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Abstract In the present study, the dynamics of one- and two-degree-of-freedom linear oscillators attached to
hierarchical chains of oscillators coupled by strongly nonlinear cubic springs in parallel with viscous dampers
are investigated. The mass, stiffness, and damping properties of the nonlinear oscillators are specified to follow
a certain scaling rule, in such a way that their mass, stiffness, and damping properties decrease along the chain.
The linear oscillators are driven harmonically near to their primary resonances. For sufficiently low excitation
levels, linear behavior prevails leading to nearly harmonic responses, where the mechanical energy remains
localized in the directly forced linear oscillator. For sufficiently high excitation level (that is, above a critical
level of the forcing amplitude), however, the system responds in a chaotic way, where a substantial part of
the energy is transferred across the hierarchical nonlinear chain in an energy cascade. Interestingly, there
exist “chaotic bands” where all cubic oscillators are simultaneously activated or deactivated depending on
the frequency; hence, a chaotic synchronization occurs in the system. When energy cascading is initiated the
smaller-scale cubic oscillators become driven by the chaotic dynamics of the larger-scale cubic oscillators. Once
the oscillator chain enters the chaotic response regime, the pattern of nonlinear energy cascading resembles (but
is not identical to) the —5/3 Kolmogorov energy cascading power law observed in fully developed turbulence.
Similarities and differences in the observed mechanical energy cascades and those realized in turbulent flows
are discussed.

1 Introduction

Turbulent flow is a prime example of cross-scale energy transfer in nature, where large unstable vortices
break up into few smaller vortices, thereby transferring the kinetic energy from larger scales to smaller ones
in a well-known energy cascade corresponding to irreversible energy transfers from large to small scales.
Studies of mathematical models of such energy cascades indicated that they are generated by the combined
effects of instabilities of the large-scale vortices and the quadratic nonlinearity of the governing Navier—Stokes
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equations [1, 2]. Studies show that simultaneous energy dissipation occurs over many scales, leading to the
so-called super dissipation efficiency of turbulence. Motivated by the cross-scale nonlinear energy transfers
in turbulent flows, the problem of inducing similar predictable designs of passive nonlinear targeted energy
transfers in mechanical and structural systems has been the topic of current works, e.g., [3]. A review of
the literature reveals that the nonlinear energy transfer principle has been applied in numerous applications,
including vibration isolation and absorption [4-6], energy harvesting [7, 8], and passive guidance of the energy
flow [9, 10].

Considering the complexity of turbulent flows, several phenomenological models such as the shell model
[11] and its modified versions [12] have been proposed to simulate the features of energy cascades and chaotic
dynamics in turbulence. With the continuous upgrading of the aforementioned models, the construction of
phenomenological models of turbulent flows has become an important study direction. Recently, a linear
oscillator chain was used to reproduce the energy spectrum with the well-known Kolmogorov power law [13,
14], and an analogous study was performed between a weakly nonlinear chain and turbulence [15].

Additional works studied wave turbulence in the acoustics of elastic plates [16—18]. In [16] the nonlinear
energy transfers between propagating waves in a thin elastic plate were studied employing the Foppl-von
Karman theory for thin plates; an energy scaling law for the resulting energy cascades was then derived which
was analogous to Kolmogorov’s scaling law for fully developed turbulent flows. This study was extended
in [17] where the same thin-plate model was used to develop a theoretical phenomenological model for the
time—frequency dependence of the power spectrum of thin vibrating plates in the wave turbulence regime.
Interestingly, the analysis provided self-similar universal solutions relating the power spectrum to both the
input power and the dissipative capacity of the plates. Additional works provided experimental investigations
of wave turbulence in plates, e.g., [19] and [20].

An additional aspect studied in this work is the issue of chaotic synchronization of a chain of nonlinear
oscillators as system parameters (e.g., excitation amplitude or frequency) change. Synchronization is a universal
feature of nonlinear dynamical systems [21], e.g., ranging from synchronous variations of cell nuclei and firing
of neurons, to normal or abnormal synchronization of heart rates with respiration rhythms, and cooperative
social behaviors of humans [21]. Whereas synchronization is typically related to coupled dynamical systems
undergoing some sort of resonance, chaotic systems can synchronize as well [22], in which case a clear
criterion for assessing such chaotic synchronization can be formulated by Lyapunov exponents. In this work,
an interesting chaotic synchronization phenomenon is presented, whereby, as the frequency of an applied
excitation increases, an entire chain of strongly nonlinear oscillators initially in a low-amplitude linearized
dynamical state, suddenly “bursts” into finite-amplitude synchronized chaotic response. Further increase of
the frequency beyond a certain critical threshold leads to sudden de-synchronization of the chaotic response,
with all oscillators simultaneously returning to a low-amplitude linearized response regime. It is precisely
this chaotic synchronization that gives rise to sustained nonlinear energy cascades in the nonlinear chain,
resembling “mechanical turbulence.”

Specifically, in the present study, nonlinear oscillator chains composed of at least one linear oscillator
attached to a hierarchical chain of purely cubic oscillators are considered. In comparison with constructing
phenomenological models of turbulent flows, it was intended to establish the governing law of the resulting
nonlinear energy cascades and energy transfers in the oscillator chains analogous to those occurring in tur-
bulent flows, and then guiding the design for such “mechanical turbulence” features in practical engineering
applications. To this end, nonlinear energy cascades and energy transfers in the studied oscillator systems in
the regime of chaotic responses are investigated. The main aim is to show that robust energy cascades can
be predictably induced in hierarchical nonlinear oscillator chains and provide methods to quantify and study
these uni-directional (irreversible) energy transfers.

2 Problem formulation and analysis method: Case of single linear oscillator

The first system considered is depicted in Fig. 1, composed of a grounded linear oscillator with mass M, stiffness
K, viscous damping coefficient 1, and an attached hierarchical chain of N strongly nonlinear oscillators; each
oscillator in the chain is coupled to its neighbors by a purely cubic stiffness in parallel to a viscous damper,
with m,, k,, and A, (n = 1, ..., N) denoting the mass, stiffness, and damping coefficients, respectively. An
important feature of the attached chain of nonlinear oscillators is that it is hierarchical, i.e., the mass, stiffness,
and damping of each oscillator decrease according to a specified scaling law from left to right. Moreover,
the displacements of the N + 1 oscillators of the system are denoted by x,+1, n = 0, 1,..., N. Lastly,



”

Intense cross-scale energy cascades resembling “mechanical turbulence

Jfeosat M
_ﬁ S
\
\ ky
| K - \ Ny ,4", ké,l,//r/'}/y k,v "
l‘ ot o 0 ° *;—_’//f './F
| W 5 /1N-1‘\' . )“” -
ﬂ 241 Xy Xn+1
X

X1
Fig. 1 A grounded linear oscillator attached to a hierarchical chain of N ungrounded strongly nonlinear oscillators with purely
cubic stiffness characteristics

a harmonic excitation represented by f cos(€2z) is applied to the linear oscillator, where f and 2 are the
excitation amplitude and frequency, respectively.
The governing equations of motion for the system of Fig. 1 can be expressed in dimensional form as

M3y + pxt + Kxp + A (%1 — %2) +ki1(x] — x2)° = f cos(Qr), (1.1)

.. . . 3
My X1 Ay (Xns1 — X)) + kn(Xne1 — X5)

1 Gl — %n42) F kg1 (sl — Xn42)* =0,n=1,2 --- N —1, (1.2)

myEN+1 + ANGiN+1 — IN) + ky(xner — xn)° = 0. (1.3)

Introducing the normalized variables and parameters,

Ma o K t A - k f & M Q
En = —, = = =, = T
"T M = /_ T K V&
the equations of motion are expressed in the following non-dimensional form:
X1+ [k +x1 + A (6 — X2) + k(v — x2)° = £ cos(Q), @1

.. >, . ~ 3
EnXps1+hn(Xns1 — Xn) + kn(Xpe1 — Xp)

+Xn+l().cn+l - xn+2)+]€n+l(xn+l - xn+2)3 =0,n=12.-- N—1, (2.2)

ENEN+1 + ANGEN+1 — XN) +kn(xns1 —xn) =0, (2.3)

where, for convenience, the tildes will be dropped in the subsequent analysis. The dynamics of system (2) is
computed by explicit time step integration using the Runge—Kutta method in Matlab® subject to zero initial
conditions. Subsequently, the steady-state dynamical response is analyzed with particular focus on the partition
of energy along the system from which energy transfer phenomena can be inferred. Indeed, when the system
is excited at steady state (i.e., after the initial transients have dissipated), a portion of the energy is expected to
be dissipated by viscous damping, while the rest of the energy should be transferred throughout the oscillator
chain as it reaches dynamical equilibrium. Clearly, the transferred energy should appear as kinetic and potential
energies of the constituent oscillators of the system, and one of the main objectives of the study is to investigate
the irreversible nonlinear energy transfer from the large-scale linear oscillator to the smaller scale hierarchical
strongly nonlinear oscillators. Accordingly, certain energy measures are defined.

First, the average energy in the linear (E7 o) and nonlinear oscillators (E},) at steady state are expressed as

Ero= _/IMT 1(X%+x12)+1k1(x1 —x2)* )dt, (3.1
T J, 2 8

0+l /1 2 1 4 1 4
E, = T , Eenxnﬂ + gkn(xn — Xps1) + gkn+l(~xn+l — Xps2)" |dt
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n=1,2,..., N, (3.2)

where T is a specified time interval after the system reaches steady state, and #( signifies the initial time instant
of the computation. Note that the portion of the potential energy stored in the cubic springs of the hierarchical
nonlinear oscillators is associated with both connecting stiffnesses with its neighboring oscillators.

In addition, the input energy flux (E;,) and normalized energy flux (En) between neighboring nonlinear
oscillators at steady state are defined as follows:

to+T
E;, = / f cos(2t) x1 dt, 4.1)
R 1 to+T 10
E, = / kn(n — Xpa1) dns1dt, n=1, 2, ..., N. 4.2)
Einen )

Specifically, the input energy flux (4.1) is computed as the integral over a period of the excitation of the
power input provided by the force to the primary oscillator, f cos(2¢)x;. Similarly, the normalized energy
flux (4.2) quantifies the energy that the (n + 1) — th oscillator receives from its neighboring n — th oscillator,
and is computed as the integral over a period of the excitation of the power provided by the nonlinear coupling
stiffness force to the (n+1)—th oscillator, &y, (x, —Xp+1)> Xn41. Here, only the non-dissipative nonlinear coupling
forces (exerted by the cubic stiffnesses) are considered, but not the linear viscous dissipative coupling force
since this is a dissipator (instead of a propagator) of power through the chain.

It turns out that provided the forcing amplitude is above a critical threshold the strong (in fact non-
linearizable) stiffness nonlinearities in the hierarchical oscillator chain play a role, and chaotic steady-state
dynamics occur; on the contrary, for sufficiently small forcing amplitudes regular (periodic) steady-state
responses are realized. To distinguish regular from chaotic responses and further characterize the chaotic
dynamics, Lyapunov exponents are computed and analyzed as detailed later. In the following numerical simu-
lations, a nonlinear hierarchical chain composed of N = 8 coupled cubic oscillators is studied. The hierarchy
of scales (i.e., from large-scale to small scale nonlinear oscillators) is achieved by decreasing the system
parameters from the first (n = 1) to the last (n = N) oscillator according to the scaling laws,

En—1 kn—1 An—1

=15, =50, =2,n=2,3,...,N,
&n kn An

with the system parameters of the linear oscillator and the first cubic oscillator given by ©=0.01, £;=0.04,
k1 = 0.3, and A;=0.000128. Hence, a transition from the larger scale directly excited linear oscillator to
smaller scale attached strongly nonlinear oscillators is introduced.

3 Results: case of a single linear oscillator

In Fig. 2 the frequency response plots of the nine oscillators of the system are presented for weak (Fig. 2a)
and strong (Fig. 2b) excitation levels. In these plots the average energies of the oscillators at steady state are
depicted as functions of the excitation frequency €2 for constant excitation amplitude f. Considering first the
case of weak harmonic excitation corresponding to f = 0.001 in Fig. 2a, the response of the linear oscillator
is periodic with frequency identical to the frequency of the excitation; accordingly the frequency response
plot is similar to the damped resonance plot that is encountered when a single linear oscillator is forced by
a harmonic excitation. At the same time the energy levels of the cubic oscillators are negligible so at steady
state the energy is almost entirely localized to the directly excited linear oscillator. Hence, for sufficiently
low excitation levels, linear behavior prevails, leading to a nearly harmonic dynamical response of the linear
oscillator.

A radically different picture, however, is noted when the force excitation level is increased. Figure 2b
depicts four frequency response curves corresponding to the linear and the leading three cubic oscillators
(n = 1, 2, 3) in the neighborhood of the resonance of the linear oscillator 2 = 1. The four plots from
top to bottom in Fig. 2b show the average energies of the linear oscillator and the leading cubic oscillators,
respectively. Note that in this case there is nonlinear targeted energy transfer from the linear oscillator to
the hierarchical nonlinear chain of oscillators. Interestingly, a “chaotic band” is observed in the steady-state
dynamics of the system since the responses of all nonlinear oscillators appear to be synchronized in the sense
that they all become simultaneously “activated” (excited) to a chaotic state when the excitation frequency
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Fig. 2 Energy-frequency curves of the system of Fig. 1 for a weak excitation— f = 0.001, and b strong excitation— f = 0.004;
the plots depict the average energies of the linear oscillator (top curve) and leading cubic oscillators (with their order increasing
from top to bottom); note the “chaotic synchronization” inside the chaotic band in (b)

exceeds the lower critical threshold, €2; &~ 0.988, and also simultaneously become “deactivated” above the
upper critical threshold, €2, & 1.018. Hence, a peculiar “chaotic synchronization” effect is observed in these
results. We refer to the narrow frequency band where a sudden “burst” of the entire system to chaos occurs, as
chaotic band. Clearly, the bounding frequencies of this chaotic band depend on energy, so they are expected to
vary with the excitation amplitude; this was verified by numerical simulations for varying excitation amplitudes
which are not shown here. In addition, examining the steady-state responses of the oscillators of the system
within the chaotic band (cf. Fig. 3) it is concluded that the dynamics is irregular or chaotic; the chaotic nature
of the steady-state dynamics in this response regime is proven by the Lyapunov exponent plots depicted in
Fig. 4, verifying the existence of positive Lyapunov exponents in the responses.

Figure 3 depicts the time histories of the steady-state responses of the linear oscillator (LO) and the eight
cubic oscillators (COs) for forcing amplitude f = 0.004 and frequency 2 = 1 (in the chaotic band). Apart
from the apparent irregular (chaotic) nature of these responses it is observed that the amplitudes of the COs are
much larger than that of the LO, with the fourth CO exhibiting the largest response amplitude. Moreover, it is
noted that the time histories of the responses of the leading four COs are significantly different, but those of the
last four COs are similar so they appear to be synchronized in a certain sense. The reason for this effect is that
the closer to the tail of the nonlinear chain, the smaller the mass of the CO. Consequently, the inertia forces of
the last several COs are so small that they hardly produce any relative motions and are mainly “driven” by the
chaotic dynamics of the leading COs.

In Fig. 4, the Lyapunov exponents of the nine oscillators of the system of Fig. 1 are depicted. The Lyapunov
exponents are computed when the dynamics has reached the steady-state regime according to [23] where more
details of the computation can be found. In this case, the normalized system (2) is cast into first-order equation
form (i.e., in state-space form) involving eighteen variables, where nine variables are displacements and the
other nine are the corresponding velocities. Accordingly, eighteen Lyapunov exponents are obtained, with each
pair associated with the steady-state dynamics of each of the nine oscillators of the system. From Fig. 4 it is
noted that thirteen Lyapunov exponents are positive, demonstrating that the system exhibits chaotic responses
at steady state.

The chaotic nature of the steady-state response of the linear oscillator is further indicated by the irregular
shape of the frequency response plot of the LO in Fig. 2b (which should be compared to the corresponding
smooth plot of Fig. 2a), as well as the frequency response plots of the leading COs. Moreover, it is clear from
the frequency response results that there is a finite (in frequency) chaotic frequency band where the entire
system exhibits chaotic steady-state responses, and outside this band the steady-state responses are linearized
and mainly confined to the directly forced LO; indeed, outside this band the responses of all COs are negligible,
resembling the lower-amplitude excitation case of Fig. 2a. Therefore, the interesting phenomenon of “chaotic
synchronization” of the nonlinear chain of cubic oscillators for a finite frequency band is observed in this
system when the excitation amplitude exceeds a critical threshold.
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Fig. 4 Lyapunov exponents of nine oscillators inside the chaotic band for f = 0.004 and 2 = 1, proving the chaotic nature of
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the linear oscillator normalized to unity

In Fig. 5, the resulting irreversible energy cascade from the directly excited large-scale linear oscillator to
the smaller-scale cubic oscillators of the attached chain is depicted at &2 = 1 (inside the chaotic band) and two
different excitation amplitudes. Depicted in this Figure are the average energy and normalized energy flux,
which are based on Egs. (3) and (4.2), respectively. These energy measures (averages) are depicted after the
system has reached a steady state — this was ensured by considering the dynamics starting from an initial time
to = 7, 000 and for a time window 7" = 3, 000. In Fig. 5a the average energies of the mass scales (oscillators)
are depicted, whereas in Fig. 5b the normalized energy fluxes between adjacent mass scales are examined—with
the energy flux between the excited linear oscillator and its adjacent cubic oscillator normalized to unity. The
cascade corresponding to the lower excitation level (f = 0.001) corresponds to periodic responses of the
system, whereas the cascade realized at the higher excitation level (f = 0.004) to chaotic responses. The
well-known Kolmogorov energy cascade (the so-called “—5/3 law”) for fully developed turbulence is also
presented in Fig. 5a, to provide a qualitative comparison between the energy cascades realized in the present
mechanical system with cubic nonlinearities, and the corresponding irreversible large-to-small scale energy
transfers caused by the quadratic nonlinearities of the Navier—Stokes equations in turbulent flows. A first
general conclusion from these results is that, irrespective of the level of excitation, a sustained large-to-small
scale energy cascade is realized in the system of Fig. 1. This is caused by the strong cubic nonlinearity of
the attached hierarchical chain of oscillators, and, as shown in [24] is caused by the nonlinear frequency-
amplitude relationships of the cubic oscillators which dictates the realization of sustained resonance capture
in each oscillator depending on its scale. It is interesting to note that the combination of strong nonlinearity
and scale hierarchy (asymmetry) yields intense acoustic non-reciprocity in this system [24].

Examining in more detail the energy cascades of Fig. 5a it is observed that the realized large-to-small scale
energy cascades are quite different for the cases of periodic and chaotic responses. Indeed, for low forcing
amplitude the energy cascade is weak, as evidenced by its small logarithmic slope. For high forcing amplitude,
however, the energy cascade is much more intense, and for the smaller scale cubic oscillators it resembles
Kolmogorov’s law in slope. Specifically, following an initial nearly constant energy cascade from the linear
oscillator to the leading cubic oscillators of the hierarchical chain, the energy cascade settles into a nearly
linear logarithmic slope which is approximately equal to the —5/3 slope of Kolmogorov’s law. Considering the
normalized energy fluxes depicted in Fig. 5b, quantifying the steady state energy transfer in the nonlinear chain,
it is noted that the much more intense normalized energy flux occurs for stronger excitation, which is nearly
constant between the leading cubic oscillators before settling to smaller values for the smaller scale oscillators
of the hierarchical chain. Compared to the smaller energy fluxes in the regime of periodic responses (for the
smaller forcing amplitude) it is concluded that the cross-scale energy transfers are significantly enhanced in the



J. E. Chen et al.

10° T g ;
¢ (@)
10°
=)
_Q:
5
é 10-10 D
L
L
g:
S 4015 -
5 10
=
<
20
10771 [Ze=r=0.001
—o— £=0.004
Kolmogorov law
1025 ; 9
10° 102 104 108
Mass scale
(b)
g 10% i
S q
S
=)
S 10 10 )
Q
S
©
E 10-20 L
.t!
3
g
g 10%
= —o—1=0.001 |
—o—1=0.004
1040 ! . :
102 104 108

Mass scale
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regime of chaotic responses (for the larger forcing amplitude). Hence, for a sufficiently high excitation level,
a rather intense steady state cross-scale energy transfer is realized across the nonlinear hierarchical chain.

To gain insight into the chaotic dynamics for the case of high excitation level (f = 0.004 and 2 = 1), in
Fig. 6 the coupling forces F;, (the sum of the stiffness and dissipative forces) versus the relative displacements
and velocities, respectively, for the linear and cubic oscillators of the system are presented. In this way, the
role of cubic stiffness nonlinearities and the linear viscous dissipative forces in the energy transfer process
can be investigated. To this end, the stiffness forces, Fj,, and dissipative forces, Fy,, between the n — th and
(n + 1) — th oscillators are computed to be

Fy = Foy + Fap = ky(x, _xn+l)3+)\n()'cn_xn+])yn= I, 2...N. ()

The results show that the chaotic dynamics of the three leading (larger scale) cubic oscillators (cf. Fig. 6a-c)
are mainly dominated by the strong stiffness nonlinearity, while the dynamics of the last four (smaller scale)



Intense cross-scale energy cascades resembling “mechanical turbulence”

0.1

-0.05

-0.02

-0.03

-0.04
-2

-4

(al)

-0.5 0 0.5

Ty — T2

-

(b1)

-1 0 1
Ty — T3

x10°

cl)

/

-2 0 2
T3 — Ty

-5 0
Ty — Ts

Fig. 6 Steady state coupling force F,, versus relative displacement (x, — x,,+1), and relative velocity (x,, — x,+1) in the chaotic

regime of the hierarchical chain for f = 0.004 and Q =1

0.1

-0.05

-0.1

-2.5
4

Ty — Iy



J. E. Chen et al.

x10°¢

uD

x107

Fg
o

-1 -0.5 0 0.5

x107

1.5

0.3 0.2 0.1 0 0.1 0.2
T7 — T8

0.3

Fy

0.5
X
15
2

0.1 -0.05 0 0.05
Ty — Ty

Fig. 6 continued

0.1

6
4
2
S
-2
-4
6
-0.5 0 0.5

(g2)
1
0.5
=0
0.5
-
,(h2)
1.5
1
, 05
<
0
0.5
A
A5

%10

-8
-1 1
&5 — Tg

B><1o'7
6
4
2
=0
-2
-4
-6
-8
0.2 0.1 o 0.1 0.2
Tg — T7
Lsxm”

-1.5
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

T7 — Ig

-2
-0.02  -0.01 0 0.01 0.02 0.03



Intense cross-scale energy cascades resembling “mechanical turbulence”

cubic oscillators (cf. Fig. 6e-h) are mainly influenced by the linear viscous dissipation. The dynamics of the
fourth cubic oscillator (cf. Fig. 6d) represents a transition between these two different chaotic states. Hence,
it appears that the last few smaller scale oscillators are mainly “driven” by the larger scale ones and their
dynamics are primarily governed by viscous damping. These results correlate with the energy cascade for
f = 0.004 depicted in Fig. 5a. In particular, this cascade can be divided into two main parts, that is, an initial
nearly horizontal part for the leading larger scale oscillators, and a Kolmogorov-like power law part for the
last smaller scale oscillators; the transition between these two parts corresponds to the coupling forces Fiq4
and Fy4 depicted in Fig. 6d. Accordingly, it seems that the Kolmogorov-type cascade in Fig. 5a corresponds
to the damping-dominated chaotic dynamics of the smaller scale cubic oscillators in the hierarchical chain.
From the above discussion we can see several analogies with the energy transfers observed in fully developed
turbulence. Specifically, the energy is injected to the large-scale spatial modes either due to the applied forcing
or to instability (similarly with the three leading oscillators). Subsequently it is continuously transferred due
to nonlinearity in smaller scales, where dissipation dominates. Between the (larger) scales where we have
pure energy transfer due to the nonlinear effects (termed the inertial scales) and the (smaller) scales that are
dissipation-dominated (termed the dissipation scales) there is a transition regime, similar to the mechanical
system analyzed here.

To investigate the energy cascade and transfer in the chaotic steady-state regime, the excitation frequency
was fixed to 2 = 1, and the excitation magnitude f was varied in the range [0.003, 0.02]. The results are
depicted in Fig. 7, and it is concluded that when the hierarchical nonlinear chain enters into the chaotic state,
a characteristic correlation forms between energy and mass scale, consisting of an almost horizontal initial
part followed by a latter part that obeys a near power law which resembles the Kolmogorov law (cf. Fig. 7a).
Hence, the cascade depicted in Fig. 5a seems to be robust in the chaotic regime. Furthermore, the normalized
nonlinear energy fluxes depicted in Fig. 7b indicate that the energy fluxes increase in the leading larger scale
cubic oscillators, and then decrease for the smaller scale ones. We can again observe analogies with the case of
fluid turbulence but also some differences. While in turbulence the flux of energy occurs, in general, from large
to small scales, it has an almost constant rate. This is because in the inertia subrange the viscous dissipation
effects are negligible, and energy is just transferred through it until it reaches the dissipation regime. On
the other hand, for the case if the nonlinear mechanical chain energy flux is not a constant, at least over an
equally lengthy mass range. Nevertheless, considering that the chaotic dynamics of the leading larger scale
cubic oscillators are dominated by the stiffness nonlinearity, and that of the smaller scale oscillators by linear
viscous damping (cf. Fig. 6), the results of Fig. 7b indicate that the activation of strongly nonlinear stiffness
effects is the key factor for initiating the energy transfer (and cascading) process in the chaotic regime.

4 Case of two coupled linear oscillators

In this Section, we consider a variant of the hierarchical oscillator chain by considering two linear primary
oscillators coupled to the same eight hierarchical cubic oscillators as described previously; the system is
illustrated in Fig. 8. Given that under in-phase harmonic excitations of the two linear oscillators the dynamics
of this augmented chain has similar dynamics and nonlinear energy cascades to those of the system with
a single primary oscillator, here we focus exclusively on out-of-phase harmonic excitations; moreover, the
system parameters are the same as those of the study in the previous Section.

The equations of motion for this system, take the non-dimensional form

X1+ Ly +x1 + [ —X1) + (1 —X1) = f cos(Q), (6.1)
X1+ (6 —x1) + @ —x) + M@ — d2) + k(X — x2)° = — f cos(QD), (6.2)
e1¥y + Ay — X1) + k1 (x2 — X1)° + Aa(dn — £3) + ka(xa — x3)° = 0, (6.3)

EnXps1 + ):n(jcrwl — Xp) + ];n(xn+1 - xn)3 + Xn+1(5fn+1 — Xp2) + ];n+1(xn+1 - xn+2)3 =0,
n=2,3...N—1, (6.4)

ENEN+1 + ANGiN+1 — XN) +kn(xns1 — xn) =0, (6.5)

where the previous normalizations hold, and the tildes are dropped in the following analysis for convenience.
A relatively strong excitation level with f = 0.02 is considered to activate chaotic responses in the system.



J. E. Chen et al.

>
S 10
QL
e
L)
QL
D
S
~
N3]
= 10710} |—e—1=0.003
< —6—£=0.004
—o—£=0.005
0 =0.01
S £=0.02
Kolmogorov law
1071 . :
10° 102 104 108
Mass scale
10° T
(b)

b
o
2]

Normalized energy flux
=)

10-15

-
o
)

au

< S

——£=0.01

——1=0.02

102

104 108

Mass scale

Fig. 7 Irreversible large-to-small scale nonlinear energy cascading and energy transfer for 2 = 1 and varying force excitation
level in the chaotic steady state regime: a average energies, and b normalized energy fluxes versus mass scales (oscillators); for
comparison the Kolmogorov — 5/3 energy cascade for fully developed turbulence is depicted in (a)

fcosat M —fcosot M
///] \/ A A VK k11 ”!1 k
/e TATATAY —VVVV A ;\\//\/k //y’//% Ky.1 My g, iy
/ ' Wb
7— ] — T %///% eeooe 11“//%:%:@{
; M | U ‘ 7] o X, Xyes
4 S J —3’52

-

X1

>
X1

Fig. 8 Hierarchical chain with two linear primary oscillators subject to out-of-phase excitations



Intense cross-scale energy cascades resembling “mechanical turbulence”

0.18
(a)
0.16
0.14
N
& 0.12
=
SR | ‘
3]
J 0.08 ‘
~
) i
S 0.06 ¢ \
= ;\
0.04 Il
Il
I8
0.02f | I
0 A il -
0 0.5 1 15 2
Q
0.06 . : 0.18 © ; |
b c
(b) 0.16 ‘ '
0.05 ‘
0.14
> > ‘
 0.04 1 2 0.12 |
Q | %) |
S S |
C ¢ 0.1 "
v 0.03 I v f ,
S ” S 0.08 i
£ | £ N fU
i o
= 0.02f i = 0.06 IR
< < "
| 0.04
0.01f [ /] B
0.02 1 AN
0 B N S 0 —= liba? : -
0.4 0.5 0.6 0.7 0.8 1.4 15 1.6 1.7 1.8
Q Q

Fig. 9 Energy-frequency curves of the system of Fig. 8§ for f = 0.02anda Q2 = 0—2,b = 0.4 — 0.8 (detail in the lower
resonance region), and ¢ 2 = 1.4 — 1.8 (detail in the higher resonance region); the plots depict the average energies of the linear
oscillators (top curves) and leading cubic oscillators (with their orders increasing from top to bottom)

In Fig. 9, the frequency response plots of the ten oscillators are presented, and two enlarged Subfigures

(cf. Fig. 9b and c) are given to highlight the chaotic frequency bands. Similar to Fig. 2 for the case of a single
linear primary oscillator, two chaotic bands are realized close to the two linearized resonances of the system.
The bounding frequencies of the higher-frequency chaotic band are easily observed, and the resulting chaotic
dynamics realized in that band drastically enhance the targeted energy transfer from the two linear oscillators
to the hierarchical cubic oscillator chain. On the other hand, no such clear boundaries exist for the lower-
frequency chaotic band, although chaotic oscillations are realized in that frequency range as well. Relatively
speaking, the targeted energy transfer from the linear oscillators to the cubic chain is weaker around the first
resonance frequency compared to the neighborhood of the second resonance frequency.
The steady-state chaotic responses of the system for two values of the excitation frequency, namely, 2 = 0.62
in the first chaotic band, and €2 = 1.62 in the other chaotic band, are depicted in Figs. 10 and 11, respectively.
The corresponding Lyapunov exponents are shown in Fig. 12 where we note that several of these exponents are
positive; since the two linear primary oscillators have identical masses (normalized to unity), four exponents
(two for displacements and two for velocities) corresponding to the unit mass scale are shown in each of the
two Subfigures of Fig. 12.

In Fig. 13, we depict the nonlinear energy cascades and energy fluxes realized at two excitation frequencies
in the lower and higher chaotic regions. The methods for computing the average energy and normalized energy
flux are similar to those used in Fig. 5. However, it should be noted that the potential energy of the first
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Fig. 10 Chaotic responses at steady state of the ten oscillators of the system for f = 0.02 and 2 = 0.62 (lower-frequency chaotic
regime): a the first linear oscillator (LO), b the second LO, ¢ leading cubic oscillators (COs), n = 1 — 4, and d following COs,
n=5-8

linear oscillator is produced by its two adjacent linear stiffnesses. The results are analogous to the results
observed in the system with a single primary linear oscillator (cf. Fig. 7), highlighting the robustness of these
phenomena. Interestingly, although the average levels in the energy cascade at the lower-frequency chaotic
region (for 2 = 0.62) are lower compared to those in the higher-frequency one (for 2 = 1.62)—cf. Fig. 13a,
the corresponding energy fluxes in the lower-frequency region are higher—cf. Fig. 13b.

Finally, considering the coupling forces F;, as functions of the relative displacements and velocities, respec-
tively, the observed trends are similar to the ones of Fig. 6 for the case of a single primary linear oscillator.
In particular, the chaotic dynamics of the four leading cubic oscillators are mainly dominated by the strong
stiffness nonlinearity, while the dynamics of the following four cubic oscillators are mainly influenced by the
linear viscous dissipation. These results correlate fully with the energy cascades and fluxes depicted in Fig. 13.
The nonlinear energy cascades in the two chaotic regions of Fig. 13a are divided into two parts, namely, an
initial nearly horizontal part for the leading larger scale cubic oscillators—indicating near equipartition of
energy between these oscillators are the chaotic steady state, followed by a later part obeying a Kolmogorov-
like power law for the last smaller scale cubic oscillators. From the corresponding energy fluxes in Fig. 13b
we note a monotonically increasing targeted energy transfer in the nonlinear stiffness dominated leading cubic
oscillators, followed by a completely reversed monotonically decreasing sequence of energy fluxes as energy
is directed and dissipated by the smaller-scale cubic oscillators. Hence, similar conclusions to the case of
a SDOF primary linear oscillator can be drawn regarding the steady state nonlinear energy transfers in this
system.
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5 Conclusions

We studied sustained energy cascades in the steady-state dynamical response of an hierarchical chain composed
of one or two linear (primary) grounded oscillators coupled to a series of strongly, multi-scale ungrounded
nonlinear oscillators with cubic stiffness characteristics and linear viscous dissipation, subject to harmonic
force(s) applied to the linear oscillator(s).

At sufficiently low excitation levels, linear behavior prevails leading to nearly linear harmonic responses,
where the mechanical energy remains localized in the directly forced linear oscillator. Exceeding a critical
forcing threshold leads to chaotic responses of the chain and interesting sustained energy cascading from
the large-scale cubic oscillators—whose dynamics is dominated by stiffness nonlinearity—to the small scale
ones—whose dynamics is dominated by viscous dissipation. Moreover, these energy cascades are targeted, i.e.,
irreversible from large- to small-scales. It is noteworthy that there occurs a peculiar “chaotic synchronization,”
since all cubic oscillators are simultaneously entering or existing in the chaotic regime if a certain frequency
band, i.e., as the excitation frequency varies.

When energy cascading is initiated in the chaotic regime, the smaller-scale cubic oscillators become driven
by the chaotic dynamics of the larger-scale cubic oscillators. In addition, once the oscillator chain enters the
chaotic response regime, the pattern of nonlinear energy cascading resembles (but is not identical to) the
—5/3 Kolmogorov energy cascading power law observed in fully developed turbulence. There exist certain
similarities and differences of the observed mechanical energy cascades and those realized in turbulent flows.
Specifically, it is impressive how the nonlinearity plays a similar role in both cases, transferring energy through
an instability mechanism and the associated chaotic dynamics. For both systems the higher scales (turbulence)
and the higher masses (mechanical system) are dominated by energy-conserving nonlinearity, that is, nonlinear
advection for fluids and nonlinear stiffness for the mechanical chain, while the smaller scales (turbulence) and
smaller masses (mechanical system) are dominated by viscous dissipation or damping. However, in turbulence
this flux has an almost constant rate, while for the nonlinear mechanical chain energy flux is not as constant,
at least over an equally lengthy mass range.

The present study can be regarded as an attempt to study hierarchical lattice systems with features of
“mechanical turbulence,” i.e., with sustained targeted energy cascades, initiated by strong nonlinearity, yielding
irreversible energy transfer from larger scales dominated by stiffness nonlinearity to smaller scales dominated
by viscous dissipation. An interesting future application would be in the field of acoustic metamaterial with
inherent properties for “mechanical turbulence,” mimicking the strong dissipative behavior and robustness
exhibited by fully developed turbulent flows.
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