plot shows the
convergence of the two methods for the parameters of the first numerical experiment (case I).
Each curve is the mean error computed from the 200 optimization cycles, while the shaded area
indicates the spread across different runs. Note that for case I there is only input variable z2
that plays a dominant role on the output, while the other input variable has negligible effect
but important variance. In agreement with the results of the linear problems, the samples based
on the Q0.01 criterion achieve better performance as they rapidly align with the direction that has
the most important influence on the output.

This is not the case for the samples based on the µc criterion that align primarily with the
directions of importance variance, resulting in a slower convergence. For the case II parameters
both input directions have comparable variance and comparable effect to the output. In this case,
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as expected, the two criteria have comparable performance. This is clearly demonstrated by the
right plot in figure 9. Finally, in figure 10 we demonstrate the convergence of the pdfs for the first
case of parameters.

6. Conclusion
We have analysed fundamental limitations of popular criteria for samples selection, employed in
the optimal experimental design community. These criteria are based on maximization of entropy-
based quantities, typically having the form of mutual information between input and output
variables. Specifically, we have shown that beyond the large computational cost associated with
these criteria that restricts their applicability to very low-dimensional problems, there is weak
dependence of the induced sampling process to the output values of the existing samples when
the variance of the output noise is assumed to be known. Even for the case of unknown variance,
although the dependence on the output values is not controllable and can become very weak.
In this way, directions of the parameter space that contribute the most to the output may not be
emphasized. This is not a failure of the existing criteria but rather an intrinsic property following
the fact that they are designed to converge uniformly over all parameters, independently of their
influence to the output.

Motivated by these limitations, we have presented a new criterion for optimally selecting
training samples that significantly accelerates the convergence of Bayesian regression schemes
with respect to the state of the art. The criterion explicitly takes into account the fact that different
parameter values have different impacts to the output of interest, with some of them being
much more influential than others. In this way, it places more samples towards the influential
parameters, which are also characterized by important uncertainty. In addition, the introduced
criterion is more practical to compute, compared with mutual information criteria, as its gradient
can be analytically derived, allowing for the employment of gradient optimization methods.
Therefore, the new method allows for the optimization of samples, even for a large number
of parameters, paving the way for optimal experimental design and active learning in high
dimensions.

Future work will focus on the formulation of the presented framework on the training of deep
neural networks. The presented approach is expected to have an important impact in application
areas such as optimal experimental design for systems where very few experiments are available
(e.g. biology), adaptive sampling in complex environments with multiple objectives, uncertainty
quantification and extreme event statistics in challenging problems such as fatigue-crack, coastal
flooding, critical network events, and others.
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Appendix A: Gradient of trace criteria
Several criteria in this work take the form

λ[h] = tr[S′−1
xx C], (A1)

where C is a symmetric matrix and S′
xx = Sxx + hhT . The gradient of this expression can be

explicitly computed. We first note that

∂S′−1
xx

∂hk
= −S′−1

xx
∂(hhT )

∂hk
S′−1

xx ,

where,
∂(hhT )

∂hk
= δikhj + δkjhi.

In this way we will have

∂λ

∂hk
= −tr[S′−1

xx
∂(hhT )

∂hk
S′−1

xx C]

= −[S′−1
xx ]ij(δjkhm + δkmhj)[S′−1

xx ]mn[C]ni

= −hm[S′−1
xx ]mn[C]ni[S′−1

xx ]ik − [S′−1
xx ]kn[C]ni[S′−1

xx ]ijhj

= −hT S′−1
xx CS′−1

xx − (S′−1
xx CS′−1

xx h)T

= −2hT S′−1
xx CS′−1

xx .

For the case of nonlinear regression h = φ(z). Then

∂(φ(z)φ(z)T )
∂zk

= ∂φi

∂zk
φj + ∂φj

∂zk
φi.

In this way we will have

∂λ

∂zk
= −[S′−1

φφ ]ij(∂φj

∂zk
φm + ∂φm

∂zk
φj)[S′−1

φφ ]mn[C]ni

= −2[φT S′−1
φφ CS′−1

φφ ]j
∂φj

∂zk
.

(A2)



Appendix B: Optimal approximation of p−1
y

To approximate the inverse of the output pdf, 1
py

over Sy we are going to use a least square approach.
Specifically, we will assume a symmetric output density and we will employ the approximation

1
py(y) " 1

py(0) + p2(y − µy)2. (B1)

The constant p2 is chosen so that we have optimal least square approximation over the interval
[µy, µy + βσy] where β is a fixed parameter that defines the output region of interest, Sy. By direct
minimization we obtain

p2 = 5
β5σ3

y

∫ µy+βσy

µy

y2

py(y)dy − 5
3β2py(µy) .

For the case of Gaussian output the above expression takes the form

p2 = 5
√

2π

β5σy

(∫ β

0
z2e

z2
2 dz − β3

3

)
.

In this way the least square approximation over the interval [µy, µy + βσy] will be

1
py(y) "

√
2πσy + 5

√
2π

β5σy

(∫ β

0
z2e

z2
2 dz − β3

3

)
(y − µy)2. (B2)

We denote the criterion with the coefficients obtained from this approximation as Qβ . Specifically,

Qβσ(h) 1
σ2

V

=
√

2πσy0(1 + tr[S′−1
xx Cxx] + µT

x S′−1
xx µx)

+ 5
√

2π

β5σy0

(∫ β

0
z2e

z2
2 dz − β3

3

)
(
c0(1 + µT

x S′−1
xx µx) + 2tr[S−1

xx ST
yxSyxS−1

xx CxxS′−1
xx Cxx]

)
.

(B3)

For large values of β we have limβ→∞ κ = ∞ and the Q criterion is essentially dominated by the
output-dependent term. For the case of very small β we have limβ→0 κ =

√
2π

σy
.



Appendix C: Effect of the weights in the Q criterion
Here we present additional results for Case I of the high dimensional system. Specifically, in Figure
11 we present the performance of the sampling algorithm according to various choices of the β
parameter. The corresponding sampling patterns are shown in (Figure 12). All cases presented are
averaged over L = 500 numerical experiments to remove the effect of observational noise.

Figure 11: More detailed results for Case I of the high dimensional problem. The effect of the β
parameter is shown. While for the first iterations it plays no role, asymptotically it improves the
behavior of the sampling scheme.

We observe that for β = 2 or β = 3 the performance for small N is very close to the one obtained
with Q∞. For larger N , however, the performance with finite β is improved. In addition to the finite
β case, we also present two cases with fixed p1, p2. Specifically, we have Q0.01 representing the case
p1 = 0.01 and p2 = 1, while Q0.001 represents the case p1 = 0.001 and p2 = 1. It is interesting to
observe that Q0.001 has better performance for small N compared with all other criteria.



Figure 12: More detailed results for the samples of h with respect to the number of iteration N for
Case I of the high dimensional problem. The effect of the β parameter is shown.



Appendix D: The case of unknown σ2
V

Here we consider the case of a priori unknown covariance σ2
V . To simplify the presentation we will

restrict our analysis to scalar output and vector input. We formulate a linear regression model with
an input vector x that multiplies a coefficient vector a to produce an output scalar y, with Gaussian
noise added that has unknown variance:

y = aT x + e,

e ∼ N (0, σ2
V ),

p(y|x, a, σ2) = N (aT x, σ2).
(D1)

For the vector a we assume a Gaussian prior with mean m = 0 and covariance K = Iα, where α is
a parameter that will be optimized with respect to the evidence. This has the form:

p(a) ∼ N (0, Iα). (D2)

A conjugate prior for σ2
V is the inverse Gamma (or inverse Wishart in the multi-dimensional case):

p(σ2
V ) = q(σ2

0 , ν)
(σ2

V )1+ ν
2

exp
(

− σ2
0

2σ2
V

)
, (D3)

where q is a normalization constant: q = σν
0

2
ν
2 Γ(ν/2)

, σ2
0 is a prior value for σ2

V and ν is a parameter
that is optimized via empirical Bayes.

The posterior for the unknown coefficients will be given by eq. (3), while the posterior for σ2
V

takes the form

p(σ2
V |D) =

q(σ2
Y|X + σ2

0 , N + ν)
(σ2

V )1+ N+ν
2

exp
(

−
σ2

Y|X + σ2
0

2σ2
V

)
, (D4)

where, σ2
Y|X = YYT − (α + 1)−1SyxS−1

xx ST
yx. Multiplying the predictive distribution (5) with the

posterior for σ2 and integrating over this argument we have the predictive pdf (t−distributed):

p(y|x, D) = T (SyxS−1
xx x, (σ2

Y|X + σ2
0)(1 + c)−1, N + ν + 1) (D5)

where the parameters (α, ν) are chosen by maximizing the evidence (set the gradient of p(Y|X)
equal to zero), which leads to the following fixed-point problem:

σ̂2 =
σ2

Y|X + ν

N + ν
,

α = m

(σ̂2)−1SyxSxxST
yx − m

,

νnew = ν
Ψ( N+ν

2 ) − Ψ( ν
2 )

log
(

σ2
Y|X
ν + 1

)
+ (σ̂2)−1 − 1

,

(D6)

where Ψ(x) = d log Γ(x)
dx is the digamma function.



Selecting inputs by maximization of the mutual information
We follow the same steps as in the known variance case. We hypothesize a new sample, xN+1 =
h ∈ Sm−1 and the goal is maximizing the entropy transfer or mutual information between the input
and output variables, when this new sample is added. For this case of a priori unknown variance
σ2

V we denote the mutual information as Î. We will have

Î(x, y|D′) = Ex + Ey|D′ − Ex,y|D′ . (D7)

Following the same steps with section 3.2 we have for the entropy of p(x, y|D′):

Ex,y(h) = Ex[Ey|x(x; h)] + Ex.

We focus on computing the first term on the right hand side. In this case of a priori unknown variance
the conditional output follows the t−student distribution (eq. (D5)). Using standard expressions
for its entropy we have (setting N ′ = ν + N + 1)

Ey|x(x; h) = N ′ + 1
2

(
Ψ

(
N ′ + 1

2

)
− Ψ

(
N ′

2

))
+ log

(√
N ′B

(
N ′

2 ,
1
2

))

−1
2 log(1 + c(x; h)) + 1

2 log(σ2
Y′|X′ + σ2

0),

where,

σ2
Y′|X′ = Y′Y′T − (α + 1)−1S′

yxS′−1
xx S′T

yx

= YYT + (SyxS−1
xx h)2 − (α + 1)−1SyxS−1

xx [Syx + SyxS−1
xx hhT ]T

= σ2
Y|X + α

1 + α
(SyxS−1

xx h)2.

(D8)

Note that in the second equality we used eq. (8). In general, we cannot compute analytically the
entropy of the output, conditional on D′. To this end, the mutual information of the input and
output, conditioned on D′, takes the form

Î(x, y|D′) = Ey(h) − 1
2E

x[log(1 + c(x; h))] + 1
2 log(σ2

Y′|X′(h) + σ2
0) + R, (D9)

where R are terms that do not depend on the new point h. The second and third terms are computed
for each h with direct Monte-Carlo using 105 samples. It is important to emphasize that the mutual
information criterion with unknown variance, (D9), depends on the output values Y (through the
third term on the right hand side), in contrary to the known variance case (section 3.2). However,
as it can be seen from eq. (D8) this dependence can be very weak or even zero depending on the
value of the parameter α which is chosen based on maximization of the evidence.

In the last expression the term with the highest computational cost is the entropy of the output
(first term) as one needs to estimate the histogram of y. An analytical approximation can be
obtained based on a Gaussian assumption for the output, y. In this case the mutual information
takes the form:

ÎG(x, y|D′) = 1
2 log(2πeσ2

y(h)) − 1
2E

x[log(1 + c(x; h))] + 1
2 log(σ2

Y′|X′(h) + σ2
0) + R, (D10)

where σ2
y(h) is the estimated variance of the output after a new candidate input h. This is computed

with Monte-Carlo simulation of y, i.e. generate 105 random realizations using (D4), (3) and (D1).



Q−criterion with unknown output variance
We emphasize that the selection approach using the Q criterion is not modified at all for the case
of unknown output variance. This is because the unknown variance σ2

V appears as a multiplication
factor in the Q criterion (eq. (31)), i.e. σ2

V is re-estimated each time a new data point is added
using equation (31) but its value does not modify the optimal sample h.

Numerical comparison for the 2d linear problem
Results and direct comparison with the case of known σ2

V are shown in Figure 13 for the linear
problem of section 5.1 with a two-dimensional input. For all methods shown we have run 400
experiments (as we did for Fig. 4). In the higher dimensional problem the approach based on direct
computation of mutual information is not applicable due to the vast computational cost. As we
can observe the selection process based on mutual information with unknown output variance ( ÎG

or Î), has slightly improved performance compared with the case of known σ2
V (IG or I) but this

improvement is observed only for very small number of samples. As N increases the criterion with
unknown output variance is comparable with mutual information with given output variance (IG

or I). This is because the optimal value of α tends to zero as N increases and therefore the criteria
with known and unknown output variance become practically identical.

It is important to emphasize that beyond the faster convergence of the Q−criterion, its main
advantage is the low computational cost (many orders of magnitude smaller compared with the
methods based on mutual information either with direct computation or through a Gaussian ap-
proximation) which allows applicability to higher dimensional problems.



Figure 13: Comparison of selection methods based on different criteria and the Monte-Carlo method
including also the case of unknown σ2

V . Problem setup and parameters are as in section 5.1 and
Figure 4. The following methods are shown: mean square error, µc; Q−criterion; Gaussian approx-
imation of mutual information with known variance, IG, and with unknown variance, ÎG; directly
computed mutual information with known variance, I, and unknown variance, Î. The Q−criterion
does not depend on whether the noise variance is known or estimated. Note that the pdf of samples
(right plots) between Î and ÎG overlap, i.e. are indistinguishable.
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List of corrections
1. Page 11: Reference to [20] should read: ‘Theorem 3.18, p. 113’.

2. After eq. (4.5), add the definition: d
ds = ˆ

ˆs1
ˆ

ˆs2
... ˆ

ˆsd
.

3. Eq. (4.6) should have a square root at the right hand side:

⁄ -- d
dsE[‡2

y(x) · 1y0(x)=s]
--

py0(s) ds 6 Ÿ0

A⁄ E[‡2
y(x) · 1y0(x)=s]

py0(s) ds
B1/2

.
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