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This work studies the effectiveness of severalmachine-learning techniques for predicting extreme events occurring

in the flow around an airfoil at low Reynolds. For certain Reynolds numbers, the aerodynamic forces exhibit

intermittent fluctuations caused by changes in the behavior of vortices in the airfoil wake. Such events are

prototypical of the unsteady behavior observed in airfoils at low Reynolds, and their prediction is extremely

challenging due to their intermittency and the chaotic nature of the flow. We seek to forecast these fluctuations in

advance of their occurrence by a specified length of time.Weassumeknowledge only of the pressure at a discrete set of

points on the surface of the airfoil, as well as offline knowledge of the state of the flow. Methods include direct

prediction from historical pressure measurements, flow reconstruction followed by forward integration using a full-

order solver, and data-driven dynamic models in various low-dimensional quantities. Methods are compared using

several criteria tailored for extreme event prediction. We show that methods using data-driven models of low-order

dynamic variables outperform those without dynamic models and that, unlike previous works, low-dimensional

initializations do not accurately predict observables with extreme events such as drag.

Nomenclature

C = chord length
Cd; Cl = drag and lift coefficients
D = decoder network for flow reconstruction
dt = time step
E = encoder network for flow reconstruction
FP∕ψ∕ξ = nondynamic models for mapping P∕ψ∕ξ to q
F1;opt = optimal test set F1 score

G = network for estimating proper orthogonal
decomposition time series

HP∕ψ∕ξ = dynamic models for variables P, ψ , and ξ
L
•

= loss function used to train neural network •

m = mass matrix from spectral element grid
P = airfoil surface-pressure time series
q = smoothed drag coefficient
r = rank of low-dimensional representations of flow
S; R; F1; α = precision, recall, F1 score, and area under S-R

curve
u, p = fluid velocity and pressure
u∞ = inlet velocity
w = weights for proper orthogonal decomposition

and flow reconstruction
α� = maximum adjusted area under precision-recall

curve
ξ = latent space representation of flowfield in full-

field neural network
τ = load time for prediction of q
ΦΣψ�t�T = components of proper orthogonal decomposition

of flowfield at time t
ΦrΣrψ r�t�T = rank r truncation of proper orthogonal decom-

position
ω = extreme event rate

I. Introduction

E XTREME events are common features in engineering and
scientific disciplines including climate, ocean engineering,

and fluid structure interaction that are characterized by observables
of a dynamical system exhibiting heavy tails [1]. The outlier events
populating these tails are of particular interest due to their effects on
aerodynamics and fatigue or other potentially adverse consequences.
However, the rarity and intermittency of such events also makes their
prediction challenging. There has been significant recent interest in
sampling strategies [2–4], optimization schemes [5], and tailored loss
functions [6,7] for the prediction of extreme events. A common goal
of many of the past works on extreme events and of the present work
is the prediction of extreme events in advance of their occurrence.
The focus of this work is on the two-dimensional incompressible

flow around an airfoil at low (O�104�) Reynolds number. Dynamics
of the flow around the airfoil at this Reynolds regime are highly
nontrivial [8] and have been shown to be characteristically different
from those at higher Reynolds [9]. Previous works using both exper-
imental and computational tools have found that slow-moving air-
foils exhibit a large range ofwake behaviors, with qualitative changes
in the nature of the flow occurring with small changes in angle of
attack and Reynolds number [10–12]. Similar unstable behavior has
been observed in the flow around a cylinder and in the so-called
transitional regime between ordered and disordered behavior [13], as
well as in vortex-induced vibrations of flexible cylinders [14]. Due to
these instabilities, as well as an apparent lack of fidelity between
computational and experimental results, it has been suggested that
construction of rigid-winged slow-flying vehicles may be challeng-
ing if not impossible [15].
Despite apparent challenges, there has long been considerable

interest in the study of low Reynolds airfoils [8]. In particular, recent
works have explored the use of machine learning to estimate flow-
field and aerodynamic data from sensors on the surface of the airfoil.
These include methods for flow reconstruction from limited sensors
using neural networks [16,17], filtering-based flow estimation
[18,19], and prediction of aerodynamic coefficients [20]. Deep learn-
ing has also been used for estimating properties of the flow used in
low-order vortex models. In [21,22], authors use neural network-
based methods to estimate the leading-edge suction parameter
(LESP). The model studied in this work has a Reynolds number of
17;500, substantially higher than other computational works that

focus on Reynolds number in the range of O�102� −O�103�
[16,18,19,22]. This is closer to the lower end of the range considered
by experimental work [17,20]. Unlike some other works [17,20–22],
this work does not study the effects of pitching motions or

Received 11 August 2021; revision received 17 January 2022; accepted for
publication 11 February 2022; published online 16March 2022. Copyright ©
2022 by the American Institute of Aeronautics and Astronautics, Inc. All
rights reserved. All requests for copying and permission to reprint should be
submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to
initiate your request. See also AIAA Rights and Permissions www.aiaa.org/
randp.

*Postdoctoral Associate, Department of Mechanical Engineering, 77Mas-
sachusetts Ave.

†Associate Professor of Mechanical and Ocean Engineering, Mechanical
Engineering, 77 Massachusetts Ave.

Article in Advance / 1

AIAA JOURNAL

D
ow

nl
oa

de
d 

by
 M

IT
 L

IB
R

A
R

IE
S 

on
 M

ay
 6

, 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
11

63
 

http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.J061163&domain=pdf&date_stamp=2022-03-17


disturbances in the incident velocity. We instead focus on prediction
of intermittent fluctuations in the aerodynamic coefficients of a sta-
tionary airfoil, which have not been the focus of previous works.
This work applies several machine-learning techniques to predict

fluctuations in the drag coefficient of an airfoil in the transitional
regimewherewe observe chaotic and intermittent behavior. It follows
a broader trend of the application of tools from machine learning to
problems in fluid dynamics. For a broader view, the interested reader
may refer to a number of recent articles outlining and discussing the
role ofmachine learning in fluid dynamics: [23] provides an excellent
overview of many of the applications machine learning has seen in
fluids; [24] provides an assessment of several common supervised
learning methods applied to flow reconstruction, superresolution,
and coefficient estimation; and [25] provides a discussion of the role
of machine learning in fluids, as well as some pitfalls and concerns.
The paper is organized as follows: In Sec. II we formulate the

problem of predicting aerodynamic fluctuations. Section III
describes the methodology used in this work, including flow
reconstruction methods in Sec. III.A, forecasting methods for aero-
dynamic fluctuations in Sec. III.B, and a discussion of performance
metrics in Sec. III.C. Results are shown in Sec. IV with comparisons
between allmethods. In Sec.Vweoffer closing thoughts, pitfalls, and
potential future directions based on this paper.

II. Problem Description

We consider a NACA4412 airfoil at chord-length-based Reynolds
number of Re � 17;500 and 5 deg angle of attack. Flow around the
airfoil is simulated using the spectral element code Nek5000 [26]
according to the incompressible Navier–Stokes equations given by

∂u
∂t

� u ⋅ ∇u � −∇p� 1

Re
∇2u ∇ ⋅ u � 0 (1)

The computational grid uses 4368 elements with spectral order 7.
Statistics of observables relevant to this work were found to be in
agreementwith those from a shorter simulation using amore resolved
grid having 14,144 elements. A convective boundary condition is
used for the outflow [27]. The spectral element grid without Gauss–
Lobatto Legendre interpolation points and a snapshot of the vorticity
are shown in the top row of Fig. 1. Further details of the numerical
simulation are provided inAppendixA, and software for reproducing
data used in this work is available online.

Pressure recordings along the surface of the airfoilP�t� are taken at
a discrete set of 50 points around the airfoil at intervals of dt � 0.01
throughout the simulation. These locations are shown in the bottom
panel of Fig. 1. Aerodynamic force is computed using the pressure
and skin friction. This decomposes into the streamwise x and cross-
flow y directions, defined by

F�t� �
I

τ�t� − p�t�n ds � D�t�ex � L�t�ey (2)

where τ, p, and n are the skin shear stress, pressure, and wall normal
vector, and the integral is taken over the airfoil surface. Forces are
then used to compute the nondimensional drag-coefficientCd and lift
coefficient Cl, defined as

Cd�t� �
2D�t�
ρu2∞C

; Cl�t� �
2L�t�
ρu2∞C

(3)

where chord length C � 1, density ρ � 1, and freestream veloc-
ity u∞ � 1.
The two-dimensional simulation yields a quasi-stable behavior in

which intermittent fluctuations are observed in the aerodynamic coef-
ficients, shown in the first two rows of Fig. 2 alongside the density
functions of their absolute deviations. A more detailed view of these
fluctuations, their frequency of occurrence, and the flow states asso-
ciated with them is provided in Appendix B. We note that the density
functions clearly exhibit the expected “heavy tails” associated with
observables of dynamical systems with extreme events [1]. This
regime of intermittent fluctuations is persistent for the entirety of the
simulation used in this work but with altered conditions may exhibit
mode switching to a statewithmore regular oscillations. Further details
of this case are given in Appendix D. In this work we focus solely on
the regime where intermittent fluctuations are observed.
The goal of the present work is to predict these intermittent

fluctuations in advance of their occurrence by some lead time τ using
surface pressure information. To focus on nonperiodic behavior, we
consider predictions on a smoothed time series derived from the drag
coefficient. Specifically,

q�t� � �Cd � K��t� (4)

where fpeak ≈ 1.44 is the peak frequency of the drag coefficient

and Gaussian smoothing kernel K is given by a zero-mean normal

Fig. 1 Left: Domain of computational problems showing outlines of spectral elements without internal interpolation points. Right: Snapshot of vorticity.
Bottom: Sensor placement showing indexing from 0–25 along top and 25–49 along bottom of airfoil. Axes on bottom figure not drawn to scale.
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distribution with standard deviation 1∕�2fpeak�. That is, K�s� ∝ exp

�−s2∕�2fpeak�2�. In practice, the convolution in Eq. (4) is computed

using a compactly supported kernel having width 3∕fpeak. The time

series q�t� is also normalized to be mean zero and unit variance. The
quantity q�t� captures the nonperiodic behavior of the drag coeffi-
cient, in particular maintaining extreme events and the heavy tailed
deviation. The goal of this work is thus concisely stated as learning
data-driven models for the prediction problem

P�s ≤ t� → q�t� τ� (5)

at various τ ≥ 0.

III. Methods

In this sectionwe formulate several data-drivenmodels for Eq. (5).
We assume knowledge of measurements of pressure at a discrete set
of points along the surface of the airfoil up to the current time t and
seek to predict the value of the extreme event indicator at time t� τ.
We denote the time series for pressuremeasurements up to the current
time t as Pt � P�s ≤ t�. The minimal problem is thus learning a
function directly from historical pressure measurements to the
q�t� τ�, which may be done using a variety of standard machine-
learning tools.
A baseline predictor for Eq. (5) is found using a standard recurrent

neural network, such as a long short-term memory networks
(LSTM) [28], to interpolate a function directly from Pt to q�t� τ�.

Alternatively, we may try to improve forecasts of q�t� through the
offline use of flowfield data. Previous works [5] have used modal

representations of a flowfield combined with adjoint equations to
learn precursor states to extreme events. In this work we discuss two

methods for compressing flowfield data, sensing expansion coeffi-
cients in the compressed basis, and exploiting this knowledge for

potentially improved prediction of q�t� τ�: the proper orthogonal
decomposition and neural network-based flow reconstruction. In

each case we study the predictive capability of initializing a flow
solver with the reduced-order initial condition, predicting directly

from historical representations in the reduced space, and neural net-
work-based reduced-order models. We also consider data-driven

dynamic models for the pressure measurements.
The methods considered in this work are summarized in Fig. 3.

Methods are separated into an offline compression stage, a sensing
stage where we infer the reduced-order state from point pressure

measurements, reconstruction of the flowfield from the reduced-
order state, and finally forecast of the quantity of interest q�t�.
Learned functionsG, E, andD are predictors of the POD mode time
series, latent space encoder, and flow reconstruction network, respec-

tively. The letterF has been used to denote LSTM predictions that do
not use a dynamicmodel, with subscript indicating input.H is used to

denote neural network-based reduced-order models. In each case, we
use time series for pressure at discrete points on the surface of the

airfoil as the starting point of the online prediction.
Details on each method are provided in the following sections.

We assume familiarity with common implementations of neural

Fig. 3 Schematic of methods for extreme event prediction showing various flows of information from assumed knowledge of historical pressure
measurements Pt to future value of quantity of interest q�t� τ�.

Fig. 2 Left: Aerodynamic coefficientsCd andCl, and smoothed drag coefficient q as defined in Eq. (4). Red dashed lines indicate�2 standard deviations
away from the mean. Right: Histograms of the deviation of each quantity showing typical heavy tails of systems with extreme events.
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networks and stochastic optimization. In particular, the work in this

manuscript makes use of deep LSTMs [28] and the Adam method

for optimization [29]. The unfamiliar reader may find an excellent
reference in the free online textbook [30]. Further details on

the structure and implementation of neural networks are given in

Appendix C.

A. Flowfield Compression and Reconstruction

We begin with a discussion of the two offline methods for flow

reconstruction: the proper orthogonal decomposition (POD) and an

LSTM-based encoder–decoder pair. In this subsection we provide an
overview of the methodology used to form the reduced rank repre-

sentation for each of these two cases as well as methods for approxi-

mating time series associated with each POD mode.

1. Proper Orthogonal Decomposition and Sensing

The proper orthogonal decomposition is a standard tool for decom-
posing a flowfield into spatial modes that are orthogonal with respect

to a given inner product and whose time evolutions are also orthogo-

nal [31,32]. We apply the POD to the velocity field around the airfoil

using a weighted inner product. Specifically, the POD finds matrices
Φ, Σ, and ψ , which are discretized solutions to

u�x; t� − u�x� � Φ�x�Σψ�t�T (6)

where

Σ � diag�σ1; : : : ; σr�; σi ≥ σi�1 ≥ 0

hϕi;ϕjiw �
Z
Ω
ϕi�x�Tϕj�x�w�x� dx � δi;j

hψ i;ψ jiw �
Z

T

0

ψ i�t�ψ j�t� dt � δi;j (7)

and w�x� > 0 is a weight used to focus the inner product, and thus

variation explained by POD, on regions of interest near the surface of
the airfoil. A similarweighted approachwas used in [5],where awall-

focused POD was used as a basis for predicting extreme dissipation

events in channel flow. We use the family of weights given by

w�x� � 1 − ϵ

1� e�d�x�−l�∕δ
� ϵ (8)

where d�x� is the distance from x to the surface of the airfoil.

Equation (8) describes a smooth sigmoidal curve that decays from
1 (assuming l ≫ δ) at the airfoil surface to ε in the far field. For small

δ, this transition is localized around d � l and the weights are

approximately 1 for d < l − δ and ϵ for d > l� δ. We use parameter

values l � 1, δ � 0.1, and ϵ � 0.1. The POD is therefore principally
focused on describing variation in the velocity field within one chord

length of the airfoil surface, with approximately one-tenth the

weighting for variation outside this region.
In the case where w�x� � 1, the POD is equivalent to the singular

value decomposition of the mean subtracted data, also known as

principal component analysis. For nonidentity weights, Σ and ψ�tj�,
j � 1; : : : ; m are given by the eigenvalue decomposition ofUTWmU

where �U ∈ Rn×m is the mean-subtracted velocity data and Wm is a

diagonal matrix with w�xi�m�xi� along the diagonal where m�xi� is
the mass associated with that grid point for the spectral element grid

[31]. Modes Φ are subsequently computed using their definition in

Eq. (6). Alternative methods may compute Φ before Σ and ψ , but
these suffer from numerical issues for ϵ ≪ 1. Mean flow, leading

modes, and singular values are shown in Fig. 4. We also show the

normalized residual energy, defined by

Eres;j �
P

m
i�j�1 σ

2
iP

m
i�1 σ

2
i

(9)

at various truncation ranks. Truncation ranks for Eres � 0.1 and 0.01
are 60 and 391, respectively.
Applying POD to the airfoil data yields modesϕi, shown in Fig. 4,

singular values Σ, and time series ψ i�t� corresponding to each mode

ϕi. In the online phase of any prediction method, we will only have

access to Pt, not ψ i�t�. The latter may be estimated from sparse or

gappy measurements [33]. We therefore train a deep LSTMmodel to

estimate the current POD representation of the flow from pressure

measurements. Letting ψ r�t� be the rank r truncation of the time

series of the POD expansion, we have

ψ̂ r�t� � G�Pt� (10)

The exact form of and training procedure for G are described in

greater detail in Appendix C. The number of modes predicted by G
may be tuned as appropriate. We test r � 8, 16, 32, and 64. For

r � 32, true values of POD coefficients as well as their estimates

from pressure via Eq. (10) are shown in Fig. 5. Note that recon-

structed time series are filled in on amuch denser grid than true values

since they are computed from the finely sampled pressure time series.

Temporal resolution on ψ�t� is limited by the number of output files

saved during numerical simulation as well as memory limitations in

the computation of the POD.
It is worth noting that the time series ψ�t� are normalized to unit

variance and Σ is not considered in loss function. Hence, error in

higher modes is treated the same as error in lower modes. Higher

modes did still have higher error, perhaps because they tended to

exhibit more chaotic behavior. The authors did not explore the loss

function exhaustively since doing so would be a significant research

endeavor on its own.
After prediction of ψ̂�t� usingG, one may reconstruct an approxi-

mation of the full flowfield using Eq. (6). The lower two rows on

Fig. 5 show the results of this in the streamwise direction aswell as the

true velocity and absolute error for two snapshots taken from the

testing dataset, that is, snapshots not seen by the optimization algo-

rithm used to learn G. As may be expected from Eq. (8), error in the

wake is larger than that close to the airfoil. These reconstructions

suffer from multiple sources of error. Expanding the difference

between true and reconstructed fields, we get

Fig. 4 The mean velocity field and three POD modes. Axes not drawn to scale.
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u�t� − ûPOD�t� � ΦΣψ�t�T −ΦrΣrG�Pt�T

� Φ−rΣ−rψ−r�t�T|����������{z����������}
Unresolved

�ΦrΣr

0
@ψ r�t� −G�Pt�|���������{z���������}

NNError

1
AT

(11)

where the subscript −r denotes those components not in the first r.
Error in the neural network increases for modes with high frequency

and chaotic behavior, such as mode 30 shown in Fig. 5. However,

significant error is also incurred from unresolved modes due to the

slow decay of singular values Σ, as shown by Fig. 6. While spatially

periodic translational behavior may be represented with pairs of

modes [see Eq. (34) in [32]], the system studied in the present work

tends to shed isolated pairs of vortices. Moreover, it also exhibits

intermittency, which may be difficult to capture in a POD basis. The

authors are not aware of efficient linear methods for representing

translation of sparse structures such as the wake vortices observed in

this data.

2. Neural Network Flow Reconstruction

In light of some of the deficiencies of the POD, and motivated by

the successful applications of neural networks to problems in fluid

dynamics [23,24,34–36], we also consider neural network-based

approaches to flow reconstruction. The approach in this work is to

use an LSTM-based encoder coupled with a fully connected network

predicting the velocity at each grid point. The fully connected

decoder resembles that used in [16,37], though due to the large

computational grid, we have not used the probabilistic formulation

considered in the latter. We note, however, that neither of the afore-

mentioned papers included the use of history terms in their prediction

of the fluid state, aswewill show is done by theLSTMencoder for the

networks considered in this work. For brevity, we will call networks

of this type full-field neural networks (FFNN), indicating that the

output of the network is the values of fluid velocity at each grid point

used by a solver.
As in the POD case, we represent the fluid velocity around an

airfoil at time t using a low-dimensional representation ξ�t� ∈ Rr.

The time history of the pressure sensors is encoded to the state using

an LSTM given by

ξ�t� � E�Pt� (12)

Since the full state of the flowfield is encoded in ξ�t�, one may tune

the dimension of ξ to acquire a desired rank for the reduced-order

representation of u. We found improvements in reconstruction accu-

racy up to approximately rank r � 32, with minimal improvement

at high values. We therefore use r � 32 for the remainder of this

work unless noted otherwise. The reconstructed velocity field is then

given by

Fig. 6 Error due to truncation and neural network as measured by ku − ûPODkWm
.

Fig. 5 Flowfield reconstruction using LSTM to predict time series for first 32 POD modes using pressure measurements Pt. Top [Operator G�Pt�]:
LSTM prediction of POD time series for 1st, 10th, 20th, and 30th modes (red) and sparser true values (blue). Bottom [Operator ΦΣG�Pt�T]: POD
reconstruction of streamwise velocity compared to two true fields within test set data.
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ûNN�xi; t� � D�ξ�t��i (13)

where D is a standard fully connected neural network with the final

layer being linear. Taken together, Eqs. (12) and (13) form a recurrent

network from pressure sensor time histories to the fluid velocity

given by

ûNN�xi; tj� � D ∘ E�Ptj �i (14)

which are trained together using numerical simulation data. Further

details on the network structure may be found in Appendix C.
We train the networks using a weighted square-error loss function

designed to favor accurate reconstruction near the wall boundary

LE;D �
X
j

Z
Ω
ku�x; tj� − ûNN�x; tj�k2w�x� dx (15)

where Ω is the computational domain and w�x� is as defined in

Sec. III.A.1 using ϵ � δ � 0.1 and l � 1. It is also possible to weigh
the loss function tomore heavily penalize errors in times immediately

preceding an extreme event, but doing so was observed to have little

effect on prediction performance. In practice, the integral in Eq. (15)

is approximated using the mass matrix m obtained from the spectral

element grid. The expression simplifies to a simple weighted sum of

squares error given by

LE;D ≈
X
j

X
i

ku�xi; tj� − ûNN�xi; tj�k2w�xi�m�xi� (16)

Snapshots of the true streamwise velocity, the FFNN-predicted

streamwise velocity, and absolute error are shown in Fig. 7, which

includes the same fields shown in Fig. 5 to illustrate POD

reconstruction. As was the casewith POD, error is higher in thewake

than in regions close to the airfoil. This is unsurprising, given that the

loss function used to train the networkweighs error close to the airfoil

more than that in the wake. Note that the maximum absolute error in

the near airfoil region using neural networks is considerably lower

than that of POD and that regions of high error are more localized.

This indicates the superior performance of FFNN to POD for flow

reconstruction in this particular case.
The choice to use a very large output layer of the neural network

makes predictions specific to the particular grid used in training,

though interpolation schemes could be used in other cases. The

FFNN decoder’s size also makes it highly memory-intensive, which

limits batch size in training. It is plausible that similar networks for

three-dimensional flows would require coordinate descent like algo-
rithmswhere fractions of the outputweights are updated on any given
batch. This is in contrast to operator-type networks, where spatial
coordinate x is given as input [35]. Methods based on the latter were
implemented without physical constraints for flow reconstruction
from pressure measurements but were found to underperform the
full-field neural networks discussed in this work. We note that this
could be in part due to using a neural encoder of pressure measure-
ments rather than sparse function evaluations, as used in [35]. It is
also possible that the use of physics-informed methods could
improve prediction accuracy of the operator type networks, and this
is noted as a potentially interested research question. However, we
consider such an approach to be outside of the scope of this work.

B. Forecasting Aerodynamic Fluctuations

We now consider online methods for Eq. (5). We separate these
methods into two broad categories; those that do not use dynamic
models and those that use dynamicmodels such as theNavier–Stokes
equations or data-driven dynamic models.

1. Nondynamic Methods

We first consider methods that do not employ any sort of dynamic
model. These are simply interpolations of a function from the time
history of an input quantity to the future value of q�t�. The general
form is given by

q�t� τ� � F
•
�•t� (17)

where • ∈ �P;ψ ; ξ� andF is a deep LSTMmapping some time series
of historical measurements to the future quantity of interest. In the
case where the reduced representation of the flow state is used, we
have

q�t� τ� � Fψ ∘ G�Pt�
q�t� τ� � Fξ ∘ E�Pt� (18)

so the POD sensing networkG and neural network encoderEmay be
considered as featuremaps for the forecasting networksFψ∕ξ. Each of

FP∕ψ∕ξ are trained using the mean square error loss function. Other

loss functions more specific to extreme events were considered but
found to make negligible difference to the resulting trained network.
Nondynamic methods of the form given by Eq. (17) may be

favorable for several reasons. They are simple, easy to train, and
based on the ubiquitous and highly effective LSTM network struc-
ture. They may be of particular interest due to the computational

Fig. 7 [OperatorD ∘ E�Pt�] Reconstruction of streamwise velocity (u∞ � 1 subtracted) using FFNN for flow compression with 32-dimensional latent
space and LSTM to map the pressure measurements Pt to the latent variables ξ. Note maximum error is approximately half that of POD, and regions of
high error are significantly more localized.
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savings offered by avoiding dynamic models. Approximation of
q�t� τ� may be rapidly computed from the state of the LSTM,
which is updated online from streaming data. However there are also
downsides to the nondynamic approach. As τ becomes large, we are
approximating larger steps of a chaotic time series. The problem thus
becomes very sensitive to inputs, and balancing sufficient model
complexity with overfitting becomes challenging. Moreover, predic-
tion of q�t� τ� for any given lead time τ requires its own trained
network.

2. Full-Order Dynamical Model-Based Prediction Methods

Previous work predicting extreme events for turbulent flows has
used a low-dimensional representation of the flow as an initial con-
dition for a fluid simulation and employed the adjoint to evaluate the
gradient of the future quantity of interest with respect to coefficients
in the low-dimensional expansion [5]. This is possible in cases where
the low-order initial condition is sufficiently close to the full-order
state to track its behavior. Here, we evaluate whether this is the
case for low-dimensional initialization from both the POD basis
and FFNN. Numerical simulations are initialized using either
the FFNN-based reconstructed velocity or the low-dimensional
reconstruction using the known POD modes and singular values,
along with the estimated temporal coefficients ψ̂�t� � G�Pt�. Future
values of q�t� are computed using the same convolution as in Eq. (4):

q̂�t� τ� � �Ĉd�s; û� � K�s���t� τ�
where û�t� � D�ξ� or û�t� � ΦΣG�Pt�T (19)

where û�s�; s ∈ �t; t� τ� is found via numerical integration of the
Navier–Stokes equations andK is as in Eq. (4). Since the time series

for Ĉd ismuch shorter than the full simulation used for training neural
networks, the common practice of zero padding distorts the values of
q̂ near the endpoints. We instead truncate and renormalize the
smoothing kernel. For valid comparison, the same is done for the
true drag coefficient truncated to the interval �t; t� τ�. Following
Eq. (19), time series for q and q̂ are normalized using the mean and
variance of the full-length time series defined in Eq. (4).

3. Data-Driven Dynamical Model-Based Prediction Methods

We also consider forecasts of either 1) the pressure signal P�t� or
2) the reduced-order state of the fluid flow, using data-driven
dynamic models. In the latter case we formulate and evaluate
reduced-order dynamical models for both the reduced POD state
and the latent representation learned by the FFNN. For the POD
reduced order model (ROM), we train the dynamic model on the
estimated POD coefficients ψ̂ � G�Pt�, instead of the true coeffi-
cients ψ , since the former may be found exactly from airfoil surface
pressure. This eliminates error due to imprecise initial conditions.
Forecasting models in each case are LSTM networks mapping

historical measurements of a given quantity (P∕ψ̂∕ξ) to its value κ
timesteps in the future. They are represented as

P�tj�κ� � HP�P�tj�; P�tj−κ�; : : : �� (20)

with similar networks for ψ̂ and ξ. Here κ is taken to be three in order
to alleviate some of the numerical difficulties with training data-
driven dynamic models in the small time-step limit [38]. Thus, the
LSTM maps historical measurements of the dynamic quantity P to
the value of that quantity three steps in the future: P�tj�3�. Since P is

measured every dt � 0.01 time units, the LSTM is effectively a
dynamic model for P with time step equal to κdt � 0.03. Networks
are trained using themean square error loss over a prediction window
of 20 steps:

LHP
�

X
i

X20
j�1

kHj
P�Pi� − P�ti�κj�k2 (21)

where we define composition of HP with itself by

H1
P�Pi� � HP�P�ti�; P�ti−κ�; P�ti−2κ�; : : : �;

H2
P�Pi� � HP�H1

P�Pi�; P�ti�; P�ti−κ�; : : : �;
H3

P�Pi� � HP�H2
P�Pi�; H1

P�Pi�; P�ti�; : : : � (22)

The sum over index i in Eq. (21) is taken over all initial times in the
training dataset. The same network structure and loss function is used
for the full set of 50 pressure measurements as well as the 32-
dimensional reduced-order representations of the flowfield. Layer
sizes are scaled to account for the difference in dimension between P
and ψ∕ξ.
For any τ ≥ 0, we obtain the estimated forecast

P̂�t� τ� � Hmτ
P �Pt� (23)

wheremτ � τ∕�κdt�. Following theLSTM-based forecast ofP∕ψ̂∕ξ,
we may use FP∕ψ̂∕ξ trained for zero lead time to evaluate q̂�t� τ� �
FP ∘ Hmτ

P �Pt� and likewise for ψ̂∕ξ. Since prediction of q with zero
lead time is a much simpler problem, we use standard feed-forward
neural networks in place of the LSTMs used for nondynamic pre-
dictions with nonzero lead time.

C. Error Metrics

Each of the neural networks in this work is trained using the mean
square error (MSE). The MSE is differentiable and may be evaluated
on subsets of the training data, allowing for the use of stochastic
optimization schemes run on a graphics processing unit. However,
theMSEmay not be a good indicator of success in predicting extreme
events. We have therefore adapted several extreme-event-tailored
errormetrics to compare the variousmethods considered in thiswork.
Specifically, results are compared using the batch relative entropy
loss, themaximum adjusted area under the precision-recall curve, the
extreme event rate dependent area under the precision recall curve,
and the optimal F1 score.
The batch relative entropy (BRE) loss is inspired by the work in

[7], where authors use a relative entropy loss function to train con-
volutional neural networks that are capable of making accurate
predictions of a systemgoverned by the truncatedKorteweg–deVries
(tKdV) equation in regimes with extreme events. Their work uses
empirical partition functions similar to the soft-max activation com-
monly used in neural networks to transform high-dimensional pre-
dictions into probability distribution functions highlighting outlier
values. Loss is subsequently measured loss using the Kullback–
Leibler-divergence. This approach was shown to significantly
improve prediction accuracy over the MSE on the tKdV problem.
A similar approach was adapted for the present work using partition
functions over minibatches rather than output dimensions. Specifi-
cally, we define the batch relative entropy loss as

BRE �
X
i

zi log

�
zi
ẑi

�
(24)

where zi, ẑi are given by the empirical partition functions

zi �
eq�ti�P
j e

q�tj� ; ẑi �
eq̂�ti�P
j e

q�tj� (25)

and where the sum is taken over a minibatch. We note that this work
considers partition functions that weigh positive outliers, as opposed
to the symmetric variant used in [7], since all events of interest to this
work skew positive. The BRE loss was tested as a means of training
the neural networks described in previous sections, but taken over
minibatches was found to perform comparably with the mean square
error. For evaluation, we use the batch relative entropy loss taken over
the full testing dataset.
The performance of a predictor of extreme events may also be

measured by the ability of that predictor to classify events based on a
threshold value of the quantity of interest. The maximum adjusted
area under the precision-recall curve (α�)was proposed in [6] as a loss
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function for predicting extreme events and shown to performwell for

predicting extreme dissipation events in Kolmogorov flow and rogue

waves in the Majda–McLaughlin–Tabak model. To define α�, we
first introduce the quantity ω for the extreme event rate and the

corresponding threshold â�ω�, such that p�q > â�ω�� � ω. Intro-

ducing a second threshold b̂ for the prediction q̂ yields a classifier for
which we can compute the precision (S � true positives divided by

predicted positives) and recall (R � true positives divided by total

positives). Noting that precision is uniquely determined by the

extreme event rate and recall, [6] computes the area under the

precision recall curve

α�ω� �
Z

1

0

S�R;ω� dR �
Z
R
S�b̂;ω�

���� ∂R�b̂;ω�∂b̂

���� db̂ (26)

and the maximum adjusted area under the precision-recall curve as

α� � max
ω

α�ω� − ω (27)

We compute the integral in Eq. (26) using a finite grid of β̂ values

spread evenly between min�q̂� and max�q̂� with finite difference

scheme to evaluate the derivative term. Its value is bounded between0

and 1 but occasionally falls slightly outside this range due to numeri-

cal issues and is subsequently clipped. The maximization in Eq. (27)

is taken over a discrete set of samples evenly spaced ω between 0.01

and 0.25.
Finally, we consider the extreme event rate dependent optimal F1

score, defined as the F1 score on the testing dataset using the thresh-

old that optimizes theF1 score on the training and validation datasets.

That is,

F1;opt�q; q̂;ω� � F1��qtest > â�ω��; �q̂test > b̂opt�� (28)

where

b̂opt � argmax
b̂

F1��qtrain∕val > â�ω��; �q̂train∕val > b̂�� (29)

Taken together this yields five metrics of predictor performance.

Mean square error, batch relative entropy, and α� are independent of
extreme event rate and yield simple scalar metrics of performance,

though they do not indicate performance at a particular extreme event

rate. The extreme event rate dependent α�ω� and F1;opt�ω� each seek
tomeasure a balance between precision and recall at variable extreme

event rates. The dependency on extreme event rate allows for a more
descriptive quantification of error, sincewe can comparemethods for
a variety of extreme event rates.

IV. Results

In this section we present results for each of the methods for
Eq. (5). Results for prediction using the full-order model with
reduced-order initial condition are kept distinct from those using
neural networks. This is due to the weak performance by the
former, as well as its considerable computational expense, which
limits the number of trials we use to evaluate it. For predictions of
q�t� using dynamic methods, we apply a smoother to remove
higher frequency oscillations. This smoother weights previous
predictions with exponentially decreasing importance and does
not use any future prediction beyond τ.

A. Simulations with Reduced-Order Initial Conditions

We first present results showing the failure of approaches taken
by the authors to forecast aerodynamic fluctuations using the
Navier–Stokes solver and reduced-order initial condition. For
each of a variety of ranks, reduced-order initial conditions were
formed using the estimated POD time series ψ̂�t� and FFNN flow
reconstructionD ∘ E�Pt� at 50 evenly spaced times throughout the
portion on data reserved for testing. Examples of the resulting
smoothed drag coefficient are shown in Fig. 8, which compares
predicted time series for q̂�t� using several ranks of POD recon-
structions (left column) as well as FFNN-based reconstructions
(right column) to the true value q�t� (black curves). Each row
represents a different initial condition from within the testing
dataset. We note that all the initializations using different reduc-
tion methods/orders exhibit poor agreement with the true time
series in at least one of the three cases shown.
The mean absolute errors in the drag coefficient and smoothed

drag coefficient q for each rank are shown in Fig. 9. There are
several noteworthy features; the approximated values ofCd for both
methods are initially fairly accurate, falling within 10% of the true
values, but very quickly diverge. By the end of the 10.5 time unit
simulations, the error in each quantity is roughly as large as the
standard deviation of the true data. Initial error in q�t� is higher, as is
expected since this quantity includes some information from future
estimates of Cd. We also note the lack of noticeable correlation
between the rank of the latent space used for flow reconstruction and
prediction accuracy. In the POD case, it appears that the lowest rank
r � 8 performs poorly compared to higher ranks, but r � 64 is not
uniformly better than r � 16 or r � 32. A plausible explanation for

Fig. 8 Examples of forecasts of q�t� τ� using Eq. (19) with various ranks of POD (left column) and FFNN (right column). Examples show prediction
from initial conditions are spaced evenly throughout the testing dataset. True value is shown as solid black line. Each row represents a different realization
of the flow.
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this is that as the rank is increased, so too is the difficulty of the

sensing problem outlined at the end of Sec. III.A.1. Indeed, using

the true (nonreconstructed) ψ�t�, we see improved agreement with

full-order results if r is let to become large. The connection between

rank and accuracy for the FFNN examples is more opaque. While

higher-rank initial conditions are slightly more accurate at predict-

ing the initial drag, the difference is small and decays quickly as the

simulation progresses.

While the flow reconstruction methods presented in this work

were found to be inadequate for initializing a simulation capable of

capturing bursts in drag, it is plausible that future work may find

methods able to do so. However, this problem will likely become

even more challenging at higher Reynolds numbers or in three

dimensions. We include them to show the sensitivity of the prob-

lem to small changes in the initial condition (note that the

FFNN was able to accurately reconstruct the fluid velocity) and

to contrast to other examples in fluids where a representation in

low rank basis was found to be an effective precursor to extreme

events [5].

B. Comparison of Reduced-Order Dynamic Methods

We now consider the data-driven dynamic models for the pressure

signals and reduced-order representations of the flowfield. Figure 10

shows the time evolution of the mean square error in the dynamic

quantity and absolute error in prediction of q for each of the three

methods HP∕ψ∕ξ. The dynamic quantities in each case have been

normalized to unit variance, and so direct comparisons of error

magnitudes across methods and across indices are meaningful. Error

statistics have been binned for each timestep and normalized such

that vertical slices of any subplot are density functions across all

examples from the testing dataset. Apparent recurring features in the

error plots forq are likely due to themethodsmissing the same feature

from multiple closely sampled initial conditions.

In each of the three models, the bulk of the error remains low

throughout the forecast window, as is shown by the curves for

mean error. Error statistics for the dynamic model forP remain low

for approximately three time units before some trajectories

diverge. Outlier errors for the dynamic model for ψ grow more

rapidly than others initially and by the end of the 10.5 convective

unit interval are noticeably larger, on average, than the other two.

Mean error in the dynamic quantity, shown by red curves in the left

panel of Fig. 10, is lowest for Hξ, with HP having slightly larger

error and Hψ considerably larger than Hξ and HP. Shading of

error density indicates more positive outliers in the dynamic

quantity error for HP than Hξ, especially at lower lead times.

Differences in mean absolute error for prediction of q, shown on

the right-hand side of Fig. 10, are less pronounced, withHξ still the

most accurate.

For the models in P and ψ , where indices in the dynamic variable

carry meaning, it is also instructive to see what variables accumulate

error at what rates. Figure 11 shows the mean square error for each

index in each dynamic variable taken across test set examples.

Fig. 9 Mean absolute error, normalized by standard deviations of true time series for the drag coefficient and q�t� using various ranks of reduced-order
initial conditions from the estimated POD time series and FFNN.

Fig. 10 Test set empirical probability density functions of themean square error of the LSTM forecast (left) and absolute error in predicting q�t� τ� for
50-dimensional data-driven forecast of pressure measurements (top), and 32-dimensional reduced-order models using POD modes (middle) and FFNN
latent space (bottom). Mean error quantities are shown by red curves.
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The sharp discontinuity in the error for pressure sensors is a

consequence of their position on the airfoil, shown in the lower panel

of Fig. 1. The first 26 pressure sensors are equally placed on the top of

the airfoil from front to tail including endpoints, and the subsequent

24 are evenly spaced from front to tail on the lower side. We see that

error towards the tail of the airfoil on both the suction and pressure

sides is initially lower than towards the front. However, as time

progresses, there is considerable error in pressure sensors towards

the rear of the suction edge of the airfoil.

Error in the low-order POD modes is lower than in the high-

order, less energetic, modes. This may be explained by the fact that

these low-order modes tend to track large-scale features of the flow

and have slower and less chaotic trajectories. It is worth noting

that, while the left-hand column of Fig. 10 makes clear that error in

ψ grows much more rapidly in the initial forecast than P or ξ, the
same is not as obvious for low τ prediction of q�t� τ� using the

dynamic model for ψ̂. This suggests that the value of qmay largely

be a function of the low-order energetic PODmodes, which Fig. 11

shows are accurately tracked for longer lead times. Indices for the

FFNN latent space variable ξ do not have meaning, and there is no

correlation between index and the rate at which error increases.

C. Forecasting Aerodynamic Fluctuations

In this sectionwe compare the six neural network-based prediction

strategies using the metrics outlined in Sec. III.C. Examples of

predictions for lead time τ � 7.0 using all methods are shown in

Fig. 12. Blue curves indicate true values q�t� and red dashed curves
show predictions with lead time τ � 7.0 using the three nondynamic

and three dynamic methods. Plots for other lead times are shown in

Appendix E.

Scalar values (MSE, α�, and BRE) of prediction accuracy for

each method and lead times τ ranging from 0 to 10.5 convective time

units in intervals of 0.7 ≈ 1∕fpeak are shown in Fig. 13. Metrics for

prediction via nondynamic methods are shown as solid lines, and

those for dynamic models are shown as dashed lines.

Figure 13 clearly indicates some qualitative differences between

dynamic and nondynamic methods. In particular, error statistics for

the dynamic models at a particular value of τ are highly correlated

with those for similar lead times. The curves indicating their perfor-

mance as a function of lead time are therefore smooth. The same is not

true for nondynamicmodels, where predictions for each lead time are

performed via their own trained neural network. It is plausible that

more care could be taken to yield consistency across lead times for

Fig. 11 Time evolution of mean (across test set samples) square error for each of 50 pressure sensors (left), 32 POD modes (middle), and dimensions of
FFNN latent space (right) using LSTM-based dynamic models.

Fig. 12 True (blue) and predicted (red) time series for q�t� with lead time τ � 7.

Fig. 13 Mean square error,maximumadjusted area under the precision-recall curve (α�), and test set relative entropy for each of the six neural network-
based prediction methods. Evaluation is performed on partition of data reserved for method comparison (test set).
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nondynamic models, but methods for doing so are not immediately
apparent.
The scalar error metrics also clearly show that the dynamic models

in P and ξ, HP and Hξ are the most accurate of the six models.
Differences between the other four are less pronounced, though Hψ

does, on average, slightly outperform nondynamic methods. This
difference is most notable in the MSE though still apparent for the
extreme event-specific metrics. This suggests that a nonnegligible
portion of the improvement Hψ has over nondynamic methods

manifests in the nonextreme values of q, though the scalar valued
metrics do not resolve this feature.
Values for the remaining extreme event rate dependent evaluation

metrics are shown in Fig. 14 for values of ω between 0.01 and 0.25.
The top row shows values for F1;opt, and the bottom row shows the

area under the precision-recall curve. Within each subplot, values
towards the bottom of the image indicate the prediction accuracy of
themodel for classifying very rare events (1%)while those at the very
top show more common events, with lead time increasing across the
horizontal axis. While differences in values of prediction accuracy
using Fig. 14 may not be immediately clear, the same qualitative
features seen in Fig. 13 are again apparent. In particular, errors for the

dynamic methods are much smoother in time than those of the

nondynamic methods.

Differences between methods become much more apparent when

plotted directly. Figure 15 shows the differences invalues between all

methods for both F1;opt (left) and the area under the precision-recall

curve α (right). Values within each subfigure indicate the metric

evaluatedwith themethod on the corresponding rowminus themetric

for the method on the corresponding column. Hence, blue (negative)

indicates the method corresponding to that column performed better

while red (positive) indicates the method corresponding to the row is

better.

Figure 15 shows HP and Hξ outperforming other methods across

all lead times τ and extreme event ratesω except for a small number of

data points clustered around τ � 4 and lowω. Comparisons between

other methods are less easily summarized. There do not appear to be

discernible trends in the comparison between nondynamic methods

usingP,ψ , or ξ as input. From this it seems reasonable to surmise that

the accuracy of nondynamicmethods is not improved in ameaningful

manner by exploiting flowfield data. The dynamic model for ψ
outperforms nondynamicmethods formidrange lead times and lower

extreme event rates but underperforms in prediction of less rare

Fig. 14 Extreme event rate dependent area under the precision-recall curve (α�ω� and F1;opt) for each method evaluated on test set.

Fig. 15 Comparison of α (left) and F1;opt (right) across various methods, lead times τ, and extreme event ratesω. Each plot shows α∕F1;opt for method
corresponding to row minus α∕F1;opt for method corresponding to column. Blue (negative) indicates column method outperforms row method. Hence,

lower left plot indicatesHξ has higher α (favorable performance) thanHψ in most cases.
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events (higher ω) at longer lead times. Differences between methods
are largely consistent between F1;opt and α.

V. Conclusions

The authors have investigated the feasibility of a variety of meth-
ods for forecasting aerodynamic fluctuations occurring in a simula-
tion of two-dimensional incompressible flow around a NACA 4412
airfoil using only pressure recordings along the surface of the airfoil.
Some of these methods also exploited, in an offline manner, knowl-
edge of the flowfield to construct low dimensional representations
that were either used as inputs to machine-learned predictors or
variables in dynamic models. Comparison between the methods
considered in this work suggests that the complexity of the flow,
though lowReynolds and only two-dimensional, precludes the use of
a full-order computational fluid dynamic model with low dimen-
sional input. Other methods were largely comparable, except for the
learned dynamic models of the pressure measurements and of the
latent variable of the FFNN-based flow reconstruction, which per-
formed notably better than others.
The authors highlight that neural networks allow for tremendous

freedomwith regards to structure, hyperparameters, regularization, and
other factors that may affect performance. Several architectures have
been tested and the best result selected for this paper, but the authors
acknowledge that their work falls considerably short of testing across
all sizes and training procedures. Doing so would require extensive
computational resources, and results would have no guarantee of
generality beyond the problem specifically discussed in this work.
Rather, they sought to investigate the use of various classes of models
(nondynamic, ROM, full-order simulation) and representations of
data (POD modes, FFNN) for the purpose of forecasting a quantity
exhibiting extreme events. They also note that the work contained
in this manuscript has been done without the inclusion of artificial
noise, as is common in works applying machine learning to synthetic
datasets. The authors suspect that including noise would not change
the results in a meaningful way, since flow reconstruction methods
have been shown to be robust to noise [16,37] and quantities with
dynamic models may be estimated with filtering. Nonetheless, further
work studying the effect of noise would be necessary to confirm this.
In Sec. IV it was suggested that low-order initializations of the

Navier–Stokes solver failed to accurately predict fluctuations. This
motivated the use of data-driven dynamic models. This is not surpris-
ing, given the complexity and nonperiodic nature of the flow. It is
possible that a mixed strategy of projecting the governing Navier–
Stokes equations onto POD modes coupled with an LSTM closure
model would outperform both approaches, as suggested in [38]. This
approach, however, would be highly nontrivial when using the latent
space of the FFNN. Given a sufficiently expressive latent space and
decoder, it may be possible to use a physics-based nonlinear reduced-
order model for ξ such as [39]. This approach may be an interesting
direction for future research.
The work included in this manuscript is based on numerical

simulations of an airfoil, and it is worth noting differences that may
occur in an application setting. Numerical simulation for the current
work was implemented with a blockage ratio of 3.18%. This falls
within the range that might be expected for experiments on bluff
bodies [40,41] but is higher than some works studying the aerody-
namic properties of airfoils. Several works have noted dependence of
aerodynamic properties including the drag coefficient, Strouhal fre-
quency, and certain critical Reynolds numbers on the blockage ratio
[42]. This effect was observed in the case used for the present work
but not explored in depth. The authors also note that the simulation is
of two-dimensional flow over a smooth airfoil, which exhibits quali-
tative differences from three-dimensional simulations and experi-
ments [15]. Thus, the present work should be considered as a study
of a computationalmodel of prototypical flowphenomena rather than
experimental or application conditions. Nonetheless, the present
work provides a basis for understanding the utility of various
approaches towards predicting intermittent events in the flow around
an airfoil.

Extension of the present work to higher Reynolds and three-
dimensional cases will require addressing several further challenges.
Simulation of flow at either higher Reynolds or in a three-dimensional
setting will require a larger computational grid and exhibit higher
intrinsic dimensionality. The output dimension for the FFNN-based
flow reconstruction scales with grid size and therefore will be signifi-
cantly larger. It is plausible that the resulting computational challenges
may be mitigated by learning a coarsened solution, using multiple
networks, or using a single network with a large memory footprint.
While not found to be successful in this work, operator-type networks
may be adapted using recent advances such as integration of physics-
informed loss functions [43]. Reconstruction in a POD basis will also
require a larger number of modes, challenging the task of pressure to
POD network G. The authors note, however, that dynamic models
used in thiswork (HP∕ψ∕ξ) are non-Markovian.Suchmodels havebeen

shown to allow for data-driven forecasts even in the case of unresolved
modes [44,45]. It is plausible to expect the current framework to
generalize to more complicated dynamics, though lead time for accu-
rate forecasts will likely diminish.
The present work considered the case where pressure measure-

ments are taken at 50 positions around the perimeter of the airfoil.
This is, of course, not practical, and future work could consider
the use of various sensor placement techniques for determining
optimal placement on the airfoil with respect to forecasting fluctua-
tions [18,22].
The authors believe this work establishes compelling comparisons

and baselines for the prediction of extreme events using measure-
ments on the surface of an airfoil. Numerous techniques, including
several adapted from other works on extreme events, were tested and
compared. The results suggest that the use of data-driven dynamic
models for quantities subsequently used to predict extreme events
outperform those that ignore dynamics. This work also provides
numerous opportunities for future research. In particular, sensor
placement and uncertainty quantification are critical elements of
practical engineering that may be explored in the context developed
in this work.

Appendix A: Numerical Simulation Details

Numerical simulations of the airfoil used in this work were per-
formed using the open-source spectral element solver Nek5000 [26]
and run on Expanse at the San Diego Supercomputing Center using a
grant through the National Science Foundation-funded Extreme
Science and Engineering Discovery Environment (XSEDE) [46].
The spectral element method, proposed in [47], partitions the com-
putational domain into nonoverlapping elements using polynomial
interpolationwithin each element to represent the solution.Meshwas
generated using gmsh [48].
Time integration was performed using a second-order semi-

implicit scheme described.‡ The operator-integrating-factor splitting
method proposed in [49] was used to allow for stable time integration
with a fixed timestep of 0.001. The filtering method proposed in [50]
was also used to stabilize the simulation.
The simulation was initialized with a velocity of u � �1; 0�. This

led to a short transient, which was avoided when training neural
networks and taking the proper orthogonal decomposition. The
inflow boundary condition was held at a fixed value of u � �1; 0�
throughout the simulation. Boundary conditions on the wall of the
airfoil were no-slip (Dirichlet) and along the top and bottom on the
domain were symmetric. The outflow boundary condition was of the
convective type proposed in [27]. This allowed for the passage of
strong vortices out of the domain while avoiding numerical issues.
Simulation for 1020 convective units took approximately 3.5

hours running on 128 cores or approximately 5 days running on 16
cores on the author’s local computer. Aerodynamic quantities are
saved every timestep, and pressure at discrete points on the surface of
the airfoil is saved every 10 steps, or 0.01 time units. Velocity and
pressure data on the full domain are saved every 0.25 time units.
Codes for recreating datasets, as well as files for time series of

‡https://www.mcs.anl.gov/~fischer/nek5000/oifs.pdf [11 August 2021].
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pressure and aerodynamic coefficients, are available online at https://
github.com/snagcliffs/Airfoil_EE.

Appendix B: Further Details on Intermittent Events

In this appendix, we provide a closer look at the behavior of the
flow around the airfoil and the nature of the intermittent bursts in the
aerodynamic coefficients. Intermittency, characterized by short-term
“bursts” that interrupt more regular behavior, is a common feature of
dissipative dynamical systems in transitional regimes between regu-
lar and chaotic behavior [51]. In this work, we observe intermittency
in the behavior of the vortex shedding behind the airfoil, resulting in
characteristic bursts in the drag coefficient. To distinguish these
events from periodic or near-periodic behavior, we include in Fig. B1
return times of both the drag coefficient Cd and smoothed drag
coefficient q for various exceedance thresholds. Scattered values of
return times are shown as red dots along the x axis of each subfigure.
Kernel density estimation with tenfold cross validation for kernel
bandwidth has been used to estimate densities for each distribution of

return times, which have also been shown in blue. Return times forCd

less than 2∕fpeak are not included, as these are considered to bewithin
the same event.

From Fig. B1, we see that there appear to be clusters of return

times for lower exceedance threshold (μ� 1.5σ). These may be seen

on the figure for Cd at return times equal to approximately 2 and 16.

However,many values remain scattered in a continuous range between

clusters. A similar behavior is observed on return times of q, though
clustering is less pronounced and not captured by the estimated density

function.

Behavior of the drag coefficient q and flowfield in an interval of

time spanning a burst are shown in greater detail in Fig. B2. Note that

while q is defined using a smoothing operation on Cd, it is also

centered and normalized. Snapshots of the vorticity field are shown at

nine points within the interval that aremarked on the time series ofCd

as red dots. Note regular vortex shedding and periodic drag coef-

ficient up to approximately t � 488, followed by irregular behavior

and burst in Cd and vortex shedding up till approximately t � 498
and the subsequent return to regular behavior.

Fig. B1 Return times and estimated densities for Cd and q at various threshold values. Return time samples are shown as red dots, and kernel density
estimate with tenfold cross validation to find Gaussian kernel bandwidth is shown in blue. For Cd, return times shorter than two characteristic shedding
cycles have been discarded.

Fig. B2 Behavior of drag coefficient Cd, smoothed drag coefficient q, and flow preceding and during burst. Top: time series for Cd�t� (blue) and q�t�
(red) preceding andduring burst. Note that q has been centered andnormalized. Scattered points indicate timewhere snapshots of vorticity are presented.
Bottom: Snapshots of vorticity at times indicated in time series.
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Appendix C: Neural Network Structures and
Implementation

All neural networks used in this workwere implemented in Python
using the TensorFlow library [52]. The swish activation function [53]
was used between fully connected nonrecurrent layers, and the
sigmoid function was used in LSTM layers. In Sec. III.B.3 we note
that prediction of q following LSTM dynamic models is performed
using nonrecurrent networks. This step, which does not forecast any
quantity, is a fairly trivial problem, and details of networks have been
omitted here but are available in the online code repository.

C.1. Structure

Structures for neural networks used in this work are given in
Eq. (C1). We use the notation �input shape� → �layer type;
layer sizes� with multiple integer layer sizes indicating repeated
layers. Hence, the first line tells us Fp uses 140 history points of

dimension 50 as input, then a 32-dimensional fully connected layer,
two LSTM layers of size 32, and finally a series of fully connected
layers having sizes 32, 16, 8, 4, and 1. The final layer of size 1 is the
output layer. For networks including a latent representation of the
dynamics, the quantity r has been used as a stand-in for rank. This
work includes examples having r ∈ f8; 16; 32; 64g. The output size
ofE is the number of interpolation points in the spectral element grid
n � 279;552, multiplied by the dimension d � 2, for a total size of
n ⋅ d � 559;104. In all cases using history terms, a stride of threewas
used between inputs. This was found to yield a slight performance
advantage over using a stride of one. Connections in the decoder
network, excluding those to the final large layer we modeled after
residual type networks, having a linear connection added to those
feeding into nonlinear activation functions. A larger number of
history points were used for Fp to account for the history terms used

to compute ψ̂ and ξ, though this was not found to significantly affect
results:

Fp:�50×140�→ �FC;32�→ �LSTM;32;32�→ �FC;32;16;8;4;1�
Fψ :�r×70�→ �FC;32�→ �LSTM;32;32�→ �FC;32;16;8;4;1�
Fξ:�r×70�→ �FC;32�→ �LSTM;32;32�→ �FC;32;16;8;4;1�
G:�50×70�→ �FC;64�→ �LSTM;128�→ �FC;64;r�
E:�50×70�→ �FC;64�→ �LSTM;64�→ �FC;64;r�
D:�r×1�→ �FC;64;128;256;n ⋅d�
Hp:�50×70�→ �FC;50�→ �LSTM;100;100�→ �FC;100;50;50�
Hψ∕ξ:�r×70�→ �FC;32�→ �LSTM;64;64�→ �FC;64;32;32�

(C1)

As noted in Sec. V, designing neural networks allows tremendous
freedom on seemingly arbitrary choices such as layer sizes and
activation functions. When testing different networks for this work,

we found significant differences between network architectures
(LSTM, fully connected, branch-trunk, etc.). Small changes such
as slightly altering layer sizes or activation functions did not, in
general, significantly affect results.

C.2. Data Partitions

Inmanymachine-learning tasks, and particularly thosewith a high
dimensional parameter space such as neural networks, a dataset is
split into distinct sets for training, validation, and testing. The training
dataset is used to update model parameters according to the gradient
of the cost function. The validation set is used to prevent overfitting
through the use of early stopping when performance metrics on
validation data have stalled. Finally, the testing set is reserved for a
comparison between models. We use a (70/15/15%) split, meaning
70 percent of the available data in each case are used for training, 15
for validation, and 15 for testing. Training and validation datasets are
mixed randomly from within an interval of time spanning the initial
85% of the available data, and testing data are the remaining con-
tiguous 15%.The length of data available for trainingmodels exhibits
slight variability due to input sequence lengths and lead times.
Comparison between models in Sec. IV is therefore performed on
the final 15,000 data points, or equivalently 150 convective units of
the simulation.

C.3. Training Procedure

Parameters for the training procedures used for each neural net-
work are given in Table C1. We used the Adam optimizer [29] with
batch size as given in the last column. Restarts, set to 3 for all
networks except E∕D, indicates the number of optimizations from
random initial weights that were performed. Each was run until
validation error failed to decrease for a specified number of epochs,
called the patience. The encoder–decoder pair was only trained once
due to computational expense.A pair (0.98,2) for decay indicates that

learning rate was multiplied by 0.98 every two epochs. An l2

regularizer with weight 10−5 was used for Fξ. LSTM layers as well

Table C1 Training parameters for
neural networks

Network Restarts Decay Patience Batch

FP 3 0.95,2 10 1000

Fψ 3 0.95,2 3 1000

Fξ 3 0.95,2 3 1000

HP 3 0.98,2 5 250

Hψ 3 0.98,2 5 250

Hξ 3 0.98,2 5 250

G 3 none 20 100

E∕D 1 0.98,1 5 10

Fig. D1 Time series for the drag coefficient showing transition for intermittent to more regular behavior. Lower row shows close-up of time series from
two shaded regions.
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Fig. D2 Vorticity snapshots of the simulation exhibiting mode switching at time t � 100 before switching, t � 400 soon before switching, and t � 700
after switching.

Fig. E1 Time series for q�t� and q̂�t� using each of the neural network-based methods on the test set for lead times τ � 2.1, 4.9, 8.4, and 10.5.
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as connections to the output layer were left unregularized. The initial
learning rate in each case was set to 0.001.
Parameters for training procedures were largely set based on

empirical evidence and considerations for computational resources.
While we claim to have put forward due diligence in tuning all
networks for the sake of a valid comparison, we make no claim that
these values represent the optimal set for the problem at hand. The
authors are not aware of any convincingmethods for optimizing such
hyperparameters.

Appendix D: Wake Instability

In Sec. II we noted that the intermittent behavior examined in this
work is quasi-stable and that in some cases a change in the wake
pattern occurs, resulting in less chaotic behavior. To illustrate this, we
include here a trajectory similar to the one considered in this work
where this mode switching does occur. Figure D1 shows Cd�t� for a
simulation exhibiting a shift in wake behavior around t � 400. Plots
of the vorticity that clearly illustrate the transition are shown in
Fig. 19. Wake patterns before and after transition resemble the P
and 2S behaviors discussed in [11] and also shown in [10] at lower
Reynolds numbers and higher angle of attack.

Appendix E: Time Series of PredictedQuantity of Interest
Using All Methods

Time series predictions of q̂ compared to the true value for test set
examples at various values of lead time τ are shown in Fig. E1.
Networks used to generate these time series are described in further
detail in Appendix C. The reduced rank representations of u using
both POD and FFNN use r � 32. Figures showing time series result
for τ sampled between 0 and 10.5 in increments of 0.7 may be found
online in the code repository for this work.
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