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Generative Stochastic Modeling of Strongly Nonlinear Flows with Non-Gaussian
Statistics∗
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Abstract. Strongly nonlinear flows, which commonly arise in geophysical and engineering turbulence, are
characterized by persistent and intermittent energy transfer between various spatial and temporal
scales. These systems are difficult to model and analyze due to combination of high dimensionality
and uncertainty, and there has been much interest in obtaining reduced models, in the form of
stochastic closures, which can replicate their non-Gaussian statistics in many dimensions. Here, we
propose a data-driven framework to model stationary chaotic dynamical systems through nonlinear
transformations and a set of decoupled stochastic differential equations (SDEs). Specifically, we use
optimal transport to find a transformation from the distribution of time-series data to a multiplicative
reference probability measure such as the standard normal distribution. Then we find the set of
decoupled SDEs that admit the reference measure as the invariant measure, and also closely match
the spectrum of the transformed data. As such, this framework represents the chaotic time series as
the evolution of a stochastic system observed through the lens of a nonlinear map. We demonstrate
the application of this framework in the Lorenz-96 system, a 10-dimensional model of high-Reynolds
cavity flow, and reanalysis climate data. These examples show that SDE models generated by this
framework can reproduce the non-Gaussian statistics of systems with moderate dimensions (e.g., 10
and more) and predict super-Gaussian tails that are not readily available from little training data.
These findings suggest that this class of models provides an efficient hypothesis space for learning
strongly nonlinear flows from small amounts of data.
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1. Data-driven modeling of dynamical systems. Scientists and engineers are facing in-
creasingly difficult challenges such as predicting and controlling the earth climate, under-
standing and emulating the human brain, and designing and maintaining social networks. All
these challenges require modeling and analysis of systems that have a large number of de-
grees of freedom, possibly combined with a considerable amount of uncertainty in parameters.
In doing so, the classical model-based state-space approach for dynamical systems analysis
and control falls short due to the computational size of these problems and lack of an accu-
rate model. As a result, recent decades have seen a great development in the area of model
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reduction and data-driven modeling with the focus of making these problems more amenable
to computation and analysis.

One of the main challenges in modeling complex systems is centered around strongly non-
linear systems, i.e., chaotic systems with persistent and intermittent energy transfer between
multiple scales. Climate dynamics and engineering turbulence give rise to many such problems
and have been a major target of model reduction techniques. In particular, using stochastic
reduced models has become increasingly popular for these problems because it allows for the
representation of turbulent fluctuations, which arise from nonlinear interactions in many de-
grees of freedom, in the form of simple systems with random forcing. Stochastic models of
climate are proposed to estimate climate predictability and response to external output [29,
41], explain the observed energy spectrum and transport rates in the atmosphere [23, 19],
facilitate data assimilation [28], and predict weather patterns [11]. Similar models for analysis
of turbulent flows have been suggested in [80, 16, 72, 91, 32]. The formal analysis in [51, 52,
49] has established the validity of stochastic closure models under certain assumptions while
emphasizing the need to go beyond the commonly used linear models with additive noise.
All the above efforts have shown the great utility and promise of stochastic modeling, but
they heavily rely on expert intuition and the underlying model of the system (e.g., linearized
Navier–Stokes equations), and therefore their application remains limited to well-understood
systems and well-chosen variables.

Data-driven methods provide a shortcut for analysis and control of high-dimensional sys-
tems by allowing us to discover and exploit low-dimensional structures that may be masked
by the governing equations, or to find alternative models with more computational tractabil-
ity. A key enabler of data-driven analysis for dynamical systems in recent years has been the
operator-theoretic formalism, and in particular the Koopman operator theory [36, 54], which
describes the evolution of observables, for computation of geometric objects and linear predic-
tors from trajectory data. This approach is accompanied by an arsenal of numerical algorithms
that extract dynamical information from large data produced by simulations and experiments
[75, 73, 89, 61, 66]. Due to interpretability and connection with the classical theory of dynami-
cal systems, this methodology has become popular in many fields ranging from fluid dynamics
[76] and power networks [68] to biological pattern extraction [8] and visual object recognition
[22]. The Koopman operator theory is closely related to the Perron–Frobenius operator and
Fokker–Planck equations [40, 17, 15]; however, those viewpoints have enjoyed less widespread
use in data-driven applications. A central feature of the Koopman operator framework is to
use data to find the canonical coordinates which decouple the system dynamics and allow
independent and linear representation. This feature is also emphasized in manifold learning
methods for data mining which are powered by (diffusion) operator realization and analysis
[12, 77]. However, much of the current operator-theoretic framework relies on the discrete
spectrum expansion, and the modeling framework for stationary chaotic systems, where the
associated operators possess continuous spectrum, is still in a nascent phase [38, 25, 13].

Statistical and machine learning methods offer another large and open-ended avenue for
data-driven modeling. Variations of neural networks, including autoencoders, long short-term
memory networks, and reservoir computers, are proposed for various tasks like discovering
representations of complex systems, closure modeling, and short-time prediction of chaotic
systems [e.g., 71, 70, 64, 85, 46, 10]. A big theme of many efforts in this area is to explicitly
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encode available physical and mathematical information in the structure of learning to reduce
the amount of training data and adhere to known constraints [86, 84, 69]. Furthermore the
approximation of operator-theoretic objects from data is naturally connected to the regression
problem, and there is a growing body of works that uses machine learning techniques for ap-
proximation of the Koopman or Perron–Frobenius operator [31, 93, 81, 90, 43, 46, 62]. All the
above studies show the promise of machine learning in modeling dynamical systems, but the
methods in this category often accompany important caveats such as lack of interpretability
and nonrobust optimization processes.

In this work, we present a data-driven framework for generative modeling of strongly
nonlinear flows. In contrast to the most data-driven modeling frameworks, which focus on
short-time prediction, our goal is to discover models from data that emulate the statistics of
a strongly nonlinear flow in the appropriate sense. This problem, which involves matching
joint distributions of stochastic processes at arbitrary lags, is computationally prohibitive for
strongly nonlinear flows. However, inspired by the spectral theory of dynamical systems [54,
38], we reformulate this problem as finding a model that replicates the invariant measure as
well as the power spectral density of the observed time-series data. The cornerstone of our
approach is using optimal transport of probabilities [63, 83] to map the data distribution to
a multiplicative reference measure and then model each dimension separately using a simple
stochastic differential equation (SDE) that mimics the spectrum of the time series. Starting
from time-series measurements of observables on a dynamical system, our framework yields
a set of randomly forced linear oscillators combined with a nonlinear observation map that
produces the same statistics and dynamics as the given time-series data.

Our framework enables a stronger data-driven approach compared to the aforementioned
works on stochastic modeling: we start with a general space of stochastic models, i.e., linear
stochastic oscillators pulled back under polynomial maps, and then select the model that
produces closest spectra to the observed data. This offers an advantage over the previous
works on data-driven modeling of strongly nonlinear systems [39, 50] by treating nonlinearities
as a feature of the observation map and not the underlying vector field. As a result, we
can use dynamic models with guaranteed stable invariant measures as opposed to quadratic
models in [39] and avoid using latent variables as opposed to [50]. Despite the generality
of our framework, our examples show that this choice of hypothesis space is narrow enough
to provide a data-efficient and computationally tractable pipeline for learning statistically
accurate models of strongly nonlinear flows with tens of dimensions. This is partially due
to formulating a major part of the challenge as a probability transport problem in large
dimensions, which has enjoyed great computational progress in recent years.

We use our framework to compute stochastic models for the Lorenz-96 system, high-
Reynolds flow in a 2D cavity, and 6-hourly time series of velocity and temperature reanalysis
data from the earth atmosphere. In case of cavity flow, we use the spectral proper orthogonal
decomposition (SPOD) [82] to obtain the 10-dimensional model of the flow. A theoretical con-
tribution of our work is showing a novel connection between this decomposition and spectral
decomposition of the Koopman operator for systems with continuous spectrum. Application
of our framework to the above examples generates models that closely match the non-Gaussian
features of data such as skewness and heavy tails in large dimensions from relatively little data.
In the case of cavity flow, the SDE models not only produce the statistics of modal coordinates

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



558 HASSAN ARBABI AND THEMISTOKLIS SAPSIS

which are used to train the model, but they also lead to accurate approximation of high-order
statistics for pointwise flow measurements. The transport-based framework also allows mod-
eling systems that possess heavy tails in their invariant measures. By utilizing this feature in
the case of the climate data, we are able to extrapolate the heavy tails of the chaotic reanalysis
time series. This contribution is especially important since it allows probabilistic character-
ization of extreme events from short-time observations, which is an outstanding challenge in
modeling strongly nonlinear flows [44].

2. Stochastic generative modeling of strongly nonlinear flows.

2.1. Problem setup. Consider a dynamical system given as

ẋ = f(x),(1)

y = g(x)

with the state variable x in the state space S and the output y in RN . We use F t : S → S
to denote the flow map over time t, that is, the mapping that takes the state at time t0 to
the state at time t0 + t. Assume that the trajectories in an open subset of S converge to an
attractor Ω which supports an invariant and ergodic probability measure denoted by µ, that
is, µ(F−t(B)) = µ(B) for all measurable B ⊂ Ω, µ(Ω) = 1, and µ(Ω− C) = 0 or 1 if C is an
invariant subset of Ω.

We assume that instead of x, we can only measure y, which is a random variable with
distribution ν = g#µ, that is, the pushforward of µ under the (measurable) observation map
g, defined as

ν(g < a) = µ

(
g−1((−∞, a))

)
.(2)

We let U t be the Koopman operator of this system which describes the evolution of random
variables with the dynamics, that is, U tg := g ◦ F t [36, 54]. Moreover, we assume the
observables we study are square integrable with respect to the invariant measure µ so that we
can utilize the spectral results developed for the Koopman operator on such Hilbert spaces.
The collection of random variables {U tg}t∈R is a stationary stochastic process, and the time
series of y is a realization of this process (see, e.g., [20]).

Given the time series of y, our goal is to construct a dynamical system that generates a
statistically similar stochastic process. A perfect generative model for this system will generate
a stochastic process that has the same joint distributions as this process for an arbitrary
combination of lags. To be more precise, let

Pτ ,a[Zt] = P (Z0 > a0, Z
τ1 > a1, . . . , Z

τn > an)(3)

be the joint distribution of the stochastic process {Zt}t∈R, with τ = (τ1, . . . , τn) ∈ Rn, ai ∈ RN
for i = 0, . . . , n, and Zτi > ai denoting an elementwise inequality between the vectors ai and
Zτi . Then {Zt}t∈R is a perfect model for our time series if

Pτ ,a[U tg] = Pτ ,a[Zt](4)
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for all choices of n, τ , and a. Searching for a good model of time series using this characteriza-
tion is computationally formidable since it requires presentation and matching of many—and
in principle an infinite number of—joint distributions.

In this work, we appeal to another characterization of stochastic processes which is moti-
vated by spectral analysis of dynamical systems. Recall that the power spectral density (PSD)
of a stationary process is given by the Fourier transform of its covariance; e.g., for the above
process we have

Sg(ω) =

∫ ∞
−∞

e−iωτCov(g, U τg)dτ.(5)

It turns out that given the knowledge of the underlying attractor Ω and the invariant measure
µ, the PSD of observable g contains all the information about the dynamics of the system that
can be gleaned from observing g. More precisely, assume g is square integrable with respect
to µ and then define

Hg = span{g, U τg, U−τg, U2τg, U−2τg, . . .},(6)

where τ is the sampling interval. In other words, Hg is the closure of random variables that
can be represented as a linear combination of g and its history. Then with the knowledge
of the PSD of g, we can uniquely determine the Koopman operator U restricted to Hg [38,
Proposition 1], implying that we can predict the time evolution of every random variable in
Hg. In the case that g is informative enough (or more precisely, ∗-cyclic under the action of
U t [47]), Hg contains all square-integrable random variables including the state variables.

Guided by the above observation, we reformulate the generative modeling for a stationary
stochastic processes as follows: we seek a model that replicates the same first-order distribution
(i.e., ν, the invariant measure observed through the lens of g), and the same PSD as the
time series of g. We are interested in finding such models for strongly nonlinear flows with
many dimensions. For computational tractability in these problems, we propose a hypothesis
space which consists of linear stochastic oscillators observed under the inverse of (invertible)
multivariate polynomial maps. To find the best model within this space, we first use optimal
transport to discover the appropriate observation map that generates the distribution of the
target stochastic process. Then we optimize the parameters of the oscillator to best match
the PSD of the target stochastic process. Our results and analysis show that this choice
of hypothesis space and learning process is data efficient and computationally economic for
learning strongly nonlinear flows.

2.2. Modeling with optimal transport and spectral matching. The first step in our
framework is to find the mapping T : RN → RN that takes the random variable y ∼ ν to
another random variable, denoted by q, which has a standard normal distribution, that is,

q = T (y) ∼ π,(7)

where π is the standard normal distribution. In other words, we seek the change of variables
that makes the attractor look like a normalized Gaussian distribution in each direction. We use
the theory of optimal transport to find this change of variable. This theory studies the choice
of maps which minimize some notion of cost for carrying one probability measure to another
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[83, 67]. The existence of such a map generally depends on the regularity of the measure
ν. We assume that ν is absolutely continuous with respect to the Lebesgue measure on RN
and possesses finite second-order moments, which guarantees the existence of the transport
map [83]. For numerical approximation of this map, we use the computational approach
developed in [63, 53] (also see [21, 79, 60]). This framework leverages the structure of a
specific class of optimal transport maps, known as Knothe–Rosenblatt rearrangement, which
leads to advantageous computational properties. The map is assumed to be a lower-triangular,
differentiable, and monotone function given as

T (y1, y2, . . . , yN ) =


T1(y1)

T2(y1, y2)
...

TN (y1, y2, . . . , yN )

 ,(8)

where each component is approximated with a multivariate polynomial of a prescribed degree.
To ensure the monotonicity, and hence invertibility, of T , we use the integrated squared
parameterization, i.e.,

Ti(y1, y2, . . . , yi) = c(ac; y1, . . . , yi−1) +

∫ yi

0
(h(ah; y1, . . . , yi−1, t))

2dt(9)

with

c = Φc(y1, . . . , yi−1)ac, h = Φe(y1, . . . , yi−1)ah,(10)

where basis functions in Φc are multivariate Hermite polynomials, and Φe are Hermite func-
tions extended with constant basis functions [65, 5].

The parameters of T , i.e., expansion coefficients ac and ae, are determined by maximum
likelihood estimation: let T̃ be a candidate for T , and consider the pullback of π under this
map,

ν̃(y) = π(T̃ (y))|det∇T̃ (y)|.(11)

Then the map T is found by minimizing the Kullback–Leibler divergence between this pullback
and the data distribution ν, i.e.,

T = arg min
T̃

Eν
[

log
ν(y)

ν̃(y)

]
= arg min

T̃
Eν
[
− log ν̃(y)

]
,(12)

where we dropped ν(y) in the second equality since it is independent of optimizer T̃ . The
expectation with respect to ν is approximated using the time average of data due to ergodicity.
The key feature of this computational setup is that it leads to an optimization problem which
can be solved for each Ti separately [53, 63], thereby allowing an efficient computation for
large dimensions and long time series.

After we have found T , we fit a system of stochastic oscillators to the time series of the
random variable q = T (y). Since we chose π to be a multiplicative measure, we can do this
fitting for each component of q independently. The independent modeling of each coordinate
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is a key aspect of this work which enables computational treatment of high-dimensional sys-
tems, as opposed to direct discovery of a dynamical system, which would generate the same
high-dimensional joint distribution as the data. We consider the systems of forced linear
oscillators,

q̈j + βj q̇j + kjqj =
√

2DjẆj , βj , kj , Dj > 0, j = 1, . . . , N,(13)

where Wj ’s denote mutually independent (generalized) derivatives of the Wiener process (see,
e.g., [78]). Each oscillator admits a stationary density given by

ρj(q = w1, q̇ = w2) = cj exp

{
−βj
Dj

(
w2

2

2
+ kj

w2
1

2

)}
, j = 1, . . . , N,(14)

with cj being the normalization constant [78]. By setting Dj = kjβj , we make sure that the
displacement of each oscillator has a standard normal distribution. Next, in order to make
the model replicate the dynamics of the time series, we optimize the free parameters of each
system to match the PSD of q. To be more precise, let Sj denote the PSD of the stochastic
process {U tqj}. On the other hand, the PSD of response, qj , in (13) is given as

S̃j(ω) =
2Dj

|kj + iβjω − ω2|2
,(15)

where ω denotes the frequency [78]. We find the pair (kj , βj) that minimizes the spectral
difference

∆ =

∫ ωs
2

0
|S̃j(ω)− Sj(ω)|dω(16)

with ωs being the sampling frequency. We approximate Sj(ω) from the time series of qj = Tj(y)
using the Welch method [87] and solve this 2D optimization problem using particle swarm
optimization. Note that the spectrum of yj will be affected by the spectrum of q1, . . . , qj
due to the coupling of variables in T−1; however, we have found that minimizing the error of
q’s spectra independently is an efficient way to minimize the error in the spectrum of y—see
Figure 11 for a 10-dimensional example. When the time series are not long enough for a
robust approximation of PSD, we recommend matching the autocorrelation function up to
some finite time lag τ . As discussed in [38], the autocorrelation sequence corresponds to the
moments of the spectral measure, and matching those moments in the limit of τ → ∞ leads
to matching of the PSD. At the end, the data-driven stochastic model for the system in (1)
consists of the stochastic oscillators in (13) with the observation map T−1.

The crucial finding of our study is that this choice of hypothesis space, i.e., stochastic linear
oscillators observed under the inverse of triangular polynomial maps of order two or three,
provides an adjustable trade-off between learning capacity and data efficiency in learning
models of modal dynamics in strongly nonlinear flows with non-Gaussian statistics. This
approach is also advantageous since it is easily scalable to tens of dimensions; for example,
the transport maps of the cavity flow example in subsection 3.2, involving 25000 data points
in 10 dimensions, are computed in a few minutes on a plain desktop. The potential drawback
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y(t) q(t)

PSD

q̈j + βq̇j + kqj =
√

2DjẆj

βj , kj , Dj >0

decoupled SDEs

optimal transport

T

T−1

Figure 1. Framework for stochastic modeling. A change of variable is found that transports the data
distribution to standard normal distribution, and then a stochastic oscillator is built by minimizing the difference
between the PSD of transported time series and the SDE model (the shaded area).

is that our hypothesis space is relatively small (e.g., compared to deep neural networks) and
there is no guarantee that it would be suitable for learning other classes of nonlinear systems
that may arise in other disciplines. In principle, however, one could use a more sophisticated
class of reference measures (e.g., bimodal distributions) and stochastic models (e.g., non-
Markovian linear stochastic systems), or even a more inclusive space of transport maps, based
on the complexity of the target system and availability of data.

Finally, we note that our framework for modeling, summarized in Figure 1, is connected
to other methods of nonlinear systems identification; from the systems and signals perspec-
tive, our approach resembles the classical Wiener system identification which approximates
nonlinear systems as a linear system with a nonlinear observation map [74, 6]. Our approach
can also be considered as a data-driven discovery of a conjugacy [88] between the data coordi-
nates and the space of linear stochastic oscillators. Our conjugacy map (the transport map)
is particularly designed so that the obtained conjugate system has statistically independent
coordinates. Our approach is similar in spirit to other data-driven methods for discovering con-
jugate systems with independent components of motion [56] (i.e., phases along each direction
of the tori or, equivalently, principal Koopman eigenfunctions). Finally, our method provides
a backward technique for fitting solutions of Fokker–Planck equations to data; direct con-
struction of an SDE which gives rise to the data distribution requires solving a Fokker–Planck
equation in large dimensions, which is often difficult or impossible, but in this framework
the data is mapped to some distribution which is already a solution to a well-known set of
models.

3. Results.

3.1. Lorenz-96 system. The Lorenz-96 system is a toy model of atmospheric turbulence
and is commonly used in assessment of modeling, closure, and data assimilation schemes for
strongly nonlinear systems [48]. This model describes a set of interacting states on a ring
which evolve according to
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ẋk = xk−1(xk+1 − xk−2)− xk + F, k = 1, 2, . . . ,K,(17)

x0 = xK , xK+1 = x1, x−1 = xK−1.

For the standard parameter values of K = 40 and F = 8, trajectories converge to a chaotic
attractor. We assume that we can only observe the first component of the state while the
trajectory is evolving on the attractor, i.e.,

y = g(x) = x1.(18)

We record a time series of y with length of 1000 and sampling interval of 0.1. After applying
our SDE modeling framework to this time series, we find the stochastic model to be

q̈ + 4.73q̇ + 26.26q = 15.76Ẇ ,(19)

where the state q is related to the observable y through the map

q = T (y) ≈ 0.001y3 − 0.010y2 + 0.279y − 0.570.(20)

The probability density function (PDF) and PSD of the observable y = T−1(q) are shown in
Figure 2. Due to the inclusion of nonlinear terms in the transport, this model is capable of
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Figure 2. Data-driven modeling of Lorenz-96 system. Top: truth observation on a state observable of
chaotic Lorenz-96 system; middle: approximation via our stochastic modeling framework; bottom: random phase
model approximation. The SDE model captures the skewness in the PDF and closely matches the spectrum.
The quasi-periodic phase model, by design, matches the spectrum of data but systematically misses the skewness
in the PDF. The PSDs are computed after removing the mean.
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capturing the skewness in the PDF of observable y. This is a crucial feature for models of
turbulent systems since skewness gives rise to the nonlinear cascade of energy, and (linear)
models with Gaussian distribution are incapable of describing this type of energy transfer
between the system components.

We compare our model to a data-driven approximation of the Koopman operator for the
Lorenz system. The Koopman operator is usually approximated via the extended dynamic
mode decomposition (EDMD) algorithm [89, 35, 37]; however, the choice of observable dictio-
nary in EDMD, which plays a critical role in the approximation, is not generally well resolved.
The most popular choice is to include delay-embeddings of the measurements [1], but it is
known that for measure-preserving chaotic systems the finite-dimensional approximations pos-
sess only eigenvalues with negative real part which lead to trivial statistics [38]. Here, we use
the phase model approximation of the observable evolution in the form of

y(t) =

n∑
j=1

αj,ye
i(ωjt+ζj),(21)

where ωj ’s are randomly chosen frequencies from the support of the Koopman spectral measure
for y, αj ’s are determined from spectral projections of y, and ζj ’s are initial phases randomly
drawn from U [0, 2π) (see Appendix C for more details). It is shown in [38] that, as n → ∞,
such an approximation converges to the true evolution of y over finite time intervals. A
realization of this quasi-periodic phase model for the Lorenz state for n = 200 is shown in
Figure 2. This model, by construction, accurately reproduces the spectrum of the data but
fails to capture the skewness in the PDF. In fact, the phase model, which is commonly used for
ocean wave modeling, is shown to converge to Gaussian statistics as n→∞ [34]. This example
highlights the fact that the current data-driven approximations of the Koopman operator in
the form of finite-dimensional linear systems cannot reproduce complicated statistics observed
in measure-preserving chaotic systems. We note that there have been a few recent works that
aim to find nonlinear or stochastic representation of the Koopman operator that does not
have the limitations of the quasi-periodic models [9, 57], but application of those approaches
to strongly nonlinear flows remains to be explored.

3.2. Chaotic cavity flow and spectral proper orthogonal decomposition (SPOD). Fluid
flows at large length and velocity scales are canonical examples of high-dimensional chaotic
behavior. We discuss the application of our framework to such flows using a numerical model
of the chaotic lid-driven cavity flow. This flow consists of an incompressible fluid in a 2D square
domain, D = [−1, 1]2, with solid walls, where the steady sliding of the top wall, given by

u(y = 1) = (1− x2)2, −1 ≤ x ≤ 1,(22)

induces a circulatory fluid motion inside the cavity. The Reynolds number of this flow is
defined as Re = 2/κ, where κ is the kinematic viscosity of the fluid in the numerical simulation.
The cavity flow at Re = 30,000 converges to a measure-preserving chaotic attractor exhibiting
a purely continuous Koopman spectrum [2]. Here, we model the evolution of the post-transient
cavity flow in two steps: first, we use the modes obtained by SPOD [45, 82] as a spatial basis
for description of the flow evolution. We justify the use of SPOD modes through its connection
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with the spectral expansion of the Koopman operator with continuous spectrum. In the second
step, we use the framework based on measure transport and spectral matching to find the
stochastic model that captures the evolution of flow in the SPOD coordinates.

Consider a nonhomogeneous stationary turbulent flow. The velocity field at each point
is a random variable defined on the underlying measure-preserving attractor, but due to
nonhomogeneity, velocity at different points have different statistics and spectra. However,
since all these variables arise from the same underlying attractor, we can define characteristic
spatial fields that connect the spectra of various variables through the notion of Koopman
spectral measure. Let ux and u

x′ denote velocity field at location x and x′ in the flow domain.
The spectral expansion of the Koopman operator for these two random variables is

〈u(x), U τu(x′)〉µ =

∫ 2π

0
eiωτρx,x′(ω)dω,(23)

where ρx,x′ is the Koopman cross spectral density of ux and ux′ , and 〈·, ·〉µ is the inner product
with respect to the invariant measure on the attractor [54]. The SPOD modes of the flow at
frequency ω, denoted by ψ(x, ω), are defined as solutions of the eigenvalue problem∫

Ω
ρx,x′(ω)ψ(x′, ω)dx′ = λψ(x, ω).(24)

As such, SPOD modes are intrinsic dynamical properties that do not depend on the choice
of flow realization, as opposed to dynamic modes or Fourier modes, and therefore provide a
robust choice of basis for description of the flow evolution. A detailed discussion of Koopman
spectral density and its connection with SPOD is given in Appendix B.

We compute the SPOD modes of cavity flow using the algorithm in [82]. We define the
SPOD coordinates to be the projection of the flow onto the 10 most energetic SPOD modes
at different frequencies, which contain ∼ 50% of the turbulent kinetic energy, i.e.,

yj(t) = 〈u(x, t), ψj〉D, j = 1, 2, . . . , 10,(25)

where 〈·, ·〉D denotes the spatial inner product over the flow domain.
As the training data for our SDE model, we use a single time series of SPOD coordinates

with length of 2,500 seconds and sampling rate of 10 Hz. We use a polynomial map of
(total) degree 3 to compute the transport between the distribution of SPOD coordinates and
the standard normal distribution, and we identify the corresponding SDE. After generating
a 10,000-second-long trajectory of the SDE, we compute the statistics of that trajectory,
observed under the inverse of the polynomial map. Figure 3 (a),(b) shows the excellent
agreement between the true marginals and the ones obtained from the SDE model. Next, we
use the SPOD data generated by the model to construct a new flow trajectory and compare
the statistics of pointwise velocity measurements with the original data projected to the 10-
dimensional subspace of SPOD modes. The results, shown in Figure 3(c), confirm the accurate
recovery of pointwise statistics, hence indicating the high skill of our model in capturing the
10-dimensional joint PDF of flow modal data. Moreover, the match between log PDFs shows
the utility of polynomial transport for data-driven extrapolation of PDF tails which we will
explore in the next example. More details on modeling of cavity flow including the structure
of SPOD modes and all 2D marginals can be found in Appendix D.
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Figure 3. Modeling of chaotic cavity flow at Re = 30,000. (a) Single and pairwise marginal PDFs of
4 (out of 10) SPOD coordinates from data. (b) Same marginals by the SDE model. The quantile axes limits are
(−0.026, 0.026). (c) Location of sensors for velocity measurements and a vorticity snapshot of the cavity flow
(left) and the log PDFs of u- and v-velocity generated by the SDE model and the 10-dimensional representation
of the flow in SPOD coordinates (labeled as truth). The insets show the PDFs on a linear ordinate scale. The
matching between the pointwise statistics indicates the skill of the SDE model in capturing the 10-dimensional
joint PDF of SPOD coordinates.
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3.3. Reanalysis climate data and tail extrapolation. Statistical characterization of ex-
treme events, i.e., probabilistically rare events that arise from combination of dynamics and
randomness, is an important and challenging task. The importance stems from the signifi-
cant and disruptive effect of extreme events such as earthquakes, rogue waves, and extreme
weather patterns. Yet finding probabilities of extreme events, which reside at the tails of the
PDF, is challenging because it requires a very large number of data points. The theoretical
setup for the study of such events is the extreme value theory (e.g., [14]), which has been re-
cently extended to chaotic dynamical system with some success [24, 44], but remains limited
to systems with specific mixing properties. In recent years, there has been a number of meth-
ods that use model reduction or machine learning for data-efficient quantification of extreme
events [58, 59].

Our modeling framework can be used for characterization of extreme events using rela-
tively little data. The key idea is that we can model a large space of probability measures
with heavy tails by using transport to a reference measure like standard normal distribution.
By discovering such a transport map, we identify our data distribution with a pullback of
Gaussian probability under that map, and the resulting distribution provides an approxima-
tion of the tails of the real data distribution. Although analytic description of the tails in
these distributions is not available when the transport map is a high-degree multivariate poly-
nomial map, we can easily generate a large sample from the reference measure and pass them
through the transport map inverse to construct the tail approximation. In the following, we
consider the application of this method to obtain a short extrapolation of super-Gaussian tails
in climate data.

Our data is based on 6-hourly reanalysis of velocity and temperature in the earth atmos-
phere recorded at the 100-mbar iso-pressure surface from 1981 to 2017 [4]. These global fields
are then expanded in a spherical wavelet basis described in [42]. Figure 4 shows the time
series of the expansion coefficients for a level-1 wavelet envelope centered on top of the North
Pole. These time series exhibit a combination of periodic and chaotic oscillations. Therefore,
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Figure 4. Velocity and temperature at the North Pole: The time series showing wavelet coefficients
of u -velocity and temperature field at the North Pole (left). We extract the periodic component consisting
of Fourier modes with at least 1% of signal variance to isolate the chaotic part (middle), which shows super-
Gaussian tails (right).
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we model them as observation on a stationary system with mixed spectra, i.e., a system that
possesses both discrete and continuous Koopman spectra (see, e.g., [7, 54]). In the first step,
we extract the periodic component of data (i.e., Koopman modes) by removing Fourier modes
of time series that correspond to more than 1% of fluctuation energy. We apply our stochastic
modeling framework to the chaotic remainders with heavy tails.

We construct a sequence of stochastic models for each of the chaotic time series obtained
from measurements at the North Pole. In each model, we add an extra random variable
from velocity and temperature measurements at other locations to capture the statistical
dependence between those variables and the target variable (i.e., chaotic part of temperature
or u-velocity). These covariates are chosen from the set of all wavelet coefficients (> 8,000
variables) in the order of decreasing absolute linear correlation with the target variables. The
geographic position of the covariates is shown in Figure 5(a). Importantly, we exploit the
triangular structure of transport in (8) and place the target variable on the bottom of each
map, so that its mapping to the reference measure is informed by all the covariates. For
training the models we use only the time series from 1981 and 1982 and polynomials of total
degree 2.

After discovering each model, we generate a 74-year long trajectory of the SDE model and
pull it back to the space of observations. The PDFs of the observed map provide a long-time
extrapolation to the PDFs of the training data. As shown in Figure 5, those PDFs are in good
agreement with the original reanalysis data of 37 years. In particular, the approximation of
tails with good training data (i.e., left tails in the top and bottom rows) shows consistency
with the addition of covariates to the model.

4. Dependence on training data and degree of polynomial mapping. Under our assump-
tions for modeling, the solution to the transport map is known to exist; however, restricting
the search to a specific set of functions, such as polynomials, induces a bias in approximating
the statistics of the flow. We are usually interested in evaluating the expected value of a
square-integrable random variable h, and it is known [53] that

‖Eν [h]− Eν̃ [h]‖ =
√

2(Eν [‖h‖2]− Eν̃ [‖h‖2]

√
Eν
[

log
ν

ν̃

]
,(26)

where ν is the target distribution and ν̃ is the distribution generated by our model. Note
that the last term on the right-hand side is the objective of the optimization problem in
subsection 2.2, and therefore we can control the bias in estimation of the statistics through
our approximation. Rigorous results on convergence for the type of transport maps we use
here are sparse (for example, see [92] for a similar setup on bounded domains), and theoretical
characterization of the bias in application to strongly nonlinear flows is beyond the scope of
this paper. Instead, we perform a numerical study of convergence for examples of the Lorenz
system and cavity flow where we have access to extensive data as the ground truth.

To assess the quality of modeling via transport we use the variance diagnostic [53],

e = Varρtruth

(
log

ρtruth

ρmodel

)
,(27)

where ρtruth and ρmodel denote the density of the data distribution and the density of the
distribution generated by the transport model. In the case of Lorenz-96, we have direct access
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Figure 5. Extrapolation of tails for climate data. (a) Location of covariates used to build models for
the target random variables, i.e., u-velocity and temperature at the North Pole. (b) approximation of PDF tails
by generating a surrogate trajectory of the SDE model and pulling it back under the transport map. n is the
number of covariates used to learn the SDE model. The training data is the time series in 1981–1982 and the
truth data is the time series in 1981–2017. The shaded envelopes show the 95% (pointwise) confidence interval
of PDF estimation for training and truth data.

to the PDF of the state variable (computed from simulations and taken as truth), and we can
evaluate the diagnostic directly. As shown in Figure 6(a), with the increase of the training
sample size and the polynomial degree of the transport map, the variance diagnostic rapidly
decreases, indicating the scalable accuracy of the transport-based model for the Lorenz-96
system.
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Figure 6. Statistical error for modeling via transport . (a) Lorenz-96 system: the PDF variance error
of state variable (left) versus sample size with fixed polynomial degree 3 and (right) versus polynomial degree
with fixed sample size of 1,000. (b) Cavity flow: the average of PDF variance error for pointwise velocity
(right) versus sample size with fixed polynomial degree 2 and (right) versus polynomial degree with fixed sample
size 25,000.

In the cavity flow example, the target distribution is given by sample data in a 10-
dimensional space, and there is no analytic expression for its density. Therefore, as a proxy for
the error of modeling, we look at the variance diagnostic in recovering the statistics of a set of
observables of the flow. Specifically, we use the statistics of pointwise velocity measurements
because they are functions of all the SPOD coordinates, and therefore reveal the performance
of the model in emulating the high-dimensional joint distribution of the data. Let eu(x), ev(x)

be the variance diagnostic for the pointwise PDF of the, respectively, u- and v-velocity field
at position x in the flow domain. We compute the average of this error over 50 randomly
placed sensors in the flow to assess the overall quality of this model:

ẽ =
1

n

50∑
k=1

eu(xk) + ev(xk).(28)
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The results in Figure 6(b) are similar: with the increase of training sample size and the
polynomial degree, the proxy variance diagnostics decreases. This shows that the space of
models considered here contains good candidates for learning models of strongly nonlinear
flows from relatively little data.

5. Discussion. We presented a framework for generative modeling of strongly nonlinear
flows in the form of decoupled stochastic oscillators with nonlinear observation maps. The key
feature of our framework is the use of measure transport to model non-Gaussian invariant mea-
sures that arise from statistics of complex chaotic systems. Application to the high-Reynolds
cavity flow showed that models generated by our framework can accurately reproduce the
10-dimensional joint pdfs of modal coordinates and hence recover the pointwise statistics in
the flow. We also showed the promise of our framework in data-driven characterization of
extreme events through an example of reanalysis climate data.

In the context of operator-theoretic approximation, our framework is closest in spirit to
the approach in [17, 18] where the Perron–Frobenius operator of the underlying dynamical
system is approximated using a Markov chain for transition between the computational cells
in the state space (also see [27] for a similar Koopman operator approximation). Although
this approach reproduces both the statistics and dynamical behavior, it is not computation-
ally scalable to moderate and high-dimensional systems, and for systems like complex flows
one needs to use extreme coarse-graining of the dynamics, e.g., by clustering data into a few
discrete representative states [30, 66]. More recent data-driven approaches for generative mod-
eling are the generative adversarial network (GAN) [26] and variational autoencoders (VAEs)
[33]. GANs and VAEs have produced exemplary results in emulating high-dimensional and
rich data distributions; however, like other deep networks, they offer little interpretability and
lack an inherent dynamical character. Training GANs, in particular, often requires nontrivial
techniques, and interestingly one of the effective improvements on GAN training, the Wasser-
stein GAN [3], is based on ideas from measure transport. The framework presented in this
paper provides a balanced trade-off for data-driven modeling of strongly nonlinear systems
that arise in turbulent flows. Through the use of single-layer triangular polynomial maps, it of-
fers much interpretability in assessing the role of different variables on the observed dynamics,
and due to separability of the underlying optimization problem it is easily extendable to tens of
dimensions.

One promising direction for extension of our framework is to include physics-based con-
straints in computation of transport maps and the underlying SDE models. As shown in
previous works, incorporating physical information about the target system into the structure
of learning can substantially increase the data-efficiency of modeling. In the context of sta-
tistical modeling for turbulent flows, statistical laws and tail slopes predicted from the theory
provide suitable constraints. In this work, we showed the effectiveness of our approach for
learning strongly nonlinear fluid flows, but our framework also has great potential for data-
driven modeling in other applications such as nonlinear optics, chemical reaction networks,
molecular dynamics, and biological systems. For these systems, it might be necessary to make
other judicious choices for the reference measure and the type of transport maps to achieve
an efficient learning process.
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Appendix A. Data and compilation of PDFs. The data for Lorenz-96 system is generated
using direct integration of (18) using fourth-order Runge–Kutta with time step ∆t = 0.01.
The velocity field for the lid-driven cavity flow is computed by direct solution of Navier–Stokes
equations in NEK5000 [64]. The cavity domain is divided into 25 elements in each direction,
and the solution within each element is represented with a polynomial of 7th degree. The
stationary solution is recorded after 3,500 transient simulation time units. The processed
reanalysis climate data is provided by AIR Worldwide. The PDFs reported for Lorenz, cavity
flow, and climate (truth and model) are computed using a 100-bin histogram and, for visu-
alizations, smoothed by convolving with Gaussian kernel with standard deviation of 2 bin
widths. The PDFs for the climate training data are computed using 50 bins. The confidence
intervals for PDFs of climate are computed using binomial statistics and the adjusted Wald
formula in [1].

A Python implementation of our framework and the data for producing the figures in this
paper can be found at https://github.com/arbabiha/StochasticModelingwData.

Appendix B. Cross-spectral density of Koopman operator and Spectral Proper Or-
thogonal Decomposition (SPOD). In this section, we recall the Koopman spectral expansion
for chaotic systems and define the cross-spectral density of Koopman operator which is used
in the definition of SPOD in subsection 3.2. Consider a deterministic dynamical system with
an attractor Ω which supports a physical measure µ, and µ(Ω) = 1. Let f, g ∈ H := L2(Ω, µ)
be observables of this system, with the usual inner product

〈f, g〉µ =

∫
A
fg∗dµ.(B.1)

Now recall the Koopman operator U t defined as Uf = f ◦ F t, where F t is the reversible flow
of the dynamical system. U t is a unitary operator on H, that is, (U t)∗ = U−t. This implies
that the spectrum of the Koopman operator lies on the imaginary axis in the complex plane,
and the spectral expansion of the Koopman operator [54, 55] is given as

U tf =

∞∑
k=0

vkφke
iωkt +

∫ 2π

0
eiωtdEωf,(B.2)

where the countable sum is the Koopman mode decomposition of f associated with the quasi-
periodic part of the evolution, iωj is a Koopman eigenvalue (i.e., an element of discrete
spectrum) associated with eigenfunction φk, and E is the spectral measure of the Koopman
operator associated with the continuous part of the spectrum. To be more precise, E is a
measure on [0, 2π) that takes values in the space of projections on H. That is, for every
measurable set B ⊂ [0, 2π), EB is a projection operator, and EBf is projection of f onto
the eigensubspace associated with the part of spectrum residing in B. We are interested
in the continuous part of the Koopman spectrum which corresponds to chaotic behavior,
and therefore we assume that there are no quasi-periodic parts, including the part with zero
frequency (i.e., mean of the observable) present in the evolution.
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The operator-valued measure E is difficult to characterize using data. Instead, we can
define a positive real-valued measure associated only with f and defined as follows [47]:

µf (B) = 〈E(B)f, f〉µ.(B.3)

Then we can rewrite the spectral expansion of f as

〈U tf, f〉µ =

∫ 2π

0
eiωt〈dEωf, f〉 =

∫ 2π

0
eiωtdµf (ω),(B.4)

where ρf is the Koopman spectral density of observable f . Similarly, we can define a measure
for spectral correlation of two distinct observables. That is,

〈E(B)f, g〉µ = 〈f,E(B)g〉µ = µf,g(B)(B.5)

defines a finite complex-valued measure µf,g on [0, 2π). Under the assumption of absolute
continuity for this measure, we can write

µf,g(B) =

∫
B
ρf,gdα,(B.6)

with ρf,g being the Koopman spectral density of observables f and g. Consequently, we can
write the following expansion for the dynamic evolution of the two observables

〈f, U τg〉µ =

∫ 2π

0
eiωτρf,g(ω)dω.(B.7)

In view of the duality between measure-preserving deterministic systems and stationary sto-
chastic processes [20], the expansion in (B.7) is the same as the spectral expansion for sto-
chastic processes used in the definition of SPOD [45, 82].

Appendix C. Construction of random phase model for chaotic systems. Let g : Ω→ R
be an observable on the measure-preserving dynamical system. Given the spectral density
of g, Algorithm C.1 generates a random phase model for the evolution of g in time. The
main idea is to approximate the spectral measure of g using sum of delta functions, that is,
modeling the evolution as rotation on tori. Using ergodicity, we can use a single realization
to compute the PDF reported in subsection 3.1.

To see the connection with the approximation of the Koopman operator, note that the
work in [38] has shown that approximations such as

U1
mg :=

m∑
j=1

e2πiωjE(Bj)g,(C.1)

where Bj ’s are a partition of [0, 2π) and ωj ∈ Bj , will converge to the true evolution U1g
in L2(Ω, µ) in the limit of infinitely refined partition. This approximation is in the function
space, and the choice of Bj , ωj ’s are not unique. Algorithm C.1 generates a realization of this
approximation, with Bj = [ej−1, ej), that is spectrally consistent, i.e.,

|aj |2 =

∫
Bj

ρg(ω)dω.(C.2)
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Algorithm C.1 Construction of random phase model from spectral density
Initialization: spectral density ρ(ω), number of intervals on the frequency domain m
1: Draw m random value of cell edges, ej , from uniform distribution on [0, 2π).
2: Set e0 = 0 and em+1 = 2π.
3: Sort the random cell edges to form the sequence ej , j = 0, 1, . . . ,m+ 1 with ej+1 > ej .
4: for j = 1, . . . ,m do
5: Let ωj = 1

2(ej + ej−1), j = 1, . . . ,m.
6: Let ∆ωj = ej − ej−1, j = 1, . . . ,m.
7: Let

aj =
√
ρ(ωj)∆ωj ≈

(∫ ej

ej−1

ρ(ω)dω

)1/2

.(C.3)

8: end for
9: Draw ζj randomly and independently for each j from the uniform distribution on

[0, 2π) and let

gt =

m∑
j=1

ake
i(ωjt+ζj).(C.4)

Appendix D. Supplemental information and figures for cavity flow. The data for the
cavity flow consists of a single trajectory with the length of 12,000 seconds. We have removed
the mean flow from the data and then applied the algorithm in [82] to the first 2,000 seconds
to compute the SPOD modes of flow shown in Figure 7. Then we projected the next 10,000
seconds onto the top 10 energetic modes, using (25), to obtain the SPOD coordinates. We
have used the first 2,500 second of the SPOD coordinate time series, with sampling rate of
10 Hz, for training of the SDE model. The marginal distributions of flow data (Figure 8)
are computed using the whole trajectory. An SDE trajectory of the same length is used to
compute the marginal distributions in Figures 3 and 9. To compute the pointwise statistics,
we reconstruct the flow field via

ũ(x) =

N∑
j=1

N∑
k=1

Hjkykψj(x),(D.1)

where the matrix H is the inverse of Gramian matrix G defined as Gjk = 〈ψj ,ψk〉D. The
results in this paper are compiled using the real part of SPOD modes for simplicity of presen-
tation.
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(a)

(b)

Figure 7. Spectral orthogonal decomposition (SPOD) for cavity flow at Re = 30,000. (a) Distri-
bution of the kinetic energy within the SPOD modes vs. frequency; for each frequency we have 155 spatially
orthogonal modes. (b) The (real part of the) vorticity for the top 10 energetic SPOD modes corresponding to
the 10 highest circles in (a). The red color shows clockwise rotation and the blue counterclockwise.
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Figure 8. Marginal distributions of SPOD coordinates in cavity flow from the flow simulation. The quantile
axes limits are (−0.026, 0.026).
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Figure 9. Marginal distributions of SPOD coordinates in cavity flow from the SDE model. The quantile
axes limits are (−0.026, 0.026). Compare to the truth in Figure 8.
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Figure 10. Time evolution of SPOD coordinates for cavity flow with samples from the truth data (numerical
simulation of the flow, shown on the left) and a realization from the SDE model (right).
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Figure 11. Power spectral density (PSD) of SPOD coordinates from the flow simulation and the SDE model
(left) and the transported variable (right).
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