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a b s t r a c t

This work considers methods for imposing sparsity in Bayesian regression with applications in non-
linear system identification. We first review automatic relevance determination (ARD) and analytically
demonstrate the need to additional regularization or thresholding to achieve sparse models. We then
discuss two classes of methods, regularization based and thresholding based, which build on ARD to
learn parsimonious solutions to linear problems. In the case of orthogonal features, we analytically
demonstrate favorable performance with regard to learning a small set of active terms in a linear
system with a sparse solution. Several example problems are presented to compare the set of proposed
methods in terms of advantages and limitations to ARD in bases with hundreds of elements. The aim
of this paper is to analyze and understand the assumptions that lead to several algorithms and to
provide theoretical and empirical results so that the reader may gain insight and make more informed
choices regarding sparse Bayesian regression.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

In many modeling and engineering problems it is critical to
uild statistical models from data which include estimates of the
odel uncertainty. This is often achieved through non-parametric
ayesian regression in the form of Gaussian processes and similar
ethods [1]. While these methods offer tremendous flexibility
nd have seen success in a wide variety of applications they
ave two significant shortcomings; they are not interpretable
nd they often fail in high dimensional settings. The simplest
ase of parametric Bayesian regression is Bayesian ridge regres-
ion, where one learns a distribution for model parameters by
ssuming identical independently distributed (iid) Gaussian pri-
rs on model weights. However, Bayesian ridge requires the
esearcher to provide a single length scale for the prior that stays
ixed across dimensions. It is therefore not invariant to changes
n units. Furthermore Bayesian ridge regression does not yield
parse models. In a high dimensional setting this may hinder
he interpretability of the learned model. Automatic Relevance
etermination (ARD) [2–4] addresses both of these problems.
RD learns length scales associated with each free variable in a
egression problem. In the context of linear regression, ARD is
ften referred to as Sparse Bayesian Learning (SBL) [4–6] due to
ts tendency to learn sparse solutions to linear problems. ARD
as been applied to problems in compressed sensing [7], sparse
egression [8–12], matrix factorization, [13], classification of gene

✩ Python code: https://github.com/snagcliffs/SparseARD.
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ttps://doi.org/10.1016/j.physd.2021.132843
167-2789/© 2021 Elsevier B.V. All rights reserved.
expression data [14], earthquake detection [15], Bayesian neural
networks [2], as well as other fields.

More recently, some works have used ARD for interpretable
nonlinear system identification. In this setting a linear regression
problem is formulated to learn the equations of motion for a
dynamical system from a large collection of candidate func-
tions, called a library. Traditionally, frequentist methods have
been applied to select a small set of active terms from the
candidate functions. These include symbolic regression [16–18],
sequential thresholding [19–21], information theoretic methods
[22,23], relaxation methods, [24,25], and constrained sparse opti-
mization [26]. Bayesian methods for nonlinear system identifica-
tion [27,28] including ARD have been applied to the nonlinear
system identification problem for improved robustness in the
case of low data [11] and for uncertainty quantification [9,10,12].
The critical challenge for any library method for nonlinear system
identification is learning the correct set of active terms.

Motivated by problems such as nonlinear system identifica-
tion, where accuracy in determining the sparsity pattern on a
predictor is paramount, we focus on the ability of ARD to accu-
rately learn a small subset of active terms in a linear system. This
is in contrast to convergence in the sense of any norm. Indeed,
it was previously shown [11] that ARD converges to the true
predictor as noise present in the training data shrinks to zero.
However, we show analytically that ARD fails to obtain the true
sparsity pattern in the case of an orthonormal design matrix,
leading to extraneous terms for arbitrarily small magnitudes of
noise. This result motivates further considerations for imposing

sparsity on the learned model.

https://doi.org/10.1016/j.physd.2021.132843
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2021.132843&domain=pdf
https://github.com/snagcliffs/SparseARD
mailto:shrudy@mit.edu
https://doi.org/10.1016/j.physd.2021.132843
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This paper explores several intuitive methods for imposing
sparsity in the ARD framework. We discuss the assumptions that
lead to each technique, any approximations we use to make
them tractable, and in some cases provide theoretical results
regarding their accuracy with respect to selection of active terms.
We stress that while sparse regression is a mature field with
many approaches designed to approximate the ℓ0-penalized least
squares problem [22,24,29–31], most of these techniques do not
consider uncertainty. We therefore only compare results of the
discussed techniques to ARD.

The paper is organized as follows. In Section 2 we provide a
brief discussion on the automatic relevance determination
method for Bayesian linear regression. Section 3 introduces two
regularization-based methods for imposing sparsity of learned
predictors from the ARD algorithm. Section 4 introduces various
thresholding-based approaches. In each case we provide analyti-
cal results for the expected false positive and negative rates with
respect to coefficients being set to zero. Section 5 includes a
more detailed comparison between methods. Section 6 includes
results of each of the methods applied to a variety of problems
including a sparse linear system, function fitting, and nonlinear
system identification. Discussion and comments towards future
work are included in Section 7.

2. Setup

We start with the likelihood model,

y = θ(x)ξ + ν

ν ∼ N (0, σ 2),
(1)

where θ : Rn
→ Rd forms a nonlinear basis, y is scalar, x ∈ Rn,

ξ ∈ Rd and ν is normally distributed error with variance σ 2. We
assume a prior distribution on weights ξ with variance given by
hyper-parameter γ .

ξi ∼ N (0, γi) (2)

Automatic relevance determination seeks to learn the value of
parameter γ that maximizes evidence. This approach is known
as evidence maximization, empirical Bayes, or type-II maximum
likelihood [32,33]. Given a dataset D = {(xi, yi)}mi=1 we marginal-
ize over ξ to obtain the posterior likelihood of γ . This gives,

p(D|γ) =

∫
p(D|ξ)p(ξ; γ) dξ

∝ |Σy|
−

1
2 exp

(
−

1
2
yTΣ−1

y y
)
,

(3)

where Σy = σ 2Im+θ(X)Γθ(X)T , Γ = diag(γ), y is a column vector
of all observed outputs and θ(X) ∈ Rd×m is a matrix whose rows
are the nonlinear features of each observed x. We estimate γ by
maximizing Eq. (3) and the subsequent distribution for ξ, given
by ξ ∼ N (µξ ,Σξ ). Letting Θ = θ(X) this is,

µξ = σ−2ΣξΘ
Ty

Σξ =
(
σ−2ΘTΘ + Γ−1)−1 (4)

In practice γ is found by minimizing the negative log of Eq. (3)
given by,

L(γ) = − log p(D; γ) ∝ log|Σy| + yTΣ−1
y y. (5)

Following [11] (see Appendix A) the second term in (5) is equiv-
alent to,

yTΣ−1
y y = min

1
∥y − Θξ∥2

2 + ξTΓ−1ξ, (6)

ξ σ 2

2

which gives the following representation of the loss function (5),

L(γ) = min
ξ

(
log|Σy| +

1
σ 2 ∥y − θξ∥2

2 + ξTΓ−1ξ

)
. (7)

To minimize (7) we solve a sequence of ℓ1-penalized least squares
problems developed in [4]. This is shown in Alg. 1.

Algorithm 1 ARD(Θ, y, σ 2)

1: Initialize γ

2: while not converged:

3: c(k+1)
= ∇γ

(
log
⏐⏐⏐Σ(k)

y

⏐⏐⏐) = diag
(
ΘTΣ

(k)
y

−1
Θ

)
where Σ

(k)
y = σ 2I + ΘΓ(k)Θ

4: ξ(k+1)
= argmin

ξ

{
∥y − Θξ∥2

+
∑

i η
(k+1)
i |ξi|

}
where η(k+1)

i = 2σ 2
√
c(k+1)
i

5: γ
(k+1)
i = c(k+1)

i
−1/2

|ξ
(k+1)
i |

6: Optional: relearn σ 2

7: return γ (k+1)

In cases where the variance of the linear model error is un-
known, as will be the case for many practical settings, Alg. 1
has the optional step of learning σ 2 using the formula provided
by Eq. 46 in [3]. An initial estimate of σ 2 may be set using
specified fraction of var(y) as in [5] or some other plausible
alue. In this work, we assume σ 2 is known for all examples
hown in Sections 3–5, where we are primarily concerned with
onvergence properties of Alg. 1 and its variations. In Section 6
e treat σ 2 as unknown and learn both σ 2 and γ .
Some works have used Gamma distribution priors on scale

arameters γ and precision σ−2 [3]. More recent works [4,9,11]
ave not used this formulation, so much of the following work
oes not use hierarchical priors. We note however, that the case
f a Gamma distribution prior on γ with shape parameter k =

is in fact a Laplace prior. This case has been studied as a
ayesian compressed sensing method [7] and is a special case of
he formulation considered in Section 3.

The minimization problem in step 4 of Alg. 1 may be re-
ritten, after rescaling Θ and ξ, to obtain the commonly used
agrangian form of the least absolute shrinkage and selection
perator (Lasso) [24]. Letting,

(k+1)
= argmin

ζ

y − Θ diag
(
η(k+1))−1

ζ

2
2
+ ∥ζ∥1 (8)

we get,

ξ(k+1)
= diag

(
η(k+1))−1

ζ. (9)

Typical solvers for Eq. (8) include coordinate descent [34],
proximal gradient methods [35], alternating direction method
of multipliers [36], and least angle regression (LARS) [37]. Sev-
eral example datasets considered in this manuscript resulted
in ill-conditioned Θ and therefore slow convergence of algo-
rithms for solving the Lasso subroutine. We found empirically
that all methods performed equally well on orthogonal Θ but
for ill-conditioned cases LARS outperformed other optimization
routines.

Some works [3,5] use expectation–maximization or coordinate
descent algorithms to solve Eq. (5). These methods often exhibit
rapid convergence but lack theoretical guarantees of convergence
to a critical point of Eq. (5). Furthermore, it has been observed
that they often exhibit poor performance for high dimensional
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roblems [4]. Alg. 1 is guaranteed to converge to a local minima
r saddle point of (5) [4] and is also easily adjusted to account for
ertain classes of priors on γ , as will be discussed in Section 3.2. It
is plausible that each of the methods discussed in this work could
be implemented with a coordinate descent method for solving
Eq. (5) rather than Alg. 1, but we leave a more careful comparison
to future work.

As we have noted, it is often the case that solutions to Eq. (5)
exhibit some degree of sparsity. However, such solutions are
only sparse in comparison to those derived by methods such
as Bayesian ridge, where all coefficients are nonzero. For prob-
lems where we seek to find a very small set of nonzero terms,
Alg. 1 must be adjusted to push extraneous terms to zero. In the
following two sections we will discuss five methods for doing so.

3. Regularization based methods

We begin with a discussion of two methods for regularizing
ARD to obtain more sparse predictors: inflating the variance
passed into Alg. 1 and including a prior for the distribution of
γ . In each case the sparse predictor is found as the fixed point
of an iterative algorithm. In subsequent sections we will discuss
thresholding based methods that alternate between iterative op-
timization and thresholding operations. In certain cases we refer
to the set valued subgradient of a continuous piecewise differen-
tiable function. In cases where the subgradient is a singleton we
treat it as a real number.

3.1. Variance inflation

The error variance σ 2 of likelihood model (1) may be intu-
itively thought of as a level of mistrust for the data D. Extremely
large values of σ 2 will push estimates of ξ to be dominated
y priors. It is shown in [4] that the ARD prior given by (2) is
quivalent to a concave regularization term. We therefore expect
arge σ 2 to encourage more sparse models. The regularization
ay be strengthened by passing in an artificially large value of
2 to the iterative algorithm for solving Eq. (7) or, if also learning
2, by applying an inflated value at each step in the algorithm. We
ill call this process ARD with variance inflation (ARDvi), shown

n Algorithm 2. Note that this differs from Alg. 1 only slightly
y treating the variance used in the standard ARD algorithm as
tuning parameter, with a higher variance indicating less trust

n the data and a greater regularization.

Algorithm 2 ARDvi(Θ, y, σ 2, α = inflation factor)

1: Initialize γ

2: while not converged:

3: c(k+1)
= ∇γ

(
log
⏐⏐⏐Σ(k)

y

⏐⏐⏐) = diag
(
ΘTΣ

(k)
y

−1
Θ

)
where Σ

(k)
y = ασ 2I + ΘΓ(k)Θ

4: ξ(k+1)
= argmin

ξ

{
∥y − Θξ∥2

+
∑

i η
(k+1)
i |ξi|

}
where η(k+1)

i = 2ασ 2
√
c(k+1)
i

5: γ
(k+1)
i = c(k+1)

i
−1/2

|ξ
(k+1)
i |

6: Optional: relearn σ 2

7: return γ (k+1)
3

3.1.1. Sparsity properties of ARDvi for orthogonal features
To better understand the effect of variance inflation we con-

sider Alg. 2 in the case where columns of Θ are orthogonal. Note
that this implies m ≥ n. Let

√
ρ be the vector of column norms of

Θ so that ΘTΘ = diag(ρ). Define Θ to be the extension of Θ to
an orthogonal basis of Rm that ΘT

Θ = R = diag(ρ) with the first
n entries of ρ given by ρ. Now let γ∗ be a fixed point of algorithm
2, Γ∗

= diag(γ∗, 0m−n) ∈ Rm×m, and c∗, ξ∗ be defined by steps 3
nd 4. The expression in step 3 is given by,

c∗

i = ΘT
i

(
ασ 2I + ΘΓ∗ΘT )−1

Θi

= ΘT
i

(
ασ 2ΘR−1Θ

T
+ ΘΓ

∗
Θ

T
)−1

Θi

= ΘT
i

(
Θ
(
ασ 2R−1

+ Γ
∗
)
Θ

T
)−1

Θi

= ΘT
i ΘR−1 (ασ 2R−1

+ Γ
∗
)−1 R−1Θ

T
Θi

= eTi
(
ασ 2R−1

+ Γ
∗
)−1 ei

=
1

ασ 2ρ−1
i + γ∗

i

=
1

ασ 2ρ−1
i +

|ξ∗
i |

√
c∗i√

c∗

i =

−|ξ ∗

i | +

√
ξ ∗

i
2
+ 4ασ 2ρ−1

i

2ασ 2ρ−1
i

(10)

The Karush–Kuhn–Tucker (KKT) stationarity condition for the ξ
update in step 4 gives,

0 ∈ ΘT
i

(
Θξ∗

− y
)
+ ασ 2

√
c∗

i ∂|ξ
∗

i |

∈ ΘT
i

(
Θξ ∗

− (Θξ + ν)
)
+ ασ 2

√
c∗

i ∂|ξ
∗

i |

∈ ρiξ
∗

i − ρiξi + ΘT
i ν + ασ 2

√
c∗

i ∂|ξ
∗

i |,

(11)

here ξ denotes the true value from Eq. (1). We can find the
alse positive probability for a term being included in the model
y setting ξi = 0 and finding conditions under which ξ ∗

i ̸= 0.
ubbing in the value for

√
c∗

i from Eq. (10) and dividing by ρi
gives,

ξi = 0 ⇒ −ρ−1
i ΘT

i ν ∈ ξ ∗

i +
1
2

(√
ξ ∗

i
2
+ 4ασ 2ρ−1

i − |ξ ∗

i |

)
∂|ξ ∗

i |,

(12)

here ∂|ξ ∗

i | is a set valued function taking value [−1, 1] if ξ ∗

i = 0
r {sgn(ξ ∗

i )} otherwise. If ξ ∗

i = 0 then,

ρ−1
i ΘT

i ν| ≤ sup
z∈∂|ξ∗

i |

⏐⏐⏐⏐z√ασ 2ρ−1
i

⏐⏐⏐⏐ =

√
ασ 2ρ−1

i , (13)

hile for ξ ∗
̸= 0,

|ρ−1
i ΘT

i ν| =

⏐⏐⏐⏐ξ ∗

i +
1
2

(√
ξ ∗

i
2
+ 4ασ 2ρ−1

i − |ξ ∗

i |

)
sgn(ξ ∗

i )
⏐⏐⏐⏐

=
1
2

(⏐⏐ξ ∗

i

⏐⏐+√
ξ ∗

i
2
+ 4ασ 2ρ−1

i

)
>

√
ασ 2ρ−1

i .

(14)

It follows that p(ξ ∗

i ̸= 0|ξi = 0) = p(ρ−1
i |ΘT

i ν| >

√
ασ 2ρ−1

i ).
ince ρ−1

i ΘT
i ν ∼ N (0, ρ−1

i σ 2) we find that the false positive rate
s,

PVI (α) = p(ξ ∗

i ̸= 0|ξi = 0) = 1 − erf
(√

α
)
, (15)
2
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here erf is the Gauss error function. Of particular note is that
he number of false positives is independent from the variance
f the linear model’s error term, σ 2. While the mean predictor
earned from ARD does converge in any norm to the true solution
or σ 2

→ 0, the expected number of nonzero terms in the learned
redictor stays constant. If one desires a sparse predictor, this
otivates including a small threshold parameter below which
oefficients are ignored, which we will discuss in a subsequent
ection.
We define a false negative by Algorithm 2 finding some γ ∗

i = 0
(and respectively ξ ∗

i ) when the true solution ξi ̸= 0 and find the
likelihood of such a case in a similar manner. Applying Eq. (10)
and the KKT conditions we find,

0 ∈ −ξi + ρ−1
i ΘT

i ν +

√
ασ 2ρ−1

i sgn(ξ ∗

i )

ρ−1
i ΘT

i ν ∈ ξi −

√
ασ 2ρ−1

i sgn(ξ ∗

i )

∈

[
ξi −

√
ασ 2ρ−1

i , ξi +

√
ασ 2ρ−1

i

] (16)

The false negative likelihood is therefore,

FNVI (α) = p(ξ ∗

i = 0|ξi ̸= 0) =
1
2

⎛⎝erf

⎛⎝ξi +
√
ασ 2ρ−1

i

σ

√
2ρ−1

i

⎞⎠
−erf

⎛⎝ξi −
√
ασ 2ρ−1

i

σ

√
2ρ−1

i

⎞⎠⎞⎠ (17)

ote that this function vanishes for large |ξi|, indicating that
mportant terms, as measured by |ξi| are far less likely to be
issed.
Fig. 1 demonstrates the validity of Eqs. (15) and (17) on a

imple test problem. We construct a matrix Θ ∈ R250×250 with
rthogonal columns having random magnitude such that ρi ∼

([1, 3]) and random ξ with ∥ξ∥0 = 25 having non-zero terms
distributed according to N (0, 1). The mean number of added
and missed nonzero terms across 50 trials are shown and agree
very well with the predicted values. As predicted by Eq. (17) the
number of missing terms decays to zero as σ → 0. However
the same is not true for the number of added terms, which only
decays as the inflation parameter α is increased. This phenomena
is consistent with the predictions of Eq. (17). The failure of ARDvi
to converge as σ → 0 to the true sparsity pattern for fixed α is
certainly troubling, but for sufficiently large α only an arbitrarily
small number of terms will be added.

3.2. Regularization via sparsity promoting hierarchical priors

Since the sparsity of ξ is controlled by that of γ we can
impose sparsity on ξ via regularizing γ with a hierarchical prior.
Previous approaches to ARD have suggested hierarchical priors on
γ in the form of Gamma distributions [3]. However, except for
certain cases, the general class of Gamma distributions does not
impose sparsity. Instead, we consider the use of a sparsity pro-
moting hierarchical prior on the scale parameters γ . We consider
distributions of the form,

p(γi) ∝ exp
(

−g(γi) − f (γi)
2

)
, (18)

here f , g are each convex and concave functions in γi, respec-
tively. Given data D we can follow a procedure similar to the one
 3

4

used in Section 2 and find,

p(γ|D) ∝ p(D|γ)p(γ) =

∫
p(D|ξ)p(ξ|γ) dξ p(γ)

= (2π )−m/2
|Σy|

−
1
2 exp

(
−

1
2
yTΣ−1

y y
) d∏

i=1

e
(

−g(γi)−f (γi)
2

)
.

(19)

fully Bayesian approach would estimate θ through the joint
osterior likelihood of pairs θ, γ , but this would be computation-
lly expensive. Instead, we approximate γ by its maximum-a-
osteriori estimate γMAP = argmax p(γ|D), a process sometimes
alled type-II MAP [33]. The MAP estimate of γ is found by
inimizing the negative log of the posterior distribution,

LARDr (γ) = − log p(D; γ) ∝ log|Σy| + yTΣ−1
y y

+

d∑
i=1

(f (γi) + g(γi))

= min
ξ

(
log|Σy| +

1
σ 2 ∥y − Θξ∥2

2 + ξTΓ−1ξ

+

d∑
i=1

(f (γi) + g(γi))

)
.

(20)

s expected, Eq. (20) closely resembles Eq. (7) and may be solved
ith a similar method. Alg. 3 constructs a sequence γ (i) which
onotonically increases the likelihood given by Eq. (20). Since
ARDr is nonconvex, we can only guarantee convergence to a local
inimum. We initialize Alg. 3 using the unregularized ARD value
f γ .

Algorithm 3: ARDr(Θ, y, σ 2, f , g)

1: Initialize γ using Algorithm 1
2: while not converged:

3: c(k+1)
= ∇γ

(
log
⏐⏐⏐Σ(k)

y

⏐⏐⏐+∑
g
(
γ

(k)
i

))
4: c(k+1)

= diag
(
ΘTΣ

(k)
y

−1
Θ

)
− ∇γ

∑
g
(
γ

(k)
i

)
where Σ

(k)
y = σ 2I + ΘΓ(k)Θ

5: γ (k+1)
= arg min

γ

{
min

ξ

{
1
σ2 ∥y − Θξ∥2

+
∑

i

(
ξ2i
γi

+ c(k+1)
i γi + f (γi)

)}}
6: Optional: relearn σ 2

7: return γ (k+1)

Algorithm 3 allows for significant freedom in choosing f and
g . The concave component of the prior, g , acts as a sparsity
encouraging regularizer on γ , as is common for concave pri-
ors [38]. Examples of concave g include the identity, tanh, and
approximations of the ℓ0-norm. We consider functions of the
following form;

gλ,η(γi) = min{λγi, η} (21)

here λ is a parameter controlling the strength of the regularizer
nd η is a width parameter. The convex prior f may be an
ndicator function restricting γ to a specific domain or left as
constant. In either case implementing the above algorithm is

rivial. If f is not a linear or indicator function then step 5 in Alg.
will require an internal iterative algorithm.
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Fig. 1. Number of missing and added terms using ARD with variance inflation. Dots indicate empirical average over 50 trials and dashed lines indicate values
predicted by Eqs. (15) and (17). In each case Θ is a 250 × 250 matrix with orthogonal columns and ∥ξ∥0 = 25.
Fig. 2. Number of missing and added terms using ARDr using 250 × 250 orthonormal Θ with ∥ξ∥0 = 25. Dots indicate empirical average over 50 trials and dashed
ines indicate values predicted by Eqs. (31) and (32).
λ
I
i
c

.2.1. Sparsity properties of ARDr for orthogonal features
The behavior of Alg. 3 is complicated by the generality of

unctions f and g . In the simplest case we let f be constant and
be the linear function g(γi) = λγi. This is the formulation used

n [7] and a special case of using a Gamma distribution prior with
hape parameter k = 1 on γi. The update step in line 5 of Alg. 3
ives γ (k+1)

i = |ξ
(k+1)
i |c(k+1)

i
−1/2

as in the unregularized case. For
a fixed point of Alg. 3 we have,

c∗

i = ΘT
i

(
σ 2I + ΘΓ∗ΘT )−1

Θi +
∂g
∂γi

=
1

σ 2ρ−1
i +

|ξ∗
i |

√
c∗i

+ λ

0 = ρ−1
i σ 2c∗

i
3
2 + |ξ ∗

i |c∗

i −
(
λρ−1

i σ 2
+ 1

)
c∗

i
1
2 − λ|ξ ∗

i |

(22)

he KKT conditions for the ξi update are unchanged from the
nregularized case and are given by,

∈ ρiξ
∗

i − ρiξi + θT
i ν + σ 2

√
c∗

i sgn(ξ
∗

i ). (23)

f ξ ∗

i = 0 then Eq. (22) tells us
√
c∗

i =

√
ρiσ−2 + λ and therefore,

∗

i = 0 ⇒ ξi − ρ−1
i ΘT

i ν ∈

×

[
−

√
ρ−1
i σ 2 + λρ−2

i σ 4,

√
ρ−1
i σ 2 + λρ−2

i σ 4

]
(24)

he converse of Eq. (24) is shown in Appendix B. From this
quivalence it follows that the false positive and negative rates
or Alg. 3 are given by,

Pr (λ) = p(ξ ∗

i ̸= 0|ξi = 0) = 1 − erf

⎛⎝√1 + λρ−1
i σ 2

2

⎞⎠ (25)

Nr (λ) =
1
2

⎛⎝erf

⎛⎝ξi +
√
ρ−1
i σ 2 + λρ−2

i σ 4

σ

√
2ρ−1

⎞⎠

i o

5

−erf

⎛⎝ξi −
√
ρ−1
i σ 2 + λρ−2

i σ 4

σ

√
2ρ−1

i

⎞⎠⎞⎠ . (26)

These rates are verified empirically by testing 50 trials using
250 × 250 Θ with orthogonal columns and random ρi as in
Section 3.1. Results are shown in Fig. 2. Note that for fixed λ > 0
the false negative rate does indeed approach zero as σ → 0,
however, the false positive rate increases. This indicates that a
linear model with smaller error requires higher regularization
to achieve a sparse solution. While counterintuitive, this is ex-
plained by Eq. (22). The effect of the linear regularizer appears in
Alg. 3 in the computation of ci with the addition of λ. For small
σ , ci scales as σ−2 so for σ 2

≪ λ the effect of the regularization
is negligible. In this case, the algorithm behaves more like unreg-
ularized ARD, as can be seen in Fig. 2. We also note that for any λ
as σ 2

→ 0, FPARDr (λ) → FPVI (1) and FNARDr (λ) → FNVI (1). For λσ 2

held fixed as σ varies, the false negative rate still approaches zero
and the false positive rate is constant. This latter case is shown
in Fig. 3.

Fig. 3 shows a similar convergence pattern to what we ob-
served for ARDvi in Fig. 1. The number of added terms (false
positives) remains constant as σ → 0 for any fixed regularization
parameter λ. However, we note again that for sufficiently large

the fixed false positive rate may be made arbitrarily small.
n the following section we will construct thresholding methods
ncluding one for which the false positive and negative rates
onverge to zero as σ → 0.

4. Thresholding based methods

As we have shown, automatic relevance determination will
not realize the correct non-zero coefficients in a general sparse
regression problem, but it will converge in any norm [11]. There-
fore, applying an arbitrarily small threshold on |ξi| will ensure
selection of the correct nonzero coefficients in the limit of low
noise. In this section we discuss methods for thresholding the
output from Alg. 1 using the mean magnitude of coefficients |ξi|

r based on the posterior distribution of ξi.
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.1. Magnitude based thresholding

Sequential thresholding based on the magnitude of coeffi-
ients has been used extensively in regression [19,31] and also
n conjunction with automatic relevance determination methods
or identifying nonlinear dynamical systems with uncertainty
uantification in [9]. Here we consider the method initially pro-
osed in [9], called threshold sparse Bayesian regression (TSBR).
o distinguish from other thresholding methods we use the
erm magnitude sequential threshold sparse Bayesian learning
M-STSBL). We note that the method used in this work
M-STSBL) differs from TSBR in the solver used for the ARD sub-
roblem. This work minimizes Eq. (7) via Alg. 1 whereas [9] uses
he Fast Marginal Likelihood Maximization method introduced
n [5]. Results, including theoretical estimates of false positive
nd negative rates, may therefore differ slightly. Magnitude based
hresholding assumes that coefficients learned in the ARD algo-
ithm with sufficiently small magnitude, |ξj| < τ are irrelevant
nd may be treated as zero.

Algorithm 4 M-STSBL(Θ, y, σ 2, τ )

1: γ = ARD(Θ, y, σ 2)
2: ξ = σ−2ΣξΘ

Ty
3: G = {i : |ξi|≥ τ }

4: γGc = 0
5: if Gc

̸= ∅: γG = M-STSBL(ΘG, y, σ 2, τ )
6: return γ

The sequential hard-thresholding method for automatic rele-
ance determination is implemented in Alg. 4. Non-zero terms are
ndexed by G whose complement Gc tracks terms removed from
he model. At each iteration the algorithm either recursively calls
tself with fewer features or terminates if all features are kept
on-zero.

.1.1. Sparsity properties of M-STSBL for orthogonal features
We consider the number of errors using Alg. 4 in a similar

ontext to the analysis of the variance inflation and regularized
ethod. First consider the likelihood of a false non-zero term.
ecall from the previous section that the KKT conditions for a
ixed point of Alg. 1 imply,

0 ∈ ξ ∗

i − ξi + ρ−1
i ΘT

i ν + ρ−1
i σ 2

√
c∗

i ∂∥ξ
∗

i ∥1

= ξ ∗

i − ξi + ρ−1
i ΘT

i ν +
1
2

(√
ξ ∗

i
2
+ 4ρ−1

i σ 2 − |ξ ∗

i |

)
sgn(ξ ∗

i ),

(27)

e can rewrite this as,

(ξ ∗) = ξ − ρ−1
ΘTν ∼ N (0, ρ−1σ 2) (28)
σ ,ρ i i i i i

6

here,

φσ ,ρ(ξ ∗

i ) =
ξ ∗

i

2
+

1
2

√
ξ 2i + 4ρ−1

i σ 2sgn(ξ ∗

i )

=
ξ ∗

i

2

(
1 +

√
1 + 4ρ−1

i σ 2ξ ∗

i
−2
)
, for ξ ∗

i ̸= 0,
(29)

is invertible on R \ {0} and strictly increasing. Therefore,⏐⏐ξi − ρ−1
i ΘT

i ν
⏐⏐ > φσ ,ρ(τ ) ⇔ |ξ ∗

i | > τ. (30)

his gives the likelihood of a false non-zero coefficient as,

PM (τ ) = p(ξ ∗

i ̸= 0|ξi = 0) = 1 − erf

⎛⎝ φσ ,ρ(τ )

σ

√
2ρ−1

i

⎞⎠ , (31)

and the likelihood for a false zero coefficient as,

FNM (τ ) = p(ξ ∗

i = 0|ξi ̸= 0) =
1
2

⎛⎝erf

⎛⎝ξi + φσ ,ρ(τ )

σ

√
2ρ−1

i

⎞⎠
−erf

⎛⎝ξi − φσ ,ρ(τ )

σ

√
2ρ−1

i

⎞⎠⎞⎠ . (32)

Eqs. (32) and (31) are verified empirically by testing on 50 trials
over a 250 × 250 Θ using the same experimental design as in
Section 3.1. Results are shown in Fig. 4. In contrast to regular-
ization based approaches, we now have the desirable condition
where the number of false positive terms each goes to zero as
σ → 0. However, the number false negatives now only shrinks
to a fixed positive number — a consequence of using a hard
threshold. This motivates alternative criteria for thresholding. In
the next section, we will discuss thresholding based not strictly
on magnitude but on the marginal posterior likelihood that a
coefficient is zero.

4.2. Likelihood based thresholding

While Alg. 4 was shown to be effective in [9] it is not inde-
pendent from the units of measurement used for each feature
and is not practical in the case where some true coefficients are
small. An alternative means of thresholding is to do so based on
the marginal likelihood of a coefficient being zero. The marginal
posterior distribution of ξi is given by,

p(ξi) ∼ N (µξ,i,Σξ,ii), (33)

where µξ,i,Σξ,ii are given by Eq. (4) and the marginal likelihood
that ξi = 0 is,

p(ξi = 0) = N (0 |µξ,i,Σξ,ii) =
1√ e−

1
2µ

2
ξ,iΣ

−1
ξ,ii . (34)
2πΣξ,ii
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e can construct a sequential thresholding algorithm shown by
lg. 5 by removing terms whose marginal likelihood evaluated
t zero is sufficiently large. The remaining subset of features is
hen passed recursively to the same procedure until convergence,
arked by no change in the number of features. This process is
escribed by Alg. 5 where parameter τ is the threshold marginal
ikelihood at zero above which features are removed.

Algorithm 5 L-STSBL(Θ, y, σ 2, τ )

1: γ = ARD(Θ, y, σ 2)
2: ξ = σ−2ΣξΘ

Ty
3: G =

{
i : (2πΣξ,ii)−1/2exp(− 1

2ξ
2
i Σ

−1
ξ,ii) ≤ τ

}
4: γGc = 0

5: if Gc
̸= ∅: γG = L-STSBL(ΘG, y, σ 2, τ )

6: return γ

4.2.1. Sparsity properties of L-STSBL for orthogonal features
We again consider the case where ΘTΘ = diag(ρ). Let,

L(ξi,Σξ,ii) = (2πΣξ,ii)−1/2exp
(

−
1
2
ξ 2i Σ

−1
ξ,ii

)
, (35)

so that the thresholding criterion is hL(ξi,Σξ,ii) > τ . The orthog-
onality of the columns of Θ allows us to express the marginal
posterior variance Σξ,ii as a function of |ξi|. Letting Σ∗

ξ be the
covariance from a fixed point of Alg. 1 we have,

Σ∗

ξ,ii =

(
σ−2ΘTΘ + Γ∗−1

)−1

ii

=

(
σ−2 diag(ρ) + Γ∗−1

)−1

ii

=

( ρi
σ 2 + γ ∗

i
−1
)−1

Σ∗

ξ
−1
ii

=
ρi

σ 2 +

√
c∗

i

|ξ ∗

i |

=
ρi

σ 2 +

√
1 + 4ρ−1

i σ 2|ξ ∗

i |
−2

− 1

2ρ−1
i σ 2

=

√
1 + 4ρ−1

i σ 2|ξ ∗

i |
−2

+ 1

2ρ−1
i σ 2

.

(36)

his allows us to express,

L(ξ ∗

i ,Σ
∗

ξ,ii) = h̃L,ρ,σ (|ξ ∗

i |)

= (2π )−1/2
√
Σ∗

ξ,ii
−1(|ξi|) exp

(
−

1
2
|ξ ∗

i |
2
Σ∗

ξ,ii
−1(|ξi|)

)
,

(37)
7

where Σ∗

ξ,ii
−1(|ξ ∗

i |) and |ξ ∗

i |
2Σ∗

ξ,ii
−1(|ξ ∗

i |) are strictly decreasing
and increasing functions of |ξ ∗

i |, respectively. It follows that h̃L,ρ,σ

is strictly decreasing and therefore invertible with h̃−1
L,ρ,σ easily

omputed by bisection. For τ > 0 there is some h̃−1
L,ρ,σ (τ ) such

hat,

ξ ∗

i | > h̃−1
L,ρ,σ (τ ) ⇔ h̃L,ρ,σ (ξ ∗

i ) ≤ τ , (38)

nd recalling Eq. (30),

ξi − ρ−1
i ΘT

i ν| > φσ ,ρ

(
h̃−1
L,ρ,σ (τ )

)
⇔ h̃L,ρ,σ (ξ ∗

i ) ≤ τ . (39)

his gives,

PL(τ ) = p(ξ ∗

i ̸= 0|ξi = 0) = 1 − erf

⎛⎝φσ ,ρ
(
h̃−1
L,ρ,σ (τ )

)
σ

√
2ρ−1

i

⎞⎠ , (40)

and,

FNL(τ ) =
1
2

⎛⎝erf

⎛⎝ξi + φσ ,ρ

(
h̃−1
L,ρ,σ (τ )

)
σ

√
2ρ−1

i

⎞⎠
−erf

⎛⎝ξi − φσ ,ρ

(
h̃−1
L,ρ,σ (τ )

)
σ

√
2ρ−1

i

⎞⎠⎞⎠ . (41)

Eqs. (41) and (40) are verified empirically using the same
experimental setup as in previous sections. Results are shown in
Fig. 5. Similar to M-STSBL, solutions of L-STSBL converge towards
the correct sparsity pattern as σ → 0. However, Fig. 5 indicates
highly favorable results in the number of missing terms. Eq. (36)
indicates that for σ ≪ 1 the marginal variance Σξ,ii ∼ O(σ 2). As
a consequence, the exponential in Eq. (35) becomes very small
and the algorithms are much more conservative about pruning
terms.

4.3. Thresholding via sparse prior on ξ

Algorithm 5 performs thresholding based on the marginal like-
lihood of a given coefficient being zero without consideration for
the likelihood of the coefficient prior to applying a threshold. We
now propose a thresholding method which includes the latter.
We consider a prior on ξ which varies from Eq. (2) only where
∥ξ∥0 < 0 and use MAP estimates of ξ to prune terms. Consider the
same model described in Section 2 but with the following prior
on ξi,

p(ξi) = N (ξi|0, γi) eτδξi,0 . (42)

Note that this is equivalent to (2) almost everywhere so the inte-
gral in (3) is not affected. The posterior for ξ under assumption
(42) is then,

p(ξ|D, τ ) ∝
1
d/2 e−

1
2 (ξ−µξ )TΣ

−1
ξ

(ξ−µξ )−τ∥ξ∥0 (43)

(2π ) |Σξ |
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ith µξ ,Σξ defined as in Eq. (4). When τ = 0 this reduces to
he standard ARD posterior but for τ > 0 the likelihood shrinks
xponentially in the number of nonzero terms. Since the two
osteriors differ only on a set of measure zero, the inclusion of
xp(τδξi,0) in Eq. (42) only affects the solution if we use the MAP
stimate of ξ as a means to select active terms. Doing so induces
thresholding operation to find ξMAP .
For a group S = {s1, s2, . . . , sq} ⊆ {1, . . . , d} where µξ,si ̸= 0

et ξ−S = µξ −
∑

q µξ,siesi where ei is the unit vector in the ith
oordinate. The likelihood of the thresholded vector ξ−S is given
by,

p(ξ−S |D, τ ) = C exp
(

−
1
2
(ξ−S − µξ )

TΣ−1
ξ (ξ−S − µξ ) − τ∥ξ−S∥0

)

= C exp

⎛⎝−
1
2

(∑
q

µξ,siesi

)T

Σ
−1
ξ

(∑
q

µξ,siesi

)

−τ (∥µξ∥0 − q)

⎞⎠
= p(µξ |D, τ )exp

(
−

1
2
µT
ξ,SΣ

−1
ξ,Sµξ,S + qτ

)
,

(44)

where Σ
−1
ξ,S is the square sub-matrix of Σ−1

ξ formed by the rows
and columns indexed by S. Then,

p(ξ−S |D, τ ) > p(µξ |D, τ ) if
1
2
µT
ξ,SΣ

−1
ξ,Sµξ,S < qτ , (45)

nd the MAP estimate of ξ is given by,

ξMAP = ξ−S where S = arg max
S∈P([d])

p(ξ−S |D, τ ) (46)

q. (46) is combinatorially hard so we approximate it in a manner
hat makes solution tractable. Most simply we can treat the
recision matrix Σ

−1
ξ as diagonal so that decisions with regard to

ach variable are decoupled. Alternatively, we can use a greedy
lgorithm to construct the S maximizing Eq. (46). In this case we
teratively add to S the most likely additional term until no term
ncreases the likelihood. The algorithm may be further refined as
forward–backward greedy algorithm. Here we restrict our at-

ention to the diagonal approximation of the posterior covariance.
his gives the simple threshold,

i = 0 if
1
2
µ2
ξ,iΣ

−1
ξ,ii < τ, (47)

which is implemented in Alg. 6. The same pruning technique
has also been used for connections in Bayesian neural networks,
using the variational approximation of the posterior [39]. We call
this technique maximum a-posteriori sequential threshold sparse
Bayesian learning (MAP-STSBL).
8

Algorithm 6 MAP-STSBL(Θ, y, σ 2, τ )

1: γ = ARD(Θ, y, σ 2)
2: S ≈ arg max

S∈P([d])
p(ξ−S |D, τ )

3: γ−S = 0

4: if |S|̸= 0: γS = MAP-STSBL(ΘS, y, σ 2, τ )
5: return γ

4.4. Sparsity properties of MAP-STSBL for orthogonal features

In the case of orthogonal columns of Θ we can use the same
simplification as in Section 4.2.1 to simplify the thresholding
criteria in Eq. (47) to,

hMAP (ξ ∗

i ,Σ
∗

ξ,ii) =
1
2
|ξ ∗

i |
2
Σ∗

ξ,ii
−1

=

|ξ ∗

i |
2
(√

1 + 4ρ−1
i σ 2|ξ ∗

i |
−2

+ 1
)

4ρ−1
i σ 2

= h̃MAP (|ξ ∗

i |)

(48)

which has inverse given by,

h̃−1
MAP (τ ) = 2

√
ρ−1
i σ 2τ 2

1 + 2τ
(49)

Then for τ > 0 there is h̃−1
MAP (τ ) such that,

|ξ ∗

i | > h̃−1
MAP (τ ) ⇔ h̃MAP (ξ ∗

i ) ≥ τ , (50)

nd,

ξi − ρ−1
i ΘT

i ν| > φσ ,ρ

(
h̃−1
MAP (τ )

)
= σ

√
ρ−1
i (2τ + 1) ⇔ h̃MAP (ξ ∗

i )

≤ τ . (51)

his gives,

PMAP (τ ) = p(ξ ∗

i ̸= 0|ξi = 0) = 1 − erf

(√
2τ + 1

2

)
, (52)

and,

FNMAP (τ ) =
1
2

⎛⎝erf

⎛⎝ξi + σ

√
ρ−1
i (2τ + 1)

σ

√
2ρ−1

i

⎞⎠
−erf

⎛⎝ξi − σ

√
ρ−1
i (2τ + 1)

σ

√
2ρ−1

i

⎞⎠⎞⎠ . (53)
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qs. (52) and (53) are verified empirically in Fig. 6. The results are
ery similar to those for ARDvi. Indeed, Eqs. (52) and (53) show
hat for orthogonal features there is a transformation α → 2τ+1
under which ARDvi and MAP-STSBL realize the same sparsity pat-
tern. We will show empirically in a subsequent section that this
is not true in the case where columns of Θ are not orthogonal.

. Comparison

The false positive and negative likelihoods for ξi each of the
methods described in Sections 3 and 4 are summarized by,

FP•(ξi;ω) = 1 − erf

(
ψ•(ω)

σ
√
2ρ−1

)

FN•(ξi;ω) =
1
2

(
erf

(
ξi + σψ•(ω)

σ
√
2ρ−1

)
− erf

(
ξi − σψ•(ω)

σ
√
2ρ−1

))
(54)

here • refers to the method, ω to the input (α, λ, or τ ) and,

ψARDvi(α) = σ

√
αρ−1

i

ψARDr (λ) =

√
ρ−1
i σ 2 + λρ−2

i σ 4

ψM−STSBL(τ ) = φσ ,ρ (τ )

ψL−STSBL(τ ) = φσ ,ρ

(
h̃−1
L,ρ,σ (τ )

)
ψMAP−STSBL(τ ) = σ

√
(2τ + 1)ρ−1

i .

(55)

Note that if ρi = ρj for all i, j then the false positive and
negative rates are all equivalent under transformations of the
parameters used for each method. Curves (FP•(ξi;ω), FN•(ξi;ω))
parameterized by ψ(ω) are shown in Fig. 7 for several values of
ξi. If ρi are unequal then the specific parameter pair that will yield
similar results for one column given two different algorithms will
not hold for another column. Hence, the methods differ in how
they scale with ρi. The exception is the pair ARDvi and MAP-
STSBL which have the same false positive and negative rates for
any ρi under the transformation α = 2τ + 1. To visualize the
dependence of each false positive and false negative rate on ρi
we find parameters ω• for each method such that the FP•(ω•) =

FN•(ω•) when ρi = 1 and plot the resulting rates over a range of
ρi. This is shown in Fig. 8. The false negative rate for each method
decreases monotonically in ρi. This is intuitive, since larger ρi
corresponds to that term having a larger effect on y. The false
negative rate as a function of ρi is constant for ARDvi and MAP-
STSBL, decreasing for L-STSBL and M-STSBL and increasing for
ARDr. These trends are explained by the asymptotic behavior of
9

Fig. 7. The FP/FN curve for orthogonal matrices ΘTΘ = I.

ψ• for large ρ. We have,

ψvi/MAP (α) ∼ O(ρ−1/2)

ψARDr (λ) ∼ O(ρ−1)
ψM−STSBL(τ ) ∼ O(1)
ψL−STSBL(τ ) ∼ O(ρq), q ∈ (−1/2, 0)

(56)

here the last statement is inferred from Fig. 8. Since ψ• is
ultiplied by ρ1/2 in the expression for the false positive rate,
hich is a decreasing function of ψ•, the trends in Fig. 8 follow

rom Eq. (56). If we allow ourselves to equate ρi with sample size,
hen M-STSBL and L-STSBL have the desirable property that the
alse positive rate decreases.

For orthogonal features, ARDvi and MAP-STSBL have equiv-
lent behavior with regard to expected sparsity. However, they
egin to yield different results in that case that columns of Θ are
orrelated. This may be the result of the MAP-threshold criteria
o longer aligning with the increased sparsity due to inflated vari-
nce, but there is also a fundamental change in the thresholding
lgorithms which occurs when we move away from orthogonal
eatures. We have shown that when ΘTΘ is diagonal the sparsity
f ξi depends only on the inner product of the error ν with
i. Hence, the recursion defined in each thresholding algorithm

erminates at a depth of one. This is not true when columns are
orrelated. For dense ΘTΘ the recursion limit is the number of
olumns, though the algorithm tends to terminate far earlier. A
omparison across matrices with varying condition number is
hown in Fig. 9.
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Fig. 10. Simple comparison of the relative merits of the five discussed methods.

An analytical comparison between the algorithms considered
in the previous sections for non-orthogonal data is beyond the
scope of this work. However, there is one clear trade off between
computational complexity and clarity of the algorithm’s mech-
anism for inducing sparsity. Thresholding algorithms offer clear
criteria for setting additional terms to zero since we know the
magnitude or likelihood at which a coefficient was pruned and
at what step. Regularization methods do not provide the same
clarity but avoid the cost of increased computational time due
to recursion. In particular, for problems with many features, the
depth limit in the thresholding algorithms is high. We consider
M-STSBL to be slightly more clear than MAP-STSBL and L-STSBL,
since the thresholding parameter is a magnitude. We initialize
ARDr using ARD, so it is slightly more expensive than ARDvi. This
is summarized in Fig. 10. We will present several examples in the
following section to compare the algorithms’ performance on an
empirical basis.

6. Numerical experiments

In this section we compare the performance of each of the
methods considered in this work on several test problems. These
include a 250 dimensional linear problem, function fitting in a
Fourier basis, and system identification for the Lorenz 63, Lorenz
96, and Kuramoto–Sivashinsky equations. We test each of the five

methods using a range of input parameters. For the linear and

10
function fitting examples we select optimal parameters for the
regularization with the Akaike Information Criterion [40] with
small sample size correction (AICc) [41], given by,

AICc(γ) = 2k − 2 ln (p(γ)) = 2k

− min
ξ

(
log|Σy| +

1
σ 2 ∥y − Θξ∥2

2 + ξTΓ−1ξ

)
, (57)

here k = ∥γ∥0 + 1 is the number of terms fit by the model
including error variance σ 2. For consistency across methods, we
do not consider regularization terms when evaluating the likeli-
hood. For examples of nonlinear system identification we found
AICc selected models with extraneous variables even when the
true model was available. This is perhaps due to the errors being
non-Gaussian, since we use nonlinear features, and correlated be-
tween observations, since numerical differentiation uses adjacent
points. We therefore select optimal regularization parameters for
the system identification based on minimal mismatch in sparsity
to the true solution. This is not practical in an application setting
but highlights differences between the algorithms presented in
this work without the need for more robust model selection.

Algorithm 3 allows for substantial freedom in the choice of
specific regularization functions f and g . For the purposes of
comparing with other methods discussed in this work we restrict
our attention to the case where f is a constant and g(γi) =

σ−2 min{γi, η} which is constant for γi > η and linear with
ositive slope λσ−2 for γi ≤ η. We search over parameter λ,
eeping η fixed at a value of 0.1. It is reasonable to assume
hat Alg. 3 may obtain superior results if domain knowledge is
vailable to inform the choice of regularization or if a parameter
earch is performed over both λ and η.
In each of the following examples, we report the ℓ1 and ℓ2

rrors between the posterior mean µξ and the true parameters
alues used to generate the dataset. We also report the number of
dded and missed terms, defined by |{j : γ j ̸= 0 and ξtrue,j = 0}|
nd {j : γ j = 0 and ξj ̸= 0}|, respectively. The ℓ0 error, which
parse regression methods often seek to minimize, is the sum of
he number of added and missed terms.
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able 1
ean metric and sparsity error for linear system using variations of ARD method.
rue model has 25 non-zero terms out of 250 dimensions.
Method ℓ2 Error ℓ1 Error Added Missed

ARD 1.2 9.9 65.38 2.15
ARDvi 0.62 4.11 35.13 1.84
ARDr 0.99 7.96 60.44 2.00
M-STSBL 0.35 1.50 3.39 3.21
L-STSBL 0.38 1.76 5.72 2.90
MAP-STSBL 0.47 2.52 12.76 2.74

6.1. Simple linear example

We first consider the methods presented in this work ap-
lied to a simple linear regression. We consider a problem with
∈ R250×250, Θ being the identity, and construct random linear
aps by setting 25 of 250 coefficients to be Gaussian distributed
ith unit variance and setting the rest to zero. Since the or-
honormal case is explored in Sections 3 and 4 we construct X
equivalently θ(X)) to have condition number κ(X) = 102 with
ingular values spread evenly on a log scale between 10−2 and 1.
bservations are perturbed by Gaussian noise ν ∼ N (0, σ 2) with
= 0.1 std(Θξ). That is, σ is set to 10 percent of the standard

deviations of the unperturbed output. The magnitude of the noise
is not known by the algorithm and is re-estimated after each
iteration.

We test each of the methods presented in this work for a
total of 100 trials, each with random data, true ξ, and noise.
odel selection is performed with AICc with a wide range of

nput parameters. Four error metrics are tracked; the ℓ2 and ℓ1
ifferences between the posterior mean estimate and true ξ as
ell as the number of non-zero terms that the learning algorithm
dds and misses. These values are shown in Table 1 and in Fig. 11.
oxes indicate the inter-quartile range and median error across
he 100 trials with whiskers indicating maximum and minimum
alues. Each method gives far higher ℓ1 than ℓ2 error indicating
hese quantities are dominated by the many small terms added by
he regression. However, the thresholding based methods exhibit
ar lower metric error and number of added terms with only a
mall increase in the number of missed terms.

.2. Interpolation from few observations

We consider fitting a function defined on T 2
= [0, π]

2 with
parse representation in a Fourier basis. We let X ∈ [0, π )250×2

ave rows uniformly sampled on T 2 and θ : T 2
→ R900 be the

apping to the basis constructed by the first 30 Fourier modes in
ach direction so thatΘ ∈ R250×900. Similar to the linear example,
e set 50 of the 900 coefficients to be Gaussian distributed with
nit variance and the rest are set to zero. Noise is again set to have
tandard deviation equal to 10 percent of the standard deviation
f unperturbed values of y and the magnitude of the noise is
e-estimated after each iteration.

Results across 10 trials for fitting a function with a sparse
ourier basis are shown in Fig. 12. Within each trial we test a
ide range of input parameters for each technique and select
model using the AICc . Regularization and thresholding tech-

niques all exhibit far lower ℓ1 and ℓ2 errors and include far
ewer extraneous terms. The thresholding methods all show some
ncrease in the number of missed terms. We expect the increase
n false negatives would be lower if active terms had magnitudes
ounded away from zero.
As was the case for the linear example, all regularized meth-

ds exhibit lower metric error than unregularized ARD and add
ubstantially fewer extraneous terms. However, unlike the linear

xample there is a notable increase in the number of missing

11
terms using thresholding methods and, contrary to intuition, a
decrease in the number of missed terms using the regularization
based methods.

6.3. Equations of motion for the Lorenz 63 system

Our first example of applying the techniques to a nonlinear
system identification problem is the Lorenz 63 system given by,

ẋ1 = s(x2 − x1)
ẋ2 = x1(ρ − x3) − x2
ẋ3 = x1x2 − βx3,

(58)

with the standard set of coefficients s = 10, ρ = 28 and
β =

8
3 [42]. We will follow work by [19] for nonlinear system

dentification and use trajectories from Eq. (58) as data X and the
numerically computed velocity as y.

We construct datasets to test each algorithm by integrating
Eq. (58) for 250 steps of length dt = 0.05 from an initial condi-
tion drawn from N

(
(0, 0, 15), 52I

)
resulting in a times series in

R251×3. We add Gaussian noise with standard deviation equal to
1 percent of the standard deviation of the time series to get X and
subsequently compute temporal derivatives y(j) ≈ ẋj using a 6th
order finite difference scheme applied to the noisy time series.
We use the quintic feature map in three variables θ : R3

→ R(
5+3
5 )

given by,

θ(x1, x2, x3) =
(
1, x1, x2, x3, x21, x

2
2, x

2
3, x1x2, . . . , x

4
1x3, x

5
1, x

5
2, x

5
3

)
(59)

This gives a matrix θ(X) ∈ R251×56. The system identification
problem is then to find sparse solutions to,

ẋj = y(j) = θ(x)ξ (j) (60)

for each dimension j = 1, 2, 3.
Note that since noise is added to the data X directly rather

than to the true θ(X)y, columns of θ(X) will be perturbed by
nonlinear maps of Gaussian noise. The error in our polynomial
regression will therefore be non-Gaussian, violating the likelihood
model we start with in Eq. (1). This difference does not signifi-
cantly affect the regression algorithms but does lead to problems
with AICc based system identification since the likelihood com-
puted by Eq. (5) makes assumptions regarding error statistics that
do not hold. We therefore user oracle model selection, choosing
the input parameter that yields the minimal number of added
and missed terms compared to the true solution. This of course
assumes knowledge of the true solution which would not be the
case in an application setting but allows us to focus on comparing
sparse regression algorithms rather than on model selection.

We test each of the methods for ten trials, each using the
same length of time series but with different random initial
conditions and noise instances. Fig. 13 shows error metrics for
the coefficients of the learned equations. Since we are solving
three distinct problems, the errors shown in Fig. 13 are summed
over each of the three dimensions. Thresholding based methods
and variance inflation, learn much sparser models than ARD and
ARDr, with ARDvi having no increase in the number of missed
terms. In this case, M-STSBL outperforms both L-STSBL and MAP-
STSBL, possibly due to the fact that none of the true coefficients
are small.

6.4. Equations of motion for the Lorenz 96 system

We next the consider the higher dimensional Lorenz 96 sys-
tem given by,

ẋj = (xj+1 − xj−2)xj−1 − xj + F (61)

with n = 40 and F = 16 [43].
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Fig. 11. Error statistics for 100 trials sparse variants of automatic relevance determination with 250 observations of a 250 dimensional problem having 25 non-zero
oefficients. Boxes indicate inter-quartile range and median error and whiskers show full range of observed values.
Fig. 12. Error statistics for 10 trials sparse variants of automatic relevance determination with 250 observations in T 2 with two-dimensional Fourier basis θ : T 2
→ R900

and 50 non-zero coefficients. Boxes indicate inter-quartile range and median error and whiskers show full range of observed values.
Fig. 13. Error statistics for 10 trials sparse variants of automatic relevance determination with 251 observed timesteps of a single trajectory of the Lorenz 63 system
using a quintic polynomial basis. Boxes indicate inter-quartile range and median error and whiskers show full range of observed values. True number of non-zero
terms is 7 out of 168 candidate functions.
We construct a dataset to test each algorithm by integrating
Eq. (61) with dt = 0.05 from an initial condition xj = exp(− 1

16 (j−
0)2) resulting in a times series in R200×40. We add Gaussian
oise with standard deviation equal to 1 percent of the standard
eviation of the time series to get X and subsequently compute
emporal derivatives y(j) ≈ ẋj using a 6th order finite difference
cheme applied to the noisy time series. We use the quadratic
eature map in 40 variables θ : R40

→ R(
2+40

2 ) given by,

(x1, x2, . . . , x40) = (1, x1, x2, . . . , x40,

x21, x
2
2, . . . , x

2
40, x1x2, x1x3, . . . , x39x40

)
(62)
12
This gives a matrix θ(X) ∈ R201×861. We solve for the equations
of motion just as we did in the Lorenz 63 case. Model selection
is again performed assuming full knowledge of the true sparsity
pattern.

We test each of the methods on a single trial across each of the
40 dimensions. Fig. 14 shows error metrics for the coefficients
of the learned equations across the 40 dimensions. Each of the
sparse techniques learns a more sparse set of coefficients than
ARD with the modal number of added terms for each of the
sparse methods being zero. However, metric error is not im-
proved significantly and in the case of MAP-STSBL contains outlier
values with substantially increased error where the algorithm
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symmetric-log scale has been used for the number of added terms due to large differences between ARD and its sparse variants. True number of non-zero terms is
4 out of 861 candidate functions.
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failed to include the forcing term F = 16. This indicates that
extraneous terms in the ARD estimate were generally small. The
modal number of missed terms for each method is zero, but all
methods except ARDvi added a single term in a some fraction of
the dimensions and MAP-STSBL occasionally missed two.

6.5. Equations of motion for the Kuramoto–Sivashinsky equation

Lastly, we test each of the sparse regression methods consid-
ered in this work on the Kuramoto–Sivashinsky (KS) equation.
The KS equation, given by,

ut + uux + uxx + uxxxx = 0, (63)

is often used as model for deterministic spatiotemporal chaos
and has proved a challenging case for other sparse regression
methods [20,44].

We use the ETDRK4 method developed in [45] to solve the KS
equation on the domain (x, t) ∈ [0, 32π ]× [0, 150] with periodic
boundary conditions, initial condition x, timesteps dt = 0.14 and
spatial discretization dx = 32π/512. We add artificial noise to the
numerical solution with standard deviation equal to 0.1 percent
of the standard deviation of the data. This small magnitude is
consistent with previous published works in system identification
for the KS equation. Numerical differentiation with respect to
time and for the first four spatial derivatives is done by applying
sixth order finite difference schemes directly to the noisy data.
We take y to be ut reshaped into a vector and θ to be the set of
powers of u up to 4 multiplied by spatial derivatives up to fourth
order so that

θ(X) = θ(u(x, t)) =
(
1, u, . . . u2, ux, uux, . . . u4uxxxx

)
. (64)

With the given discretization of Eq. (63), the feature map (64)
gives y ∈ R(1024·512)×1 and θ(X) ∈ R(1024·512)×25. Each iteration
of Alg. 1 requires storing and inverting Σy ∈ Rm×m where
m1024·512 is the number of observations. Allocating memory for
and working with Σy in this case would be problematic on many
standard computers. We instead observe a small fraction of the
data through random projections, exploiting the simple fact that,

y = θ(X)ξ → Cy = Cθ(X)ξ, (65)

or any matrix C. We take each column of C to be a unit di-
ection vector sampled uniformly and without replacement from
1024·512 so that we are simply sampling rows from the full linear
ystem. To test the effectiveness of each algorithm we take 10
ifferent samples of size 2500 and solve the linear system for
ach one. Fig. 15 summarized the error of each of the discussed
egressions applied to the 10 random subsets given by Eq. (65).
13
While none of the sparse methods perform well for the task
f identifying the Kuramoto–Sivashinsky equation from data, they
o learn more parsimonious models than ARD. This comes at the
ost of higher ℓ2 error and a significantly increased number of
issing terms. The modal number of missed terms for ARDr is in

act all three of the non-zero terms. While these results are disap-
ointing, they are also unsurprising. The Kuramoto–Sivashinsky
quation has proved challenging for past system identification
ethods [20]. This example showcases some of the limitations
f the methodology discussed in this work and the continuing
ifficulty of sparse regression based methods, both classical and
ayesian, for system identification.

. Discussion

We have presented several techniques for learning sparse
ayesian methods that build on Automatic Relevance Determi-
ation to achieve greater levels of parsimony in the resulting
inear model. These methods may be classified in two families;
egularization based methods including variance inflation and
egularization of γ , which find the variance coefficients γ as the
ixed point of a single application of an iterative algorithm, and
hresholding based methods, which alternate between solving
smooth optimization problem and simplifying the model via

hresholding extraneous terms. For the latter class we tested
agnitude based thresholding based on the posterior mean es-

imate of ξ, as well as a likelihood based threshold using the
osterior distribution, and adjusting the prior on ξ to find an
lternative probabilistic threshold.
For each of these algorithms, we have derived probabilistic

stimates for the number of false positive and false negative ac-
ive terms in the orthogonal case. While most practical problems
nvolve non-orthogonal matrices, these estimates can be taken
s guides for the behavior of the algorithms as regularization or
hresholding parameters change.

A significant barrier to use of the proposed class of sparse
egression methods on many problems is the computational com-
lexity. Each iteration of Alg. 3 requires computing the inverse
f an m × m matrix, where m is the sample size. Future work
ould explore low-rank approximations of this step, but in the
urrent work this was a computational bottleneck and forced us
o only consider small problems. For example, the linear systems
ested for the Kuramoto–Sivashinsky equation used subsamples
ade of only a small fraction of the available data. This tech-
ique is common [10,20,29], but may also be exploited for model
election. In particular, the outlier-avoiding subsampling method
roposed in [10] could be used in conjunction with any of the
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sparse variants of ARD discussed in this work and was shown to
exhibit increased performance on noisy datasets.

We stress that this work does not attempt to demonstrate
he superiority of any particular method for the subset selection
roblem in sparse Bayesian regression. Ultimately, if one desires
level of sparsity beyond that provided by standard ARD, a

hoice of additional assumptions should be made with respect to
he context of the problem being considered. We have outlined
he assumptions that lead to each of the discussed algorithms
nd demonstrated their accuracy both analytically on orthogonal
inear systems as a canonical test case and empirically on sev-
ral more complicated problems. In application settings, model
election could be performed both over parameter values for each
lgorithm as well as between algorithms to determine a final
esult.

RediT authorship contribution statement

Samuel H. Rudy: Methodology, Software, Formal analysis,
riting - original draft, Funding acquisition. Themistoklis P.

apsis: Project Administration, Supervision, Writing - review &
diting, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This material is based upon work supported by the National
cience Foundation, United States of America under Award No.
902972, the Air Force Office of Scientific Research, United States
f America (Grant No. FA9550-21-1-0058), the Army Research
ffice, United States of America (Grant No. W911NF-17-1-0306),
nd a MathWorks Faculty Research Innovation Fellowship, United
tates of America.

ppendix A. Proof of Eq. (6)

We show that yTΣ−1
y y = minξ

1
σ2 ∥y−Θξ∥2

2+ξTΓ−1ξ. Applying
the Woodbury identity to Σ−1

y gives,

yTΣ−1
y y = yT (σ 2I + ΘΓΘT )−1y

= yT (σ−2I − σ−4Θ(Γ−1
+ σ−2ΘTΘ)−1ΘT )y

= yT (σ−2I − σ−4ΘΣξΘ
T )y,
14
On the other hand,

min
ξ

1
σ 2 ∥y − Θξ∥2

2 + ξTΓ−1ξ =
1
σ 2 ∥y − Θµξ∥

2
2 + µT

ξΓ
−1µξ

=
1
σ 2 ∥y − σ−2ΘΣξΘ

Ty∥2
2 + σ−4yTΘΣξΓ

−1ΣξΘ
Ty

=
1
σ 2 y

Ty −
2
σ 4 y

TΘΣξΘ
Ty +

1
σ 6 y

TΘΣξΘ
TΘΣξΘ

Ty

+
1
σ 4 y

TΘΣξΓ
−1ΣξΘ

Ty

=
1
σ 2 y

Ty +
1
σ 4 y

TΘΣξ

×

(
−2I +

(
1
σ 2Θ

TΘ + Γ−1
)

Σξ

)
ΘTy

=
1
σ 2 y

Ty +
1
σ 4 y

TΘΣξ

(
−2I + Σ

−1
ξ Σξ

)
ΘTy

=
1
σ 2 y

Ty −
1
σ 4 y

TΘΣξΘ
Ty

= yT (σ−2I − σ−4ΘΣξΘ
T )y,

ppendix B. Converse of Eq. (24)

In this section we show that,

ξi − ρ−1
i ΘT

i ν
⏐⏐ ≤

√
ρ−1
i σ 2 + λρ−2

i σ 4 ⇒ ξ ∗

i = 0 (66)

From the above inequality and the KKT stationarity condition for
the ξ we have,√
ρ−1
i σ 2 + λρ−2

i σ 4 ≥

⏐⏐⏐ξ ∗

i + ρ−1
i σ 2

√
c∗

i sgn(ξ
∗

i )
⏐⏐⏐

=
⏐⏐ξ ∗

i

⏐⏐+ ρ−1
i σ 2

√
c∗

i

∴
√
c∗

i ≤

√
λ+ ρiσ−2 − ρiσ

−2
|ξ ∗

i |

and |ξ ∗

i | ≤

√
ρ−1
i σ 2 + λρ−2

i σ 4 − ρ−1
i σ 2

√
c∗

i

(67)

From Eq. (22)
√
c∗

i is given by the positive valued zero of follow-
ing cubic,

ψ(ω) = ρ−1
i σ 2ω3

+ |ξ ∗

i |ω2
−
(
λρ−1

i σ 2
+ 1

)
ω − λ|ξ ∗

i | (68)

here ω =
√
c∗

i to simplify notation. Note that ψ(0) ≤ 0 with
quality only if λ or ξ ∗

i = 0, ψ ′(0) < 0, and the coefficient on
the cubic term is positive. This suffices to show there is a unique
positive zero of ψ . We also know that

√
c∗

i is greater than the
arger of the two zeros of ψ ′(ω) given by,

c∗

i > ω+
=

ρi

3σ 2

(
−|ξ ∗

i | +

√
ξ ∗

i
2
+ 3σ 2ρ−1

i

(
1 + λσ 2ρ−1

i

))
.

(69)
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ubstituting the lower bound for
√
c∗

i given by Eq. (69) into
Eq. (67) gives,

|ξ ∗

i | <

√
ρ−1
i σ 2 + λρ−2

i σ 4

−
1
3

(
−|ξ ∗

i | +

√
ξ ∗

i
2
+ 3σ 2ρ−1

i

(
1 + λσ 2ρ−1

i

))
2|ξ ∗

i |

3
<

√
ρ−1
i σ 2 + λρ−2

i σ 4 −
1
3

√
ξ ∗

i
2
+ 3σ 2ρ−1

i

(
1 + λσ 2ρ−1

i

)
|ξ ∗

i | <
3
2

√
ρ−1
i σ 2 + λρ−2

i σ 4

−
1
2

√
ξ ∗

i
2
+ 3σ 2ρ−1

i

(
1 + λσ 2ρ−1

i

)
≤

3
2

√
ρ−1
i σ 2 + λρ−2

i σ 4 −
1
2

√
3σ 2ρ−1

i

(
1 + λσ 2ρ−1

i

)
=

3 −
√
3

2

√
ρ−1
i σ 2 + λρ−2

i σ 4

(70)

rom Eq. (67) we know
√
c∗

i ≤

√
λ+ ρiσ−2 − ρiσ

−2
|ξ ∗

i |. Since√
c∗

i is the greatest zero of ψ and the cubic coefficient is positive,

0 ≤ ψ

(√
λ+ ρiσ−2 − ρiσ

−2
|ξ ∗

i |

)
=
ρi|ξ

∗

i |

σ 2

(
|ξ ∗

i |

√
λ+ ρiσ−2 − 2λρ−1

i σ 2
− 1

)
≤
ρi|ξ

∗

i |

σ 2

(
3 −

√
3

2
(1 + λρ−1

i σ 2) − 2λρ−1
i σ 2

− 1

)

=
ρ−1
i |ξ ∗

i |

σ 2

(
−1 −

√
3

2
λρ−1

i σ 2
+

1 −
√
3

2

)
(71)

Note that the quantity inside the parentheses is strictly less than
zero. Therefore, for the inequality to hold, |ξ ∗

i | = 0.

Appendix C. Comparison between L-STSBL and MAP-STSBL

The thresholding operations introduced for Algorithms 5 and
6 bear some similarities but differ in an important manner with
regard to how they treat the posterior marginal variance of ξi. The
thresholding criterion for ξi → 0 in Alg. 5 given threshold τ0 is,

hL(µξ,i,Σξ,ii) =
1√

2πΣξ,ii
exp

(
−µ2

ξ,i

2Σξ,ii

)
> τ0, (72)

hile for Alg. 6 it is,

MAP (µξ,i,Σξ,ii) =
µ2
ξ,i

2Σξ,ii
< τ1, (73)

or equivalently,

exp(hMAP (−µξ,i,Σξ,ii)) = exp

(
−µ2

ξ,i

2Σξ,ii

)
> e−τ1 = τ2. (74)

The two criteria are related by,

hL(µξ,i,Σξ,ii) =
exp(−hMAP (µξ,i,Σξ,ii))√

2πΣξ,ii
. (75)

his highlights the difference in assumptions between the two
ethods. In both algorithms, high uncertainty relative to coeffi-
ient magnitude indicates a greater chance of pruning. However,
his effect is slightly lessened in Algorithm 5. Coefficients with
ow uncertainty relative to their magnitude are unlikely to be
runed using either method but the likelihood is higher using 5.
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