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ABSTRACT  

Extreme values of vertical bending moment may be related with large relative motions of deck points 
in the bow leading to submergence of a portion of the deck. Once part of the hull in the bow is 
submerged, its contribution to wave-induced vertical bending moment (VBM) becomes constant. 
This effect has been observed with numerical simulation and has been described previously. 
The deck submergence effect is seen in the VBM distribution as an inflection point where the tail of 
the distribution turns down and becomes lighter. The position of this inflection point has some 
practical importance. If the return period corresponding to the inflection point is less than the service 
life, the deck submergence effect has an influence on the lifetime VBM. 
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1. INTRODUCTION 
The problem of evaluation of extreme values of 
vertical bending moment (VBM) over the 
lifetime of a ship is introduced. A violation of 
hull integrity due to exceedance of global load 
limit is a major safety hazard along with loss of 
stability. Most of these safety hazards do have a 
stochastic nature. A probabilistic description of 
VBM was developed shortly after introduction 
of irregular waves into naval architecture 
practice by St. Denis and Pierson (1953). The 
VBM at a given section of a ship hill was 
considered as a normal stationary process, e.g. 
Salvesen et al. (1970). The application of 
extreme value theory (e.g. Coles, 2001) to the 
VBM process was introduced by Ochi and 
Wang (1976) and further developed by Ochi 
(1981). The departure from linear assumptions 
led to the development of time-domain 
numerical simulation approaches (e.g. Shin at al. 
2003). The extreme values of VBM are 
estimated by fitting a Weibull distribution to the 

results of numerical simulation. Essentially, the 
transition to time-domain has turned the 
problem of VBM extreme values evaluation into 
an extrapolation problem. 

The extrapolation of a response of a 
nonlinear system is a formidable task. 
Nonlinearity of ship motion and loads manifest 
itself as a change of the physics of the problem 
during large ship motions due to a significant 
variation of the submerged portion of ship hull. 
This nonlinearity may lead to significant 
uncertainty of an extrapolated estimate. The 
way to control this uncertainty is to include 
some physical consideration into statistical 
model (e.g. Weems et al., 2019) by considering 
a reduced-order qualitatively correct model, 
where analytical or semi-analytical solution for 
extremes may be derived (Belenky et al. 2019). 

Sapsis et al. (2020) proposed an 
approximate volume-based model for VBM by 
expanding station areas with Taylor series and 
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keeping the second order terms. A main linear 
assumption of vertical sidewall was abandoned 
and a station slope at the waterline was 
introduced. Brown and Pipiras (2020) derived a 
semi-analytical probability density function 
(PDF) for the approximate volume based model. 
Accounting for the station slope at the waterline 
explains the asymmetry of the PDF observed in 
numerical simulations. 

Further study of the extreme value 
properties of VBM is described with the 
approximate volume-based model by 
considering additional factors.  

2. DISTRIBUTION OF WAVE-
INDUCED VBM  

2.1 Approximate Volume-Based Model 

Following (Sapsis et al., 2020), the wave model 
has to be simplified significantly in order to 
facilitate a semi-analytical solution for PDF. 
The wave is monochromatic in space, while 
amplitudes are stochastic processes in time. The 
model is somewhat similar to Grim (1961) 
effective wave, but it is a running wave, not a 
stationary wave. The wave elevation zw is 
expressed as: 

𝜁!(𝑥, 𝑡) = 𝑎"(𝑡)cos(𝑘!𝑥 − 𝜔!𝑡) + 

𝑎#(𝑡)sin(𝑘!𝑥 − 𝜔!𝑡), 
(1) 

where x is a spatial coordinate in the direction of 
propagation of the wave (the wave is 
longitudinal), ac and as are independent, 
identically distributed normal stochastic 
processes, but may have auto-correlation, and kw 
and ww are wave number and wave frequency. 
The dispersion relation is taken for Airy waves: 

𝑘! =	
𝜔!$

𝑔 ;		𝑘! =
2𝜋
𝜆!
	 (2) 

The wave length lw is meant to be close, but not 
necessarily exactly equal, to ship length, while g 
is gravity acceleration. 

The problem is considered in 
longitudinal waves, so ship motions are limited 

to heave zg and pitch q, diffraction forces are not 
yet included: 

(𝑚 + 𝐴%%)𝜁&̈ + 𝐵%%𝜁&̇ + 𝐴%'𝜃̈ + 𝐵%'𝜃̇
+ 𝐹()*+@𝜁&, 𝜃, 𝜁!A = 0, 

@𝐼, + 𝐴''A𝜃̈ + 𝐵''𝜃̇ + 𝐴'%𝜁&̈ + 𝐵'%𝜁&̇
+𝑀()*+@𝜁&, 𝜃, 𝜁!A = 0, 

(3) 

where m is the ship mass, Iy is the mass moment 
of inertia relative to transverse axis y, Ann and 
Bnn stand for hydrodynamic coefficients of 
added mass and damping (nk is a motion index 
following standard hydrodynamic notion, 3 is 
heave, and 5 is pitch). The index ‘FKHS’ means 
“Froude-Krylov and Hydrostatic”, while 
symbol F identifies vertical force, symbol M 
means a moment of the vertical force about the 
transversal axis y.  

The wave-induced vertical bending 
moment for the section y (relative to the 
midship) is defined as: 

𝑀-(𝑡) = ∫ (∑𝑑𝐹(𝑥))𝑥./$
- =

																								∫ (∑𝑑𝐹(𝑥))𝑥-
0./$   

(4) 

where ∑𝑑𝐹(𝑥) is a sum of all the forces acting 
on a section of the hull between x and x + dx. 
The equality between the integrals in equation 
(4) is a result of including all the forces in the 
sum ∑𝑑𝐹(𝑥),  i.e. a condition of dynamic 
equilibrium, essentially expressed by the system 
of differential equations (3). 

The distribution of heave, pitch and their 
derivatives is assumed approximately normal 
within the range of interest. This assumption is 
not equivalent to a linear assumption as the 
variance of heave and pitch can be estimated 
while accounting for nonlinearity. Nonlinearity 
will eventually affect the tail of the pitch 
distribution, as pitch is somewhat similar to roll. 
Heave may be expected to have a light tail as 
well since a ship cannot leave the fluid domain 
completely, neither can she sink because of 
motions in waves. This assumption simply 
states that nonlinearity will affect VBM 
distribution long before it will affect the heave 
and pitch distributions. 
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The assumption of normality for 
damping and inertial forces acting on a section 
may be a bit stronger than those on heave and 
pitch, but generally follows the same logic. 
Normally distributed components of the 
integrals in equation (4) cannot influence the 
VBM distribution beyond variance (inertia and 
damping have zero mean). Weight is constant 
and affects the mean value only. Thus, the shape 
of the VBM distribution is defined by 
nonlinearity of the Froude-Krylov and 
hydrostatic forces. These set of assumptions is 
also justified by the results of Sapsis et al. (2020) 
where the PDF, based on these assumptions, 
was successfully scaled to match a histogram 
from a large-size sample. 

The Froude-Krylov and hydrostatic 
force acting on a section between x and x + dx is 
expressed as: 

𝑑𝐹()*+ = 𝜌𝑔𝐴(𝑥, 𝑧)𝑑𝑥 = 

															𝜌𝑔𝐴@𝑥, 𝜃𝑥 + 𝜁& − 𝜁!A𝑑𝑥	 
(5) 

where r is the density of water, zw is local wave 
elevation and A(x, z) is an area of a station at 
longitudinal location x, submerged by the value 
𝑧 = 𝑥 + 𝜁& − 𝜁!. 

Following Sapsis et al. (2020), the area 
of a station is expanded into a Taylor series up 
to the Q (the superscript in parenthesis means 
derivative):  

𝐴@𝑥, 𝜃𝑥 + 𝜁& − 𝜁!A = 𝐴@𝑥, 𝜃𝑥 − 𝜁&A 	+ 

																															∑ 1(")(3,5306$)
8!

:
8;< 𝜁!

8   
(6) 

The first-order expansion with equation (6) is 
equivalent to the assumption that ship sides are 
vertical, and the first derivative of the station 
area is a local beam. This assumption is the basis 
of the linear theory (e.g. Salvesen et al., 1970). 
The second-order expansion reflects slope of a 
station at the waterline, i.e. accounts for 
asymmetry of a hull relative to the waterplane. 
Sapsis et al. (2020) show that inclusion of the 
second order term in equation (6) makes the 
model to reproduce observed asymmetry 
between sagging and hogging. 

The shape of the VBM PDF is defined 
by the nonlinearity of the Froude-Krylov and 
hydrostatic forces. The influence of inertia and 
damping affect location and scale only and can 
be added later as an aid for the fitting process. 
Heave and pitch motion may affect the shape of 
the PDF through the expansion (6). Sapsis et al. 
(2020) accounted for pitch through averaging 
the coefficients of the expansion (6) over the 
normal PDF of pitch. The next logical step is to 
add averaging over heave. 

Neglecting inertia and damping, the 
VBM at time t = 0 for particular values of heave 
and pitch is expressed as 

𝑀-@𝑡, 𝜁&, 𝜃A = ∫ 𝑥𝑑𝐹()*+
%
&
- =	  

𝑚-=@𝜁&, 𝜃A+ 

𝑎"(𝑡)𝑚-"<@𝜁&, 𝜃A + 𝑎#(𝑡)𝑚-#<@𝜁&, 𝜃A +  

0.5𝑎"$(𝑡)𝑚-"$@𝜁&, 𝜃A +  

0.5𝑎#$(𝑡)𝑚-"$@𝜁&, 𝜃A +  

𝑎"(𝑡)𝑎#(𝑡)𝑚-"#@𝜁&, 𝜃A  

(7) 

The functions m in equation (7) are expressed as 
follows (dropping arguments 𝜁&, 𝜃  from the 
formulae for brevity): 

𝑚-= = ∫ 𝑥𝐴@𝑥, 𝜃𝑥 − 𝜁&A
%
&
> 𝑑𝑥  

𝑚-"< = ∫ 𝑥𝐴?@𝑥, 𝜃𝑥 − 𝜁&Acos(𝑘!𝑥)
%
&
> 𝑑𝑥	  

𝑚-#< = ∫ 𝑥𝐴?@𝑥, 𝜃𝑥 − 𝜁&Asin(𝑘!𝑥)
%
&
> 𝑑𝑥  

𝑚-"$ = ∫ 𝑥𝐴??@𝑥, 𝜃𝑥 − 𝜁&Acos(𝑘!𝑥)
%
&
> 𝑑𝑥	  

𝑚-#$ = ∫ 𝑥𝐴??@𝑥, 𝜃𝑥 − 𝜁&Asin(𝑘!𝑥)
%
&
> 𝑑𝑥  

𝑚-"# = 

∫ 𝑥𝐴??@𝑥, 𝜃𝑥 − 𝜁&Acos(𝑘!𝑥)sin(𝑘!𝑥)
%
&
> 𝑑𝑥	  

(8) 

Similar to Sapsis et al. (2020), the 
coefficients in equations (8) are averaged over a 
reasonable range (say, four standard deviation 
of heave and pitch), e.g.: 
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𝜇-"< = ∫ ∫ 𝑚-"<@𝜁&, 𝜃A𝑓(𝜁&, 𝜃)𝑑𝜁&𝑑𝜃
$@'
0$@'

$@(
0$@(

  (9) 

where f stands for normal bivariate PDF with 
parameters estimated from time-domain 
simulations. Finally, the approximate volume-
based model is expressed as 

𝑀-(𝑡) = 	𝜇-=+	

	𝑎"(𝑡)𝜇-"< + 𝑎#(𝑡)𝜇-#< +	

	0.5𝑎"$(𝑡)𝜇-"$ + 0.5𝑎#$(𝑡)𝜇-"$ +		

	𝑎"(𝑡)𝑎#(𝑡)𝜇-"#	 

(10) 

where functions µy are defined analogously to 
equation (9). 

The model (10) includes some 
incremental additions compared to Sapsis et al. 
(2020): calm-water value of VBM and the 
influence of pitch. Nevertheless, it still cannot 
be used directly, as fitting to real data is required 
by adjusting standard deviation of ac and as. 

2.2 Semi-Analytical PDF: Case 1  

Brown and Pipiras (2020) derived semi-
analytical formula for PDF of the vertical 
bending moment: 

𝑓(𝑀-) =
<
$∫ 𝑓@cos𝜑O𝑀- −𝑀+, sin𝜑O𝑀- −𝑀+A𝑑𝜑

$A
=   (11) 

where f stands for bivariate normal, My is 
defined by formula (10), while  

𝑀+ =
B&&C)DB)&C&0B)B&C)&

EC)C&0C)&&
  (12) 

where 

𝑎< = 𝜇F"𝜎B ; 𝑎$ = 𝜇F#𝜎B 

𝑏< = −0.5𝜇F"$𝜎B$  𝑏$ = −0.5𝜇F#$𝜎B$ 

𝑏<$ = −𝜇F"#𝜎B$  

(13) 

where sa is a standard deviation of random 
amplitudes ac and as. The formula (11) can be 
applied when: 

4𝑏<𝑏$ − 𝑏<$$ > 0		 (14) 

Parameters of bivariate distribution f in the 
equation (11) are two mean values E1 and E2, 
two variances V1 and V2, and a correlation 
coefficient r12 , given as: 

𝐸< = − B&
$GC&

 ;  𝐸$ =
B&C)&0$B)C&

$GC&HEC)C&0C)&&
  

𝑉< =
C)&&

EC&
− 𝑏$ ; 𝑉$ =

EC)C&0C)&&

EC&
  

𝑟<$ =
C)&HEC)C&0C)&&

$C&GI)I&
  

(15) 

2.3 Semi-Analytical PDF: Case 2 

If the condition (14) is not satisfied, the PDF of 
VBM is expressed as: 

𝑓@𝑀-A = ∫ <
$J
𝑓(𝑀<, 𝑀$)𝑑𝑢

K
= +  

                 ∫ <
$J
𝑓(𝑀%, 𝑀E)𝑑𝑢

K
=   

(16) 

where 

    𝑀< =
<
$
XL*DL+

M
+ 𝑢Y  

    𝑀$ =
<
$
XL*DL+

M
− 𝑢Y  

    𝑀% = − <
$
XL*DL+

M
+ 𝑢Y  

     𝑀E = − <
$
XL*DL+

M
− 𝑢Y  

(17) 

Derivation of the PDF in the case 2 is 
analogous to the case 1 described in Brown and 
Pipiras (2020). The main difference between the 
cases is that the case 1 PDF has a limit in 
hogging, while the case 2 does not. The hogging 
limit of the case 1, whose value lays well outside 
of the practical range, is believed to be an 
artefact of the squares used in the model (10). 

2.4 Probability Density Functions 

The PDFs (11) and (16) are derived from the 
approximate volume-based model (10) that 
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describes VBM, created only by the Froude-
Krylov and hydrostatic (FKHS) forces. While 
the FKHS forces represent the main nonlinearity 
of the problem, the model (10) does not yet 
describe the complete problem as the inertia and 
damping forces are not included. Thus the PDFs 
(11, 16) have to be treated as a shape of the 
actual VBM distribution, and need to be scaled 
with sa as a shape parameter. As an incremental 
improvement from Sapsis et al. (2020), the 
model (10) includes weight and is expected to 
recover a mean through its zero-order term. 
Then, the standardized PDF is expressed as: 

𝑝𝑑𝑓(𝑦) = 𝜎L𝑃𝐷𝐹L(𝜎L𝑦) (18) 

where 

𝜎N = ^_ 𝑃𝐷𝐹L(𝑢)@𝑢 − 𝜇-=A
$𝑑𝑢

K

L+

 (19) 

where PDFM is defined by equation (11) or (16) 
depending whether the condition (14) is 
satisfied or not. 

The direction of integration from bow or 
from stern leads to different results, as only 
FKHS forces are included, no dynamical 
equilibrium occurs in the section x = y. This 
closure error is expected to be eliminated by the 
scaling procedure (18), but the comprehensive 
study of this matter has not yet been conducted. 

The numerical calculation of the 
integrals in equations (11) and (16) may be non-
trivial for small values of sa, since the non-zero 
values of the integrands may exist only for a 
small portion of the integration range. The 
application of adaptive integration scheme (e.g. 
Heath, 2002) helps to resolve the problem.  

 

2.5 Example  

Sapsis et al. (2020) describes a large dataset of 
VBM values produced with Large Amplitude 
Motion Program (LAMP, e.g. Shin et al. 2003). 
The volume of the dataset was 5,000 hours of 

head seas at a forward speed of 10 knots. The 
simulations were performed for ONR Topsides 
flared hull, shown in Figure 1 (Bishop et al. 
2005) and included Sea State 7 among other 
conditions. 

 
Figure 1: ONR Topsides Flared Hull 

Figure 2 shows two standardized 
histograms from the Sea State 7 simulations and 
a standardized PDF computed with the 
approximate volume-based model from formula 
(11) for case 1 of the semi-analytical PDF. The 
difference with example from Sapsis et al. (2020) 
is the accounting for heave. The shape 
parameter sa had to be set to 12 m to achieve the 
fit, which is almost 2.5 time larger than the pitch 
only case in Sapsis et al. (2020). The reason for 
the difference is not known. 

 
Figure 2: PDF of the approximated volume-
based model in comparison with standardized 
histograms of VBM for SS7. 

3. DECK SUBMERGENCE 

As expected, the approximate volume-based 
model has successfully modelled the known 
asymmetry between sagging and hogging but 
did not reproduce the influence of the deck 
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submergence. The latter was crudely modelled 
in simulations by including deck pressures 
during deck submergence events. This resulted 
in the appearance of an “inflection” point at the 
standardized histogram corresponding to about 
5 standard deviations of VBM (Sapsis et al. 
2020). 

As is was shown in the cited reference, 
the location of the “inflection” point indicates a 
limit of the applicability of the Weibull fit, and 
thus has practical interest. The following is a 
description of ideas how to get there from here. 

3.1 Model of Deck Submergence Events 

Consider a theoretical situation when a portion 
of the deck forward of a location xd is submerged,  
Figure 3. The distance xd is measured from a 
section of interest at location y.  

 
Figure 3: Deck submergence event 
The VBM created by the FKHS forces in the 
section y is: 

𝑀- = ∫ 𝑥𝐴(𝑥, 𝑑(𝑥))
%
&
> 𝑑𝑥 =  

      ∫ 𝑥𝐴(𝑥, 𝑑(𝑥))𝑑𝑥3,
> + ∫ 𝑥𝐴(𝑥, 𝐷)𝑑𝑥

%
&
3,

 
(20) 

where d(x) is a draft at location x while D is a 
depth (assumed to be constant for the sake of 
simplicity). The second integral in equation (20) 
is no longer influenced by the wave surface, it 
depends only on a volume between xd and 
forward perpendicular. It can be pre-computed 
as a function of xd: 

𝑀O(𝑥P) = ∫ 𝑥𝐴(𝑥, 𝐷)𝑑𝑥
%
&
3,

   (21) 

The submergence of the deck at a point xd, on a 
ship moving in irregular waves can be treated as 
a problem of the relative motion of a point xd 
with respect to the wave surface. At the first 

expansion, the relative motion can be assumed 
to follow normal distribution:  

𝑓(𝑧P)~𝑁(𝐸QP; 𝑉QP)   (22) 

where Ezd is a mean value and Vzd is a variance 
of the relative motion of the deck point at 
location xd. 

The deck submergence events at the 
point xd can be treated as an exceedance of the 
freeboard D-d. The probability of deck 
submergence forward to xd is then expressed as: 

 𝑃3,(𝑧P > 𝐷 − 𝑑) = ∫ PQ,
G$AI-,

K
O0P  

 exp X− (Q,0R-,)&

$I-,
Y = 1 − 𝐶𝐷𝐹S(𝐷 − 𝑑)  

(23) 

3.2 Re-Calculation of Distribution 

A mapping between the VBM value (either an 
instantaneous value or a peak value) and the 
event of deck submergence are evaluated. A low 
limit for this mapping exists in terms of xd 
position. The second integral in equation (20) 
equals zero at 𝑥P = 0.5𝐿 , so no influence of 
deck submergence event occurs in the VBM 
value. 

The probability that the point 𝑥P = 0.5𝐿 is 
submerged is computed with equation (23) for 
𝑥P = 0.5𝐿: 

𝑃< = 𝑃3,;=.'.(𝑧P > 𝐷 − 𝑑)  (24) 

The value of VBM corresponding to this 
probability is found as a quantile of distribution 
(11) or (16) for an instantaneous value of VBM 
and as a quantile of the Weibull distribution for 
a peak value of VBM:  

𝑀-< = 𝑄-(𝑃<)  (25) 

where My1 is the minimum VBM value where 
deck submergence has its influence. 

xd 

y 



  

   

        
 

STAB  2021 
Stability and Safety of Ships and Ocean Vehicles 

 

A    F    E 
 7 Proceedings of the 1st International Conference on the Stability and Safety  

of Ships and Ocean Vehicles, 7-11 June 2021, Glasgow, Scotland, UK  

For an arbitrary point xd, 𝜓 < 𝑥P < 0.5𝐿 , 
the probability of the deck submergence event 
(is lower than P1) is computed with equation (23) 

𝑃$ = 𝑃3P(𝑧P > 𝐷 − 𝑑)	; 	𝜓 < 𝑥P < 0.5𝐿  (26) 

The corresponding value of the VBM 
without taking into account the influence of the 
deck submergence event is. 

𝑀-$ = 𝑄-(𝑃$)  (27) 

The FKHS portion of this VBM value can be 
presented as: 

𝑀-$ = 𝑀-$< +𝑀-$$  

    𝑀-$< = ∫ 𝑥𝐴(𝑥, 𝑑(𝑥))𝑑𝑥3,
>   

    𝑀-$$ = ∫ 𝑥𝐴(𝑥, 𝑑(𝑥))𝑑𝑥
%
&
3,

  

(28) 

My22, the second component in equation 
(28), is essentially the VBM value computed for 
the section located at xd.  Similar to My2, it can 
be estimated as a quantile of distribution (11) or 
(16) for an instantaneous value of VBM at a 
section xd and as a quantile of the Weibull 
distribution for a peak value of VBM at a section 
xd. 

𝑀3P = 𝑄3,(𝑃$)  (29) 

To correct for the deck submergence 
influence, the second component in equation (28) 
has to be substituted by the second integral from 
equation (20) describing the contribution from 
the fully submerged portion of the hull: 

𝑀-$
∗ = 𝑀-$ −𝑀3P + ∫ 𝑥𝐴(𝑥, 𝐷)𝑑𝑥

%
&
3,

  (30) 

For a sufficiently small probability P2, the 
value of Mxd is expected to exceed the integral 
in equation (30), as Mxd is a result of 
extrapolation, while the integral only depends 
on xd. As a result, the corrected VBM value, 
corresponding to the probability level P2 is 

smaller than the originally extrapolated estimate. 
The PDF curves “flexes down,” modelling the 
deck submergence effect observed in Figure 2. 
A possible scheme is shown in Figure 4. 

 
Figure 4: Recalculation of PDF for deck 
submergence effect 

3.3 Alternative Approach  

Another approach is to combine the deck 
submergence effect with the second-order 
Taylor expansion of the station area at the 
instantaneous draft. From a step function 
formulation, the effect of deck submergence is 
incorporated into the probabilistic analysis. 
Specifically, a closed form correction can be 
applied directly to the probability distribution 
function, derived from the second-order Taylor 
expansion. Accounting for the dependence of 
pitch angle only for the first expansion gives: 

𝑚-= = ∫ 𝑥𝐴(𝑥, 𝜃𝑥)
VWXY.,( ,

%
&Z

> 𝑑𝑥  

𝑚-"< = ∫ 𝑥𝐴?(𝑥, 𝜃𝑥)cos(𝑘!𝑥)
VWXY.,( ,

%
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The derived model will allow for a 
physically interpretable representation of the 
VBM statistics in terms of the hull properties 
and the wave statistics. However, while in the 
previous case of no-deck submergence, the 
above coefficients could be averaged over 𝜃, but 
averaging is not meaningful in the present 
context. 

A viable approach in this case is to solve the 
pitch equation in order to obtain the joint 
statistics between the coefficients 𝑎"(𝑡), 𝑎#(𝑡) 
and the pitch angle, 𝜃(𝑡). With this information 
and an off-line calculation of these coefficients 
as functions of 𝜃 , an extremely efficient 
computational scheme can be developed that 
will explicitly account for deck submergence 
effects.  

On the other hand, a simpler approach would 
ignore the correlation between the wave 
coefficients 𝑎"(𝑡), 𝑎#(𝑡)  and the pitch angle 
𝜃(𝑡).  In this case, the computation of these 
coefficients can be split into two branches/cases:  

1) The first branch would be associated with 
small values of 𝜃, representing the case of 
no deck submergence. For this regime, the 
calculation can be identical as in the 
previous work (Sapsis et al., 2020) where 
the pdf is averaged over 𝜃. 

2) The second branch would be associated with 
larger values of 𝜃. For this case, the average 
value of 𝜃 can be defined, given that deck 
submergence has occurred, 𝜃̅# . For this 
value, the deck-submergence-relevant 
coefficients is computed in equation (31) for 
𝜃 = 𝜃̅#.  
A random model can then be designed as in 

equation (10), but with the main difference 
being that the coefficients will be selected 
randomly for each sample of amplitude 
coefficients, either from branch (1) or (2). The 
probability of selecting one or the other will be 
defined by equation (24) and the selection will 
be independent from the wave coefficients. 
Despite the fact that the correlation between 
deck submergence and wave coefficients is 
ignored, the proposed model has the major 
advantage that it can lead to closed analytical 

expressions, similar to the no deck submergence 
case. 

Preliminary numerical calculations confirm 
that the values of the quadratic coefficients for 
the second branch (i.e. the submergence of deck 
regime) are significantly smaller compared with 
first branch. Given this property, it is natural to 
expect that the tails for the VBM will present an 
inflection point switching from heavy-tailed 
(due to the large quadratic coefficients in the no 
deck submergence regime) to an almost 
Gaussian behaviour, corresponding to weak 
quadratic coefficients during deck submergence.  

4. SUMMARY AND CONCLUSIONS 

Incremental developments are described for an 
approximate volume-based model for the PDF 
of VBM, originally derived by Sapsis et al. 
(2020) and Brown and Pipiras (2020): 

§ Influence of heave has been added; 
§ The semi-analytical PDF equation has been 

extended. 

Two ideas for inclusion of deck effects are 
described: 

§ Recalculation of the VBM PDF, with similar 
PDFs, computed for other section and 
probabilities of deck submergence events 

§ With a step function formulation, the effect 
of deck submergence is incorporated into the 
probabilistic analysis. 

The semi-analytical model of VBM PDF holds 
the promise of a future physics-based tool for 
the analysis of extreme loads. The next steps are 
envisioned as follows: 

§ Development of the approximate volume-
based model towards complete internal 
consistency and elimination of the closure 
error, 

§ Development of techniques to fit the model 
with numerical simulation data, 

§ Implementation and testing of methods for 
inclusion of deck submergence effect, 

§ Statistical validation. 
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