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A B S T R A C T

For a number of structural and fatigue problems in marine science, engineers need accurate statistics for
kinematic and dynamical quantities, such as displacements and bending moments. For many such problems the
response statistics depend nonlinearly on input stochastic processes, such as sea surface elevation. Nonlinearity
prevents the use of standard linear methods, leading to the adoption of expensive experiments and time-
consuming numerical simulations. In order to avoid this cost we present a machine learning framework to
minimize the training set requirements. This framework consists of two parts. First, we use the Karhunen–Loève
theorem to represent stochastic sea states with finite-time wave episodes, which have low dimensionality that
nonetheless captures the features important to hydrodynamics and structural mechanics. However, the choice
of the wave episode duration is ‘caught’ between the Scylla of slow Karhunen–Loève series convergence for
long time durations and the Charybdis of missing transient behaviors when the interval is short. To combat this
dilemma, we propose a division into a region, designed for parametric interpolation and machine learning, and
a stochastic prelude region, designed to probabilistically model transients. The second part of the framework
consists of a Gaussian Process Regression (GPR) model designed to learn the mapping from wave episodes
to structural outputs. GPR is able to take advantage of the low dimensional parametric representation of
the sea state in order to converge with reasonably-sized training sets (on the order 𝑛 ≈ 100). At the same
time, we use a low-dimensional representation in order to represent the stochastic response time series. The
principal advantages of the Gaussian process surrogate are the blazing speed of evaluation – ten thousand times
faster than the direct method – and the built in uncertainty quantification. Taken together, we can reconstruct
the statistics of the responses by sampling sea states via the Karhunen–Loève construction, estimating the
corresponding model outputs using the trained GPR, and estimating statistics of interest through Monte-Carlo
calculation on the surrogate model. Finally the developed framework allows for trivial computation of the
statistics for different sea spectra, i.e. without the need to retrain the Gaussian Process Regression scheme.
1. Introduction

The design of ocean vessels relies extensively on simulated hydrody-
namics and structural responses in order to estimate both performance
characteristics (Naess and Moan, 2013) and safety characteristics such
as fatigue lifetime (Serebrinsky and Ortiz, 2005; Khan and Ahmad,
2007; Chasparis et al., 2009) and capsize risk (Belenky et al., 2016,
2018). The vertical bending moment in particular is an important target
for modeling structural properties (Sapsis et al., 2020, 2021; Belenky
et al., 2021). The challenge however is that ship structural responses
can have strongly non-Gaussian statistics, especially when these are
associated with large magnitude responses due to large waves. While
there is a rich history of calculating second order statistics of ocean
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waves (Longuet-Higgens, 1957; Longuet-Higgins, 1975; Sharma and
Dean, 1979; Tayfun, 1980; Forristall, 2000; Fedele and Tayfun, 2009),
accurately calculating the ship’s non-Gaussian statistical responses, and
especially the extreme event properties remains a challenging task.

While finite element codes coupled with explicit time domain tech-
niques (Shin et al., 2003) are able to accurately simulate the structural
response to specific instances of sea conditions, the sea surface eleva-
tion is in general a stochastic process. Any simulation program with the
goal of accurately estimating the statistical vessel response in the steady
state will require a strategy for constructing representative sea surfaces.
The literature has proposed a number of decomposition approaches to
this problem (Belenky et al., 2012; Kyul Joo et al., 2018), and many
029-8018/© 2022 Elsevier Ltd. All rights reserved.
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previous investigators have described particular representations of sea
surface waves, examples of which include the random phase model,
stochastic wavegroups (Boccotti, 1989; Phillips et al., 1992), critical
wavegroups (Sclavounos, 2012; Anastopoulos et al., 2016; Anastopou-
los and Spyrou, 2016, 2019), and reduced order wavegroups (Mohamad
and Sapsis, 2018; Cousins and Sapsis, 2016; Farazmand and Sapsis,
2017). The use of wavegroup based methods foregrounds the impact of
irregular waves on the dynamical and structural response of the vessel,
particularly the memory effects.

Evading the iron cost of Monte-Carlo sampling, which is the scope
of this paper, requires both reconstructing the true statistical quanti-
ties of interest from a limited data set, as well as carefully choosing
experimental designs to produce that data set. The reconstruction
step draws from the theory of data-driven surrogate modeling tech-
niques (Forrester et al., 2008; Vu et al., 2017; Rudy et al., 2021), and
in particular theory of Gaussian Process Regression (GPR) (Rasmussen
and Williams, 2006; Stevens, 2018). Like related techniques, such as
Envelope Peaks Over Threshold (Campbell et al., 2016; Weems et al.,
2019; Belenky et al., 2019), surrogate modeling must be carefully
designed to accurately capture the tails of the distribution. The design
step draws from literature on optimal experimental design both in
the traditional Bayesian formulation (Chaloner and Verdinelli, 1995;
Huan and Marzouk, 2013) and in forms that are either output aware
or specifically tailored for recovering extreme events (Sapsis, 2020;
Blanchard and Sapsis, 2021b; Sapsis, 2021). In particular, sequential
design and active search take this to its natural conclusion, where early
simulation results are used to fine tune subsequent experimental de-
signs to maximize information (Mohamad and Sapsis, 2018; Blanchard
and Sapsis, 2021a).

Our goal here is to design a machine learning approach to com-
pute extreme event statistics with very few simulations. The challenge
however is that statistics are defined by the nonlinear interaction of
the ship with the stochastic waves. Neither of these two ingredients
can be simplified, especially when the goal is to accurately recover the
tails of the distribution. The first component of the presented frame-
work consists of a finite-dimensional probabilistic representation of the
stochastic sea state that is capable to capture the transient features
of the nonlinear dynamics. This representation has the form of finite-
time and finite-dimensional random wave episodes ‘equipped’ with a
stochastic prelude whose role is to bring the system into the statistical
steady state. Using this random wave episode representation and a
high-fidelity numerical solver we obtain the corresponding response,
which is also represented in a finite-dimensional form. Using wave
episode-response pairs in finite-dimensional form we then machine
learn a probabilistic map in the form of a GPR. The map is trained
with a relatively small set of wave episode-response pairs and it allows
to obtain a highly accurate description of the statistics with minimal
computational cost.

The structure of the paper is as follows. In Section 2, we describe our
approach to modeling sea state as both a stochastic process with known
statistics, and also a parametrically controlled finite-time wave episode
with a stochastic prelude. We leverage this approach to construct a set
of experimental designs which (a) have known statistical relations to
the steady state and (b) can be meaningfully interpolated across. In
Section 3, we discuss the numerical code we use to obtain ship motions
and loads under prescribed wave time-series, as well as some challenges
we encounter when trying to develop a simple correspondence between
the input time series and the output time series. In Section 4, we discuss
GPR, a machine learning tool commonly used in design problems.
In particular, we explain how we use GPR to reconstruct full output
time series for the considered problem. Next, in Section 5, we present
validations of the wave episode construction approach. In particu-
lar, we compare simulation results from the random phase model to
the random wave episode representation, and we compare resampled
statistics from the Gaussian process surrogates to directly sampled
2

Monte-Carlo statistics. Finally, in Section 6 we investigate convergence
when varying various algorithm parameters, among them the size of the
training set, the number of retained output time series modes, and two
important parameters used to model the wave episodes that represent
the stochastic sea state: their duration and their dimensionality.

2. Stochastic-preluded wave episodes for representing irregular
seas for nonlinear ship dynamics

Our goal is to develop a finite-dimensional and finite-time stochastic
representation of the irregular sea state (i.e. excitation) that would be
appropriate to employ in order to capture the response statistics of
chaotic dynamical systems, e.g. ship motions and dynamics in irregular
seas. A marine vessel in irregular seas can be seen as a nonlinear dissi-
pative system that is subjected to multi-frequency excitation, which is a
typical situation for chaotic behavior (e.g. a duffing oscillator subjected
to even mono chromatic excitation is a chaotic system Wiggins, 2003)

Why do we need to obtain a representation of the irregular sea state
in terms of random wave episodes, i.e. finite-time waves having random
parameters? This is motivated by the need to optimally design wave
tank experiments where the duration of each experimental run will
be of finite duration, as short as possible. Also, it is obvious that this
representation should involve a finite number of random parameters,
preferably a small number, so it can be practical for realistic settings.

Representing a stationary and ergodic stochastic process, such as
the irregular sea state, in terms of finite-time wave episodes is a
straightforward task using, for example, the Karhunen–Loève (KL) ex-
pansion. However, there are many challenges when this finite-time
representation of the irregular sea state has to be employed to quantify
the statistical steady-state statistics of a chaotic system, such as the
nonlinear ship response. This is because a random wave episode repre-
sentation should not only have consistent statistics with the irregular
sea state (given spectrum), but it has to take into account that the
chaotic system has finite memory and dynamics characterized by tran-
sient features. For example, when any given wave episode excites the
dynamic system, the latter may be in any point of the chaotic attractor.
This random initial state, however, cannot be practically implemented
in an experimental setting, i.e in a typical wave tank the model is
initially at rest. For this reason, the random wave episode needs to be
‘equipped’ with a stochastic prelude that precedes the random wave
episode and brings the system from rest to a random state, consistent
with the chaotic attractor.

This stochastic prelude is designed so that (i) it has consistent statis-
tics with the excitation, i.e. the irregular sea state, (ii) it is smoothly
connected with each wave episode, and (iii) it excites the system
for enough time so that it reaches the statistical steady state before
it encounters the actual wave episode. To achieve these properties
we assume that the stochastic prelude has a Gaussian prior with the
spectrum of the irregular sea state. Furthermore, we condition this prior
on each wave episode, similarly with what is done in a standard GPR
scheme. To present the notion of the spectrum-consistent stochastic-
preluded wave episodes we begin with a brief review of important
notions, such as typical sea state spectra and representation of a sea
state in terms of a KL expansion into finite-time wave episodes.

2.1. Sea state spectrum

Following general practice, we represent particular sea states by a
time series of the sea surface elevation at a particular point (𝜉 = 0). We
further represent this sea surface elevation as a zero-mean, statistically
stationary, Gaussian process. Finally, we characterize this stochastic
process by its power spectral density, which is defined as the Fourier
transform of the autocorrelation function, given by
𝑅𝑥(𝜏) = E[𝑥(𝑡1)𝑥(𝑡2)] = E[𝑥(𝑡)𝑥(𝑡 + 𝜏)]. (1)
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Fig. 1. (a) One-sided power spectral density for the JONSWAP spectrum. (b) JONSWAP time autocorrelation function.
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ere we consider the JONSWAP spectrum (Fig. 1) (Hasselmann et al.,
973) with modal frequency 𝜔𝑚:
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3
, 𝛾 = 3.0,

𝜎 =

{

0.07 𝜔 ≤ 𝜔𝑚

0.09 𝜔 > 𝜔𝑚,

𝐹 is the wind fetch, and 𝑈10 is the wind speed measured at 10 m above
the sea surface.

For the remainder of this work, we present results from a JONSWAP
spectrum with 𝛼 = 0.06 and modal period 𝑇𝑚 = 2𝜋

𝜔𝑚
= 10 s (together

implying significant wave height 𝐻𝑠 = 13.2 m and modal frequency
𝑤𝑚 = 2𝜋∕𝑇𝑚 = 0.63 rad × s−1). This very extreme sea state was
chosen to emphasize the nonlinear interactions associated with very
steep waves. The procedure described may be generalized to other
wave spectra without change.

2.2. Random phase model

For stationary Gaussian random processes, we can create samples
from the power spectrum using the random phase model:

𝑥(𝑡) =
∑

𝑖=1
𝛼𝑖 cos(𝜔𝑖𝑡 + 𝜙𝑖), (3)

where 𝛼𝑖, 𝜔𝑖 are deterministic amplitudes and frequencies, while 𝜙𝑖 are
random phases that are uniformly distributed in [0, 2𝜋]. We can derive
the corresponding power spectral density for this model as

𝑆𝑥𝑥(𝜔) =
∑

𝑖=1

𝛼2𝑖
2
𝛿(𝜔 − 𝜔𝑖) (4)

where 𝛿(𝑥) is the Dirac delta function.
We can use the last expression to select the amplitudes 𝛼𝑖 so that the

model approximates any given spectral density, 𝑆(𝜔). This will result
the following representation:

𝑥(𝑡) =
∑

𝑖=1

√

2𝑆(𝜔𝑖)𝛿𝜔𝑖
cos(𝜔𝑖𝑡 + 𝜙𝑖), (5)

where 𝛿𝜔𝑖
= 𝜔𝑖+1 − 𝜔𝑖 is the bin width associated with the frequency

discretization.
A direct approach for the quantification of statistics for ship re-

sponses and structural loads involves the simulation of the system using
a large number of sea state realizations based on the random phase
model. However, the random phase model for sampling from random
3

o

sea states has two drawbacks. First, it requires a large number of modes
in order that the discrete samples adequately represent the Gaussian
random process. This means that random phase model is equivalent
to a very high dimensional parametrization of the space of random
processes (where the parameters are the random phases). Second, the
parametrization is opaque: each 𝜙𝑖 controls the phase of one mode
in the sum, but it is impossible to interpret how the phases impact
the shape of the random process realization. To this end, we turn our
attention to an expansion over finite-time wave episodes.

2.3. Karhunen–Loève (KL) expansion of irregular waves in finite-time wave
episodes

An alternative approach for representing random waves is to sample
random processes over a finite interval (Sclavounos, 2012; Anastopou-
los et al., 2016; Anastopoulos and Spyrou, 2016). We recall the Karh-
unen–Loève (KL) theorem (Karhunen, 1947; Loève, 1948) that is the
basic building block for such construction.

Theorem 2.1 (Karhunen Loève). Consider the stationary stochastic process
𝑥(𝑡) which is zero mean and square integrable. Define the covariance
function 𝑅𝑥(𝜏) with the corresponding integral operator over the interval
[0, 𝑇 ],

𝑇𝑅𝑥
𝜙(𝑡) = ∫

𝑇

0
𝑅𝑥(𝑡 − 𝑠)𝜙(𝑡)𝑑𝑠, 𝑡 ∈ [0, 𝑇 ]. (6)

hen by Mercer’s Theorem for every interval [0, 𝑇 ] the operator 𝑇𝑅𝑥
has

n orthonormal basis of eigenvectors {𝑒𝑖,𝑇 (𝑡)}, 𝑖 = 1,… and corresponding
igenvalues {𝜆𝑖}. Moreover, the coefficients

𝑖 = ∫

𝑇

0
𝑥(𝑡)𝑒𝑖,𝑇 (𝑡)𝑑𝑡, 𝑖 = 1,… (7)

re centered orthogonal random variables:

[𝛼𝑖𝛼𝑗 ] = 0 for 𝑖 ≠ 𝑗 and Var(𝛼𝑖) = E[𝛼2𝑖 ] = 𝜆𝑖. (8)

urthermore, we can expand the random process 𝑥(𝑡) as

(𝑡) =
∞
∑

𝑖=1
𝛼𝑖𝑒𝑖,𝑇 (𝑡), 𝑡 ∈ [0, 𝑇 ]. (9)

In summary, the eigenvectors of the covariance matrix of the sea
urface form an orthonormal basis. The decomposition of 𝑥(𝑡) onto this
asis produces a set of centered, orthogonal (in the random sense) coef-
icients with variance 𝜆𝑖. We note that, for Gaussian random variables,
rthogonality is equivalent to independence.

By retaining in the truncation a sufficient number of coefficients we
xpect to model the largest part of the variance in the reconstructed
andom process. This can be measured by the sum of the retained
igenvalues, 𝜆𝑖, relative to the overall variance of the process (integral

f the spectral density). In this way, we obtain a finite-dimensional
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approximation of the original stochastic sea state in terms of stochastic
finite-time wave episodes having the form:

𝑥(𝑡) ≃
𝑛
∑

𝑖=1
𝛼𝑖𝑒𝑖,𝑇 (𝑡), 𝑡 ∈ [0, 𝑇 ]. (10)

In particular, given a known set of basis vectors 𝑒𝑖,𝑇 (𝑡), we can
hange back and forth between the time series representation 𝑥(𝑡), 𝑡 ∈
0, 𝑇 ] and the coefficients representation 𝛼𝑖, 𝑖 = 1, 2,…. The forward
tep (coefficient representation to time series) can be performed easily
ith Eq. (10), while the backward step is the discrete analogue of the
rojection given in Eq. (7).

We considered two methods for determining the basis vectors 𝑒𝑖,𝑇 (𝑡)
and associated eigenvalues 𝜆𝑖). First, we performed singular value
ecomposition (SVD) of an approximate discrete correlation matrix

̂𝑥(𝑡𝑖, 𝑡𝑗 ) =
1
𝑛

𝑛
∑

𝑘=1
𝑥𝑘(𝑡𝑖)𝑥𝑘(𝑡𝑗 ), (11)

where {𝑥𝑘(𝑡) ∶ 𝑘 ∈ [1,… , 𝑛]} are independent samples from the random
process on the interval [0, 𝑇 ], computed with the random phase mode.
The eigenvectors and eigenvalues of the matrix 𝑅̂𝑥(𝑡𝑖, 𝑡𝑗 ) correspond
to 𝑒𝑖,𝑇 (𝑡) and 𝜆𝑖 respectively. Second, we implemented the Sclavounos
procedure (Sclavounos, 2012) for directly computing the basis vectors
and eigenvalues. We found the primary differences between the two
techniques to be parity; the Sclavounos procedure conserved even and
odd basis vectors, while the SVD procedure allowed the two to mix. All
results presented here make use of the SVD procedure for calculating
the KL basis, but we expect identical results from the Sclavounos basis.

Two important questions here are first, how we should choose the
length of the wave episode interval, 𝑇 , and second, how we should
choose the truncation order 𝑛.

2.3.1. Selection of the wave episodes duration, 𝑇
First we note that the obtained representation (10) should be capa-

ble of capturing the correlation structure of the stochastic sea state. This
places a lower bound for 𝑇 : it should be longer than the decorrelation
time of the stochastic sea state. However, another factor that enforces
a lower bound on 𝑇 is the memory of the chaotic system. This should
also be adequately modeled and this can only happen if the excitation
wave episodes are sufficiently long.

For our purposes, we define the memory length of the chaotic
dynamics to be the decay time of a fictitious impulse response function
of the system (in this cases the wave excited ship). That is, if a large
wave impacts the ship, we should look for how long it will take for
the vessel dynamics to have ‘mostly forgotten’ the impact. The vessel
dynamics are, of course, nonlinear, and for this reason we cannot
define an impulse response function. Nonetheless, this provides a useful
heuristic for thinking about how short we can make 𝑇 . Note that if 𝑇
is shorter than the required memory then when we measure the ship
dynamics in the wave episode interval [0, 𝑇 ], our measurements will
be primarily influenced by the effects of the initial conditions (or the
waves before the interval [0, 𝑇 ]).

2.3.2. Selection of the truncation order, 𝑛
The other parameter that needs to be selected is the truncation

order, 𝑛. The truncation orders controls the fraction of the energy of the
sea state our projection retains, or equivalently, the ‘shape complexity’
of the wave episodes inside of the projected space. At the same time, 𝑛
also represents the dimensionality of the parametrized space of possible
wave episodes. Therefore, our choice of 𝑛 should balance between curse
of high dimensionality on the one hand, and accurately representing a
wide enough variety of wave episodes on the other.

An additional wrinkle is the relationship between 𝑇 and 𝑛. Roughly
speaking, as 𝑇 increases, a larger 𝑛 is necessary to maintain the same
amount of energy (Fig. 2). In terms of retained energy content, the
necessary 𝑛 increases approximately linearly with 𝑇 . In terms of shape
4

complexity however, the minimum required 𝑛 grows more slowly. This
Fig. 2. Eigenvalues of the KL expansion in wave episodes of length 𝑇 for representing
irregular seas described by the JONSWAP spectrum.

interplay between 𝑛 and 𝑇 suggests that we need to be cautious in
selecting 𝑇 , since it should not be very small (as this will cause prob-
lems with modeling the memory of the input stochastic process and/or
the chaotic system) nor very large (as this will lead to a very high
dimensional representation). In Section 6.1, we analyze quantitatively
the effect of 𝑇 and 𝑛 in connection to the performance of the stochastic
regression model employed to model the dynamical response of the
chaotic system.

2.4. Stochastic-prelude for finite-time wave episodes

Beyond the issues related to the adequate representation of the
memory effects of the system and the correlation structure of the
sea state, it is essential to model the effect of initial conditions of
the system, when the finite-time wave episode begins to excite it. A
simple modeling approach would be to include an additional number of
random parameters that would represent the initial state of the model.
However, due to the statistical relationship between the sea surface
across time, the latter has complicated a priori statistics.

By ‘complicated a priori statistics,’ we mean that while the sea
surface elevation (or even the ship motions) at an arbitrary time can
be described by simple Gaussian statistics, more complicated is the
question of the sea surface elevation before 𝑡 = 0, given that we know
that the sea surface elevation at time 𝑡 = 0 is given by 𝑥(𝑡 = 0).
Moreover, even in the case where one could approximate the statistics,
enforcing initial conditions is not practical for ship dynamics when the
experiments take place in a wave tank.

To overcome these limitations we ‘equip’ the generated finite-time
wave episodes with a stochastic prelude: a smooth backwards-in-time
extension of the finite-time wave episode which has consistent statistics
with the stochastic process, 𝑥. Specifically, let the probability measure
of the stochastic process, 𝑥(𝑡), 𝑡 ∈ R be given by

P[𝑥(𝑡), 𝑡 ∈ R]. (12)

We can think of the above probability measure as the joint pdf for the
sea surface elevation at every combination of time instances, i.e. for
any 𝑀 and (𝑡1,… , 𝑡𝑀 ), P[𝑥(𝑡), 𝑡 ∈ R] contains information for the
oint pdf 𝑝𝑥⃗(𝑥(𝑡1),… , 𝑥(𝑡𝑀 )). For what follows, we assume that the
tochastic process is Gaussian, zero-mean and statistically stationary
ith prescribed spectrum, typical for ocean waves.

We define the conditional stochastic process, 𝑥(𝑡|𝜶), 𝑡 ∈ R,𝜶 ∈ R𝑛,
n a given (finite) set of KL coefficients that prescribe a wave episode
n the interval [0, 𝑇 ], as well as the associated conditional probability
easure:
P[𝑥(𝑡), 𝑡 ∈ R|𝛼1,… , 𝛼𝑛]

≜ P

[

𝑥(𝑡), 𝑡 ∈ R
|

|

|

|∫

𝑇
𝑥(𝑠)𝑒𝑖,𝑇 (𝑠)𝑑𝑠 =

{

𝛼𝑖, 𝑖 = 1,… , 𝑛
}]

.
(13)
|

0 0, 𝑖 = 𝑛 + 1,…
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For the time interval [0, 𝑇 ] we have zero (conditional) uncertainty,
ince the function is fully defined through the KL coefficients. On the
ther hand, as we depart from this interval, i.e. for 𝑡 < 0 or 𝑡 > 𝑇 , the

uncertainty increases gradually. The rate of this increase depends on
the decorrelation time of the stochastic process. For sufficiently large
distance from the interval [0, 𝑇 ] the statistics of the conditioned process
are identical with the unconditional probability measure, (12). We call
the segment of the conditional stochastic process that corresponds to
𝑡 < 0 the stochastic prelude (SP) of the wave episode. We note that our
rimary interest is in the prelude region (that is, 𝑡 < 0), but that the

same analysis holds for the 𝑡 > 𝑇 region as well.
We emphasize that when we employ the developed wave episodes

to characterize the response of the dynamical system these have to
be accompanied with their stochastic prelude. The stochastic prelude
will bring the dynamical system into a random state, so that when
it encounters each prescribed wave episode, the effect of the stochas-
tic initial state is taken into account. How far back should the SP
extend to? That depends on the memory of the dynamical system.
Assuming a dissipative chaotic model, as is the case for a typical ship
dynamics model, this memory will be finite. In the next section, where
we consider a specific application, we describe in more detail this
parameter.

2.4.1. Construction of the stochastic prelude using Gaussian process condi-
tioning

The next step of our analysis involves the numerical construction
of the stochastic preludes. We begin with the wave episode in [0, 𝑇 ],
which is fully specified by the KL coefficients 𝛼1,… , 𝛼𝑛. We generate
andom realizations of the stochastic prelude (𝑡 < 0), by sampling from

a Gaussian Process posterior distribution (Rasmussen and Williams,
2006) in an iterative extrapolation mode. In brief, will we use the
known values of 𝑥(𝑡) inside the wave episode, along with any previously
samples from the stochastic prelude, in order to iteratively sample the
next point from the stochastic prelude in an extrapolation mode.

Let the length of the stochastic prelude be given by 𝑇𝑆𝑃 (i.e., the
stochastic prelude is the interval [−𝑇𝑆𝑃 , 0]). We begin by choosing a
discretization of both the wave episode and stochastic prelude into 𝑛𝑊
nd 𝑛𝑆𝑃 points respectively, with spacing 𝛥𝑡. Next, we choose a memory
ength, 𝑛𝑚 ≤ 𝑛𝑆𝑃 . The memory length depends on the decay rate of
he correlation function for the stochastic process, 𝑥(𝑡). For numerical
easons, we also require that 𝑛𝑚 ≤ 𝑛𝑊 . Additionally, we require
hat 𝑛𝑚𝛥𝑡 be comparable with the typical decorrelation length of the
tochastic process. Finally, a very small 𝛥𝑡 leads to poorly conditioned
atrix inversion step.

Then, we compute a Töplitz covariance matrix

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑅(0) 𝑅(𝛥𝑡) 𝑅(2𝛥𝑡) ⋯ 𝑅((𝑛𝑚 − 1)𝛥𝑡)
𝑅(𝛥𝑡) 𝑅(0) 𝑅(𝛥𝑡) ⋯ 𝑅((𝑛𝑚 − 2)𝛥𝑡)
𝑅(2𝛥𝑡) 𝑅(𝛥𝑡) 𝑅(0) ⋯ 𝑅((𝑛𝑚 − 3)𝛥𝑡)

⋮ ⋮ ⋮ ⋱ ⋮
𝑅((𝑛𝑚 − 1)𝛥𝑡) 𝑅((𝑛𝑚 − 2)𝛥𝑡) 𝑅((𝑛𝑚 − 3)𝛥𝑡) ⋯ 𝑅(0)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(14)

where 𝑅(𝜏) is the autocorrelation (equal to the inverse Fourier trans-
form the power spectrum) of the stochastic process. We also compute
the marginal row

𝛴∗ =
[

𝑅(𝑛𝑚𝛥𝑡) 𝑅((𝑛𝑚 − 1)𝛥𝑡) 𝑅((𝑛𝑚 − 2)𝛥𝑡), ... 𝑅(𝛥𝑡)
]

. (15)

Note that while 𝛴 and 𝛴∗ depend on the memory length 𝑛𝑚, they
are independent of the wave episode in [0, 𝑇 ], i.e. the KL coefficients
𝛼1,… , 𝛼𝑛.

We extrapolate backwards from the interval [0, 𝑇 ] in an iterative
manner:
5

Fig. 3. Five distinct stochastic-prelude (SP) realizations (𝑡 < 0, 𝑡 > 40) corresponding to
a single wave episode, 𝑡 ∈ [0, 40].

1. Using the 𝑛𝑚 points (denoted with the vector, 𝑋̂ =
(𝑥(𝑡1),… , 𝑥(𝑡𝑛𝑚 ))), we calculate the conditional mean and vari-
ance of the next point in the sequence. These are given by

𝜇𝑡0|𝑡1 ,…,𝑡𝑛𝑚
= 𝛴∗𝛴−1𝑋̂ (16)

𝜎2𝑡0|𝑡1 ,…,𝑡𝑛𝑚
= 𝑅(0) − 𝛴∗𝛴−1𝛴∗⊺. (17)

2. We sample the next point, in the sequence, 𝑥(𝑡0), from its condi-
tional distribution:

 (𝜇𝑡0|𝑡1 ,…,𝑡𝑛𝑚
, 𝜎2𝑡0|𝑡1 ,…,𝑡𝑛𝑚

).

3. We shift the ‘reading frame’ by 𝛥𝑡 and repeat, until we cover the
whole duration of the stochastic prelude.

Note that, like 𝛴 and 𝛴∗, we may precompute 𝜎2𝑡0|𝑡1 ,…,𝑡𝑛𝑚
, since the

posterior sampling variance is independent of the sample. Similarly, we
need only perform the matrix inversion for the vector expression 𝛴∗𝛴−1

once.
Let us briefly summarize application of the preluding technique

described in this section. We begin with a time series defined on the
interval [0, 𝑇 ]. Using this wave episode, we iteratively extend this time
series backward in time (into the prelude region 𝑡 ∈ [−𝑇𝑠𝑝, 0]) by
sampling the sea state at each time from a conditional distribution that
is consistent with both the power spectrum of the sea state, as well as
the already fixed portion of the wave episode.

2.4.2. Statistical structure of the stochastic prelude
In Fig. 3 we show an example of a set of distinct overlaid stochastic

preludes, corresponding to a single wave episode, i.e. single set of KL
coefficients. For any given set of KL coefficients, 𝜶 = (𝛼1,… , 𝛼𝑛), we
define the 𝜶−conditional mean of each wave episode:

̄(𝑡|𝜶) = E [𝑥(𝑡)|𝜶] , 𝑡 ∈ R. (18)

and its 𝜶−conditional variance or stochastic prelude variance:

𝜎2𝑆𝑃 (𝑡|𝜶) = E[(𝑥(𝑡|𝜶) − E[𝑥(𝑡)|𝜶])2], 𝑡 ∈ R. (19)

Clearly, within the interval [0, 𝑇 ] the 𝜶−conditional wave episode is
deterministic, i.e. its value is given by the KL expansion, (10), and the
𝜶−conditional variance, 𝜎2𝑆𝑃 (𝑡|𝜶), is always zero. Outside this interval,
where the stochastic prelude is defined, the 𝜶−conditional statistics
are given by the Gaussian Process extrapolation we constructed in the
previous subsection. Specifically, the mean of the stochastic prelude is
a smooth extrapolation of the wave episode, and gradually converges
to zero, since away from [0, 𝑇 ] there is no influence from the KL
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𝑥

𝑥

coefficients and the conditional process has identical statistics with 𝑥(𝑡),
i.e.

̄(𝑡|𝜶) = 0 for 𝑡 ≪ 0 𝑜𝑟 𝑡 ≫ 𝑇 . (20)

The stochastic prelude variance, 𝜎2𝑆𝑃 (𝑡|𝜶), is 0 in the interval [0, 𝑇 ] and
gradually increases to the variance of the stochastic process, 𝜎2𝑥; see
Fig. 4, blue curve. We also note that as we concluded in Eq. (17) the
variance of the stochastic prelude is independent of the wave episode,
i.e. the KL coefficients. Therefore, 𝜎2𝑆𝑃 (𝑡|𝜶) = 𝜎2𝑆𝑃 (𝑡).

Equally as interesting the conditional statistics, we have the energy
of the generated wave episodes and their stochastic preludes, i.e. their
variance over the random KL coefficients, 𝜶. We recall that the KL
coefficients follow a Gaussian distribution, 𝑝𝜶(𝜶).

We have for the mean of the wave episodes:

E𝜶[𝑥̄(𝑡|𝜶)] = ∫R𝑛
𝑥̄(𝑡|𝜶)𝑝𝜶(𝜶)𝑑𝜶 = 0, 𝑡 ∈ R. (21)

The above can be easily seen in [0, 𝑇 ] using the KL expansion and the
fact that the KL coefficients are zero mean. Outside [0, 𝑇 ] we can show
the same result using Eq. (16).

On the one hand, for the variance of the wave episodes (over 𝜶) we
have:

𝜎2𝑊 (𝑡) ≜ E𝜶[(𝑥̄(𝑡|𝜶))2] = ∫R𝑛
(𝑥̄(𝑡|𝜶))2 𝑝𝜶(𝜶)𝑑𝜶, 𝑡 ∈ R. (22)

For 𝑡 ∈ [0, 𝑇 ] we have a tight bound, 𝜎2𝑊 (𝑡) < 𝜎2𝑥; we do not have
equality since we are setting all the higher order KL coefficients (greater
than 𝑛) to 0. Therefore, some variance will always be lost due to the
finite truncation of the KL expansion. However, as 𝑛 grows we have
lim𝑛→∞ 𝜎2𝑊 (𝑡) = 𝜎2𝑥, 𝑡 ∈ [0, 𝑇 ].

On the other hand, outside the wave episode interval [0, 𝑇 ] the
variance due to the randomness of the KL coefficients will decay and
eventually converge to zero; see Fig. 4, red curve. This is because, for
a stochastic process 𝑥(𝑡) with finite decorrelation time, the influence of
the KL coefficients on the stochastic preludes decays away from [0, 𝑇 ].
Specifically,

̄(𝑡|𝜶) = 0, for 𝑡 ≪ 0 𝑜𝑟 𝑡 ≫ 𝑇 . (23)

Thus, 𝜎2𝑊 (𝑡) = 0 for 𝑡 ≪ 0 or 𝑡 ≫ 𝑇 .
Finally, using the law of total expectation we have

𝜎2𝑆𝑃 (𝑡) + 𝜎2𝑊 (𝑡) ⩽ 𝜎2𝑥 , (24)

where the equality holds for 𝑛 → ∞ or 𝑡 → ±∞. This property is also
demonstrated in Fig. 4.

3. Nonlinear ship responses using LAMP

3.1. Overview

To characterize the ship hydrodynamics and structural responses
we employ the Large Amplitude Motions Program (LAMP) v4.0.9 (May
2019). LAMP is numerical solver that computes 3-D potential flow
solution of the wave-body interaction problem in order to calculate the
time-domain motions and loading of floating bodies (Shin et al., 2003;
Lin et al., 2007b,a, 2010). We note that our analysis does not rely on
the specifics of LAMP and, in principle, any hydrodynamic structural
simulation or tow tank physical experiment could replace LAMP, with
perhaps minor changes to the format of the sea state representation, or
a different numerical fidelity/computational runtime balance.

The primary setting for our simulation is a marine vessel with the
Office of Naval Research Topsides flared variant geometry (Fig. 5)
traveling with constant linear velocity at 10 knots through long crested
(unidirectional) head seas with heading 180.0◦. This symmetry restricts
the available motions of the vessel to 𝑧 displacement and pitch angle
𝜃. Selected hydrostatic quantities are included in Table 1.
6

Fig. 4. Variance of the stochastic prelude, 𝜎2
𝑆𝑃 (𝑡) (blue curve) and energy, 𝜎2

𝑊 (𝑡) of the
generated wave episodes. Dashed red line corresponds to the part of the energy in the
stochastic prelude region that is associated with the mean effect of the wave episode.
Here we have 𝑇 = 40, while we consider 𝑛 = 6 (nonzero) KL modes. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 1
Hydrostatic details of the ONR Topsides flared variant hull.
Displacement 8520 kg
Maximum draft 7.61 m
Overall length 163 m
Maximum beam 22.0 m
Wetted surface area 323 m2

Midship cross-sectional area 86.0 m2

Block coefficient 0.312
Prismatic coefficient 0.606
Midships section coefficient 0.515

Fig. 5. The ONR Topsides Flared hull used for the LAMP simulations.

The induced Froude–Krylov forces (hydrodynamic pressure force)
also induces a vertical bending moment (VBM), calculated in LAMP by
rigid beam theory. Previous works have found that the distribution of
VBM has an important asymmetry with non-trivial tails (Sapsis, 2020),
so we will focus our statistical efforts at modeling the VBM statistics,
calculated midship. On the other hand, the probability distribution for
the pitch motion is very close to normal and for this reason we will not
present relevant results.

3.2. Spatial wave episode representation

LAMP represents the episode as a sum-of-sinusoids with prescribed
amplitude, frequency, and period. Our procedure above generates a
time series — the wave episode, as well as a stochastic prelude and
postlude. We transform between these representations using the Dis-
crete Fourier Transform (DFT). We combine sine and cosine modes with
identical frequency to get their phase 𝜙 = atan(𝑎 ∕𝑏 ) (using signed
𝑖 𝑖 𝑖



Ocean Engineering 266 (2022) 112633S. Guth and T.P. Sapsis

t
c

a

p

𝜉

T
r
r
a
a

‘
m

e
d

e
v
t
t
𝑇
v

t

𝐷

w
S
e
p
t
t

𝑇

w
s
w
t
o
L

3

b
a
d
t
t
a
a
n
i
p
l

4

4

s

𝑦

w
e
a

s
r
t
f
m
a
s

t

Fig. 6. Schematic representation of the propagating wave episode region in space and
ime, with overlaid trajectory of the vessel. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

rc tangent), and choose the 𝑛𝐿𝐴𝑀𝑃 modes with the greatest combined
amplitude.

The sum-of-sinusoids wave episode representation fully determines
the wave elevation at 𝜉 = 0. In order to extend this to other spatial
locations, we employ for each of the traveling monochromatic waves
the representation:

cos(𝑘𝑖𝜉 − 𝜔𝑖𝑡 + 𝜙𝑖), (25)

where 𝑘𝑖 is determined as the (positive) solution to the dispersion
relation

𝜔2 = 𝑔𝑘 tanh(𝑘ℎ). (26)

For our data collection, we have chosen 𝑛𝐿𝐴𝑀𝑃 = 1024 to ensure a
high-quality DFT reconstruction of the wave episode. Finally, over our
time scale of interest (𝑇 ), dispersive effects do not lead to significant
changes in the shape of the propagating wave episode.

3.3. Effect of ship velocity

In our experimental setup, we use LAMP to simulate a marine vessel
traveling at constant velocity through long crested (uni-directional)
headwaves. This will create two complications, that must be carefully
handled.

First, we must choose the position of the vessel at the beginning of
the simulation in order to control when and where the vessel travels
across the wave episode. For simplicity, we construct the wave episode
to be spatially located around 𝜉 = 0 at time 𝑡 = 0. We begin the
simulation at time 𝑡0 < 0, in order to handle transient and initialization
effects. Therefore, we should locate the vessel near 𝜉0 = 𝑡0𝑣𝑥 at the
beginning of the simulation, so that the vessel passes through position
𝜉 = 0 at time 𝑡 = 0.

In Fig. 6, we show the trajectory of the vessel in red. In this model,
we fix the start of the wave episode at 𝑡 = 0, so that the vessel should
pass through the origin at 𝑡 = 𝑇

2 . This leads to the choice of initial
osition

0 =
(

𝑡0 +
𝑇
2

)

𝑣𝑥. (27)

he second complication is the switch between Eulerian and Lagrangian
eference frames for the duration of the wave episode. In the Eulerian
eference frame, the wave episode at 𝜉 = 0 begins at 𝑡 = 0 and ends
t 𝑡 = 𝑇 . However, as the wave episode travels, it has different arrival
nd departure times at different spatial locations.

In the Lagrangian frame, the vessel first intersects the wave episode
earlier in space’ than 𝜉 = 0. This means that the time of intersection

ust be slightly later than 𝑡 = 0. Likewise, the vessel exits the wave
7

p

pisode at 𝜉𝑒 > 0, which occurs before 𝑡 = 𝑇 . We call this Lagrangian
uration, 𝑇𝐿.

In Fig. 6, the gray dotted line represents the duration of the wave
pisode in the Lagrangian frame — that is, the duration between the
essel’s entrance into the wave episode and its exit. Note that compared
o the full ‘width’ of the shaded region, the gray lines are separated by
he shorter time interval, 𝑇𝐿. While graphically it is apparent that the
𝐿 < 𝑇 (for the case of head seas), how ought we determine its precise
alue?

We will calculate using the relative velocities. Let 𝐷 be the distance
hat the wave episode will travel in time 𝑇 , or

= 𝑇 𝑣𝐺 , (28)

here 𝑣𝐺 is the velocity of the traveling wave episode. For the JON-
WAP spectrum, we approximate the velocity of the traveling wave
pisode by the group velocity corresponding to the spectrum modal
eak. The Lagrangian duration is the time it takes for the counter
ravelling wave episode and vessel to meet if they began separated by
he distance 𝐷. That is

𝐿 = 𝐷
|𝑣𝑆 − 𝑣𝐺|

, (29)

here 𝑣𝑆 is the velocity of the vessel, which is assumed to have oppo-
ite sign as the wave episode velocity. For our simulation parameters,
e find that 𝑇𝐿 is approximately 40% the duration of 𝑇 . Note that in

he Lagrangian frame, the vessel sees approximately the same number
f wave periods, but that the wave episode is ‘compressed,’ and the
agrangian-effective wave period is shorter.

.3.1. Selection of the stochastic prelude length
The stochastic prelude length, 𝑇𝑆𝑃 , has to be sufficiently large to

ring the system in its statistical steady state, i.e. it has to be at least
s large as the decorrelation time of the system. On the other hand, we
o not want to choose 𝑇𝑆𝑃 very long, as this will lead to large compu-
ational cost of numerical simulations and also large cost to perform
he Gaussian process extrapolation. Taking these considerations into
ccount, we chose stochastic preludes of length 𝑇𝑆𝑃 = 𝑇 both before
nd after the wave episode. We also include a ‘postlude’ to ensure that
o Gibbs phenomena rise when we transform the resulted wave form
n DFT. We note that while we experimented with longer stochastic
reludes (up to 𝑇𝑆𝑃 = 4𝑇 ), we did not notice significant effects from
engthening the preludes.

. Reduced order modeling with Gaussian process regression

.1. Overview of Gaussian Process Regression (GPR)

GPR involves the construction of probabilistic surrogate model for
et of data-points produced by the map:

=  (𝜶) + 𝜖 (30)

here 𝑦 is the output of interest, e.g. a modal coefficient, 𝜶 is the wave
pisode parameters, and 𝜖 is observation noise with intensity 𝜎𝑛, such
s the effect of the stochastic prelude on the output.

The training data set consists of the input data , and the corre-
ponding output data,  . The input data is a 𝑛𝑠 × 𝑛 matrix, where the
ows correspond to 𝑛𝑠 distinct samples, and the columns correspond to
he dimensionality of the wave episodes. We refer to a single sample
rom  as the 𝑛 dimensional vector 𝜶𝑖. The output data  is a 𝑛𝑠 × 𝑛𝑜𝑢𝑡
atrix, with 𝑛𝑠 distinct samples and 𝑛𝑜𝑢𝑡 output variables. For our

nalysis we reduce the problem of vector output to 𝑛𝑜𝑢𝑡 independent
calar problems.

The training process, described below, produces a surrogate model
hat takes a new (i.e. not included in the training) wave episode 𝜶 and
rovides a distribution (posterior) for the output 𝑦̂(𝜶). By construction
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Fig. 7. Eigenspectrum of the KL basis associated with VBM intervals corresponding to
different values of the wave episode 𝑛 parameter.

this output distribution is Gaussian, with mean 𝑦̄(𝜶) and variance 𝜎2𝑦 (𝜶).
That is to say

𝑦̂(𝜶) ∼  (𝑦̄(𝜶), 𝜎2𝑦 (𝜶); 𝜃), (31)

where the argument 𝜃 represents the parameter set for the Gaussian
istribution.

The starting point for GPR is a prior normal distribution for the
andom field, 𝑦̂(𝜶). Specifically, we assume a zero mean prior and a co-
ariance given by a kernel 𝑘(𝜶1,𝜶2). Conditioning this prior to the data

leads to closed expressions for the mean and the variance (Rasmussen
and Williams, 2006):

𝑦̄(𝜶) = 𝐾⊺
∗ (𝐾 + 𝜎2𝑛𝐼)

−1𝑌 (32)

𝜎2𝑦 (𝜶) = 𝐾∗∗ −𝐾⊺
∗ (𝐾 + 𝜎2𝑛𝐼)

−1𝐾∗ (33)

where,

𝐾𝑖,𝑗 = 𝑘(𝜶𝑖,𝜶𝑗 ),

𝐾∗
𝑖 = 𝑘(𝜶𝑖,𝜶),

𝐾∗∗ = 𝑘(𝜶,𝜶).

(34)

Note that the quantities defined in Eqs. (34) are a 𝑛𝑠 × 𝑛𝑠 dimensional
matrix, a 𝑛𝑠 × 1 dimensional vector, and a scalar respectively.

4.1.1. Kernel and hyperparameters
The kernel function or prior covariance, 𝑘(𝜶1,𝜶2), is an abstract

measure of similarity, conceptually similar to a metric. Here, we con-
sider the squared exponential kernel (or exponential quadratic), given
by

𝑘𝑆𝐸 (𝜶1,𝜶2) = 𝜎2 exp
(

−
‖𝜶1 − 𝜶2‖

2

2𝑙2

)

. (35)

The squared exponential kernel is smooth (infinitely differentiable),
and has two parameters: 𝜎, the magnitude of the uncertainty (a scale
factor); and 𝑙, the length scale of the uncertainty fluctuations. We
identify the ordered tuple 𝜃 = (𝜎, 𝑙) as the parameter set for this kernel.
For vector inputs, a rescaling of the input data can lead to improved
results but also a significantly larger number of hyperparameters: the
Automatic Relevance Determination (ARD) kernel,

𝑘𝐴𝑅𝐷𝑆𝐸 (𝜶1,𝜶2) = 𝜎2 exp

(

−1
2

𝑛
∑

𝑖

(𝛼1,𝑖 − 𝛼2,𝑖)2

𝑙2𝑖

)

= 𝜎2 exp
(

−1
2
(𝜶1 − 𝜶2)⊺𝑀(𝜶1 − 𝜶2)

)

, (36)

where 𝑀 = diag(𝑙−2𝑖 ). This kernel function can distinguish between
the importance of different input dimensions. As a consequence, the
dimension of the parameter set 𝜃 grows from 2 to 𝑛 + 1. For 𝑘𝐴𝑅𝐷𝑆𝐸 , 𝜃 is
given by the ordered tuple (𝑙 , 𝑙 ,… , 𝑙 , 𝜎).
8

1 2 𝑛 I
4.1.2. Choice of hyperparameters
In order to optimize a set of parameters, we need to define a

loss function. For GPR, the natural loss function is the (negative) log
marginal likelihood, given by

log 𝑝(|; 𝜃) = − 1
2
( − 𝑦̄())⊺(𝐾(𝜃) + 𝜎2𝑛𝐼)

−1( − 𝑦̄())

− 1
2
log |𝐾(𝜃) + 𝜎2𝑛𝐼| −

𝑛
2
log 2𝜋. (37)

This loss function is non-convex. To this end, we employ a conjugate
gradient descent method. The presence of local optima causes the
final ‘optimized’ solution to depend on the specific implementation of
the optimizer and starting point–hyperparameter choices. To address
the problem of local optima we perform the optimization procedure
multiple times with different choices of starting 𝜃.

.2. Representation of the response time series and transfer learning for
ifferent sea spectra

A LAMP simulation with a parameter vector 𝜶 produces a time
series of the VBM. We cannot simply train a Gaussian Process model
to ‘learn’ a time series, so we require an intermediate processing step
that approximates a time series segment by a finite-dimensional vector.

The first option is to characterize the VBM time series through
a scalar quantity. For instance, one may choose that an adequate
representation of the VBM time series is the ‘interval-max’ (perhaps
combined with ‘interval-min’). That is, if we are interested in the
maximum value that the VBM takes on our interval of analysis, then we
have reduced the problem of modeling a time series to the simpler one
of modeling a (small set of) scalar(s). The challenge with this approach
is that the scalar summaries quantities that are most appropriate from a
simulation perspective – mean, variance, interval extrema – are not the
most appropriate quantities from a statistical perspective. In particular,
mean and variance are not enough to reconstruct a pdf for the VBM,
and the relationship between interval extrema and local extrema is very
complicated, especially in the context of irregular waves.

The alternative is to represent the time series directly by a low
rank vector, each component of which is a scalar that can be modeled
with a Gaussian process surrogate. While this idea naturally suggests
a Fourier series representation, the previously developed machinery of
the KL decomposition is an even better fit. Specifically, we employ the
following representation for the VBM:

𝑀𝑦(𝑡|𝜶) =
𝑛𝑜𝑢𝑡
∑

𝑖=1
𝑞𝑖(𝜶)𝜇̂𝑖,𝑇 (𝑡), 𝑡 ∈ [0, 𝑇 ]. (38)

where 𝑞𝑖(𝜶) are the KL coefficients which are functions of the excitation
ave episode and 𝜇̂𝑖,𝑇 (𝑡) are the VBM KL modes defined over the wave

pisode duration. Using the KL expansion as our low rank representa-
ion of the (output) VBM time series has two main advantages over
ourier series. First, the KL expansion is optimal in the sense that
s guaranteed to contain the most energy in a finite truncation. This
eans we should expect to require fewer KL modes to adequately

econstruct the output time series that we would need had we used
ourier modes. Second, KL coefficients are linearly decorrelated. While
e do not expect or assume that the VBM or the modal coefficients will

ollow Gaussian statistics, the KL coefficients will reduce the intermodal
ependencies that we must account for otherwise. While it is possible
o model the intermodal correlations directly (see Álvarez et al., 2012),
n general the KL coefficients are close enough to independent (for the
onsidered problem) to treat separately.

The drawback of the KL expansion is that we require adequate
econd order statistics in order to calculate the eigendecomposition of
he covariance matrix for the output time series. For this work, we as-
ume access to such information, which we calculated via experimental
ealizations of LAMP with randomly selected wave episode parameters.

n general, we expect both that accurate second order statistics are
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Fig. 8. First column: collection of stochastic preludes with a common wave episode region — each row shows a different wave episode. Second column: collection of corresponding
BM time series. Third column: mean and 1𝜎 spread of the VBM. Note that time is measured with respect to the Lagrangian frame, i.e. with respect to the ship.
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impler to acquire, and that poorly resolved KL modes are no worse
han Fourier modes. In particular, Principle Component Analysis (PCA)
f the output stress data from many experiments will usually provide
easonable approximations to the KL modes.

Finally, an important parameter is the number of output modes
ecessary for accurate statistical reconstruction. The effects of varying
he number of retained outputs modes is discussed in Section 6.3. For
his work, we use 𝑛𝑜𝑢𝑡 = 12, unless otherwise noted.

Finally, we emphasize a very important property of the developed
pproach related to the application of the trained GPR scheme for
ifferent sea spectra. In particular, the coefficients, 𝑞𝑖(𝜶) do not de-
end directly on the specific input spectrum, i.e. on the probability
istribution of 𝜶. Rather, the coefficient model represents a conditional
escription of the VBM given a wave episode with prescribed shape,
hich may represent relatively steep waves in a calm sea or relatively

hallow waves in a storm. Thus, after the GPR scheme has been trained,
he distribution of the modes, 𝑞𝑖, or the VBM can be trivially computed
y employing the specific probability distribution for 𝜶, associated with
he spectrum under consideration.

This transfer learning property assumes that the output KL modes
or the VBM do not change significantly as the spectrum varies and
lso that the training of the GPR scheme has been performed with
ppropriate training data so that it is accurate for any value of 𝜶
hat has non-negligible probability for the spectra considered. In other
ords, if one trains with wave episodes 𝜶𝑗 that have non-negligible
robability for a high-energy sea spectrum, the trained GPR coefficients
ill also be accurate for wave episodes associated with low-energy sea

pectra. Of course, the inverse is not true, although in this case one can
omplement the existing GPR scheme with new wave episodes so that
t increases its accuracy for the high-energy spectrum.
9

Fig. 9. Comparison of long-time Monte-Carlo histogram of the VBM (based on the
random phase model) with short-time KL Monte-Carlo histogram of the VBM (based
on the wave episode method). For the wave episode-based Monte-Carlo, we have 𝑇 = 60
nd 𝑛 = 30. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

This spectrum transfer capability does have limits. In the simplest
ase, we may imagine two spectra which differ only in the significant
ave height. For this case, the only source of error is a slight mis-
atch in the energy of stochastic prelude, and the spectrum transfer

tatistics are high quality. In the most complicated case, where the
wo spectra differ in modal period, the interprojection of the respective
L bases will be difficult, and require a very large 𝑛. For this reason,
e recommend spectrum transfer data and reuse only in sea states
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Fig. 10. Projections of the trained Gaussian process surrogate for (𝑛, 𝑇 ) = (4, 60). (a–d) Output modes are denoted as 𝑞1 through 𝑞4, while input wave episode parameters are
denoted as 𝛼1 through 𝛼4. For each subplot shown, two input parameters vary while the other two are set to zero. All colors follow the same palette corresponding to 𝑞𝑖 ∈ [−4, 4].

Fig. 11. Reconstructed pdf using the GPR for each output KL mode (blue), compared against the corresponding short-term KL Monte Carlo histogram (black). wave episode
parameters are (𝑛, 𝑇 ) = (4, 60). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



Ocean Engineering 266 (2022) 112633S. Guth and T.P. Sapsis
Fig. 12. Correlational structure of the surrogate residuals for (𝑛, 𝑇 ) = (4, 60). As the KL
procedure decorrelates the VBM modes, this is primarily a validation check.

with quite similar modal periods. Finally, we have not investigated
the intermediate situation where the modal period is identical but the
spectral bandwidth differs. In this situation, a multi-fidelity approach to
data reuse may be appropriate, in order to maximize data reuse while
minimizing model errors.

To summarize, LAMP generates time series of the VBM as output
for given wave episodes. The VBM time series is approximated through
a set of KL coefficients. We use these data points to train a separate
Gaussian process surrogate model for each output KL coefficient. To
draw samples, we sample a coefficient from each GPR model separately,
and then reconstruct the VBM time series using Eq. (10). Any statistical
techniques we wish to perform (histograms, identify local extrema, etc.)
are performed on these generated time series.

5. Evaluation of the reduced order model for extreme event statis-
tics

5.1. Dimensionality of the wave episode space

We first choose the dimensionality of the wave episode space.
During the construction of the wave episode region, the two most signif-
icant choices are the values of 𝑇 , the length of the wave episode region,
and 𝑛, the number of activated (nonzero) KL modes. By varying 𝑇 , we
change the size of the KL covariance matrix, and by extension both the
shape of the KL modes and the associated eigenvalues. By varying 𝑛,
we change the number of retained KL modes, which affects the energy
content of the wave episode region as well as the dimensionality of the
11
wave episode space. We choose as typical values 𝑇 = 40 or 𝑇 = 80, and
𝑛 = 4 or 𝑛 = 6. These choices guarantee sufficiently long wave episodes
so that these exceed the memory of the system. Moreover the number
of retained modes is large enough for each case of 𝑇 , so that the energy
of the random signal is captured.

We note that, when referring to Fig. 2, a truncation order of 𝑛 = 4 or
𝑛 = 6 may capture as little as 60% of the wave energy. However, we are
interested in capturing the energy of the VBM signal, for which 𝑛 = 4
seems to be generally sufficient. This paradox is addressed by Sapsis
et al. (2020, 2021), where even sinusoidal waves (roughly equivalent
to 𝑛 = 2) were able to capture most of the energy of the VBM signal,
and is probably due to weak coupling between high frequency wave
components at the vessel-hull VBM.

5.2. Comparison between the random phase model and the random wave
episodes representation

Our first objective is to establish that the KL parametrization of
wave episodes combined with spectrum-consistent stochastic-preludes
is a valid approach, i.e. that it agrees with the statistics obtained
through the random phase model.

In Fig. 2, we present the KL eigenspectrum for the wave episodes
with different values of 𝑇 . We note the steady power law decay in
mode energy, which is faster for smaller values of 𝑇 . Moving our
attention to the response, in Fig. 7, we present the corresponding KL
eigenspectrum decay for the VBM, associated with different truncation
orders of the KL series describing the wave episodes, and for 𝑇 =
80. We note two properties: First, the VBM eigenspectrum has a fast
initial decay, compared the wave episodes spectrum. We associate this
behavior with the distribution of damping across different modes, as
well as possible nonlinear dynamics that transfer energy from low
order modes to higher modes. While KL modes do not have a simple
characterization in terms of frequency or wavenumber like Fourier
modes, it is generally true that higher order KL modes have higher
frequency and wavenumber content. Second, the rate of decay of the
VBM eigenspectrum depends on the order of truncation of the KL
expansion for the wave episodes. In particular, the VBM eigenspectrum
decays faster when there are fewer activated wave elevation modes,
that is, when the wave episode is more regular. We can interpret this
in a dynamical sense as showing that restricted wave episodes are
prevented from exciting higher response modes directly.

Next, we examine how the ship dynamics respond to different
stochastic preludes. In Fig. 8 we show in the first column three different
wave episodes (one for each row) together with various stochastic
preludes. In the second column we present the corresponding VBM
time series realizations, and finally the mean and one 𝜎 spread of the
Fig. 13. Sample time series of the LAMP output (blue) and the Gaussian process reconstruction (red) for VBM and 𝑛𝑜𝑢𝑡 = 12. Left four: 𝑇 = 80, 𝑛 = 4. Right four: 𝑇 = 80, 𝑛 = 6.
Vertical axis expressed in dimensionless units; horizontal axis is scaled to the duration of the Lagrangian fixed region 𝑇𝐿. LAMP testing data unseen by model. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Reconstructed VBM plots for varying wave episode length, 𝑇 (colors), and wave episode KL modes, 𝑛 (plots).
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BM ensemble (third column). For this numerical experiment, we have
= 40 and 𝑛 = 25 (more than 99% retained wave elevation variance).

n the first column, we can see dramatically how the wave episodes all
ome together at 𝑡 = 0, recapitulating the ensemble variance displayed
n Fig. 4. In the second column, we see both that the convergence
s delayed (because of the Eulerian/Lagrangian shift), and spread out
because of the memory effect). Nonetheless, by consulting the third
olumn we can see that the ensemble spread of the VBM due to different
tochastic preludes does indeed decrease with time. Because the vessel
esponse is largely (but not entirely!) independent from the stochastic
relude during data collection on the Lagrangian fixed region, we will
enerally perform simulations with only one stochastic prelude for each
ave episode. This is sufficient since in the surrogate construction we
ill employ responses by numerous wave episodes and this will give

nformation for the induced uncertainty. The single stochastic prelude
ill be selected randomly, according to the extrapolation procedure
escribed above in Section 2.4.1.
12
Finally, we directly compare the Monte-Carlo estimates of the VBM
df from long-time simulations using the random phase model to
hort-time wave episode based simulations. The random phase model
onte-Carlo simulation consists of 3640 separate simulations, each of
hich lasted a duration of 𝑇 = 3000 seconds. The sea surface elevation
as initialized directly with random phase model sample from the

ONSWAP spectrum based on a discretization from 𝜔min = 0.31 s−1 to
𝜔max = 10.2 s−1 with 𝑛𝐿𝐴𝑀𝑃 = 1024 distinct sinusoids. A short duration
‘‘ramp-up time’’ process is used to avoid initial transients, but unlike
the wave episode simulations does not include a stochastic prelude.
Subsequently, we histogram the vessel VBM and produce the long-time
steady-state Monte-Carlo estimate.

We note that, to construct the long-time steady state statistics, we
assume ergodicity, at least after discarding a short period of initial
transients. The short wave episode simulations similarly have a dis-
carded initial transient period – the stochastic prelude – but they are
intrinsically defined on the finite interval of length 𝑇 , and therefor
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o not have a simple ergodic equivalence. Nonetheless, the ergodic
ehavior is the motivation for the program of estimating long-time
teady state statistics using the statistics for many short intervals.

For the wave episodes based approach, we calculate the KL basis
or the same JONSWAP spectrum, using 𝑇 = 60. We sample 24000 wave
pisodes, each of which is generated with 𝑛 = 30 activated (nonzero) KL
odes. For this sampling step, we draw 𝜶 from a multivariate Gaussian
istribution with variance given by the KL 𝜆𝑖. For this demonstration,
e choose 𝑛 large enough to retain 99% of the wave elevation energy,
hich ensures that the wave episodes are high fidelity representations
13

t

f the JONSWAP spectrum. Finally, for each generated wave episode
e simulate the ship dynamics and extract the VBM. This method of
roducing the VBM is short-time KL Monte-Carlo.

In Fig. 9, we display the pdf obtained by these two Monte-Carlo
stimates for the vessel VBM: the wave episodes based Monte-Carlo in
lue, and the random-phase-model-based Monte-Carlo in red. We note
hat the two pdf estimates have very close agreement out to the tails,
here the wave episodes based Monte-Carlo slightly underestimates

he tail decay. This small discrepancy can be attributed to the finite
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Fig. 16. Pdf error estimates between reconstructed VBM and wave episode Monte-Carlo for different choices of 𝑇 and 𝑛; Left: 𝜖1 (𝑙1 norm); Right: 𝜖2 (𝑙1 norm of the difference
of logs).
Fig. 17. Flowchart representing the balance between 𝑇 and 𝑛 and their effect on error
in statistical reconstruction.

truncation order of the wave episode approach which neglects much
higher order modes.

5.3. Surrogate modeling of output KL coefficients using GPR

GPR produces a surrogate model, an inferred function, that maps
the wave episode characteristics, 𝜶, to the conditional expected mean
of the output 𝑞, written 𝜇𝑖(𝜶) = E[𝑞𝑖|𝜶]. During the learning process of
the GPR surrogate we also obtain the noise parameter, 𝜎𝑛, associated
with the uncertainty induced by the stochastic prelude of each wave
episode. We train the Gaussian process surrogate on 𝑛𝑠 = 625 uniformly
distributed samples.

In Fig. 10, we show four different projections of the Gaussian
process surrogate (each with a different choice of 𝛼𝑖 ≠ 0 and 𝛼𝑗 ≠
0) for each of the first four output modes (𝑞1 through 𝑞4). For this
demonstration, we have chosen 𝑛 = 4 and 𝑇 = 60. We note that, in
broad strokes, each 𝑞𝑖 is approximately linearly dependent on some of
the 𝛼𝑖, and roughly independent of others. This rough correspondence,
however, is not exact due to the nonlinearities in the surrogate model.
In particular, we notice that the shape of the surrogate (correspond-
ing to the estimate of E[𝑞 |𝜶]) is frequently different near the origin
14

𝑖

(small |𝜶| and low-amplitude wave episodes) compared to the edge of
the domain (large |𝜶| and high-amplitude wave episodes). This is an
important confirmation that learning the typical response for marine
vessel hydrodynamics requires different data sets than learning extreme
responses.

Next, we leverage the computed surrogates for two purposes. In Sec-
tion 5.4, our primary thread is to use these models to parsimoniously
estimate the output statistics from the input statistics. In Section 5.5,
we take a detour to demonstrate the reconstruction of particular output
time series.

5.4. Statistics for the output KL coefficients

In this section, we examine the GPR for each output mode. While
our goal is the recovery of the VBM pdf, as an intermediate quantity
we calculate probability distributions for each output KL mode during
reconstruction. In Fig. 11, we show the pdf for each output mode
computed using the GPR surrogate (blue curves), compared to the
short-term KL Monte-Carlo histogram (black curves), obtained by di-
rectly computing the ship response through LAMP over a large number
of wave episodes. We note that there is some variability in the shapes
of the different mode pdfs, but that the Gaussian process surrogate
recovers the shape very well for each of the modes up to 𝑛𝑜𝑢𝑡 = 8. For
the higher modes, the pdf shape recovery begins to break down. This is
likely due to the fact that more training data is needed for these higher
order modes. However, as shown in Fig. 7 and later in Section 6.3, the
contribution of the higher output modes to the reconstructed VBM is
negligible.

While the KL theorem guarantees that the projection coefficients of
a random process are linearly uncorrelated, zero correlation implies
independence only for Gaussian processes — and this is not the case
here. In Fig. 12, we examine the Pearson correlation coefficient of the
Gaussian process surrogate residuals (pointwise errors). We see that the
residual error of all mode pairs is close to zero. This implies that, for
this process, a vectorized Gaussian process model would not provide
any significant improvement compared to the adopted approach to
model each output mode as a separate GPR. Indeed, repeating the
presented analysis using vector kernel techniques did not improve the
obtained results.

5.5. Reconstruction of VBM in the time domain

Here we focus on the reconstruction of the time series of the vessel
VBM for any wave episode vector, 𝜶. We rely on the VBM expansion
in Eq. (38) in terms of the coefficients 𝐪(𝜶), which have already

been determined through the GPR surrogate. To obtain samples of the
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coefficients we have:

𝑖̂(𝜶) = 𝜇𝑖(𝜶) +𝑍𝑖𝜎𝑖(𝜶), 𝑖 = 1,… , 𝑛𝑜𝑢𝑡 = 12, where 𝑍𝑖 ∼  (0, 1). (39)

In Fig. 13, we compare the true VBM output from LAMP (in blue)
with the reconstructed VBM output (in red), based only on the wave
episode parameter vector 𝜶. We consider two wave episode types with
𝑇 = 80 and also 𝑛 = 4 (left four subplots) and 𝑛 = 6 (right four
subplots). We note that there is good qualitative agreement. This match
is poorer typically at the beginning of the wave episode (𝑡 ≈ 0), where
the memory effects from the stochastic prelude are more pronounced.
Finally, we note that the reconstructed time series does not recover any
of the high frequency components of the VBM that LAMP calculates,
which is no surprise given that we are using a relatively small number
of KL modes to represent the VBM. Based on this construction of the
VBM in the time domain, we can obtain any desired statistics using
Monte-Carlo on the GPR surrogates, such as peaks, upcrossings, or
value statistics.

5.6. Computational costs

Since one motivation for replacing long-time steady state simula-
tions is the computational cost, in this section we briefly describe the
resources required for computing the VBM statistics.

Each 3000s LAMP simulation required approximately 1 hour of
computational time on a single CPU core. For our steady state pdf,
we computed 3640 distinct simulations across 16 cores, for a total
simulation time of about 150 CPU-days, or just under 10 calendar days.

Conversely, each short wave episode simulation took approximately
5 minutes of computational time on a single CPU core. For each of our
surrogate reconstructions, we used 𝑛𝑠 = 625 wave episodes as a training
set, Section 6.2 excepted. This summed to approximately 50 CPU hours,
or just over 3 calendar hours when spread across 16 cores. This cost was
repeated for each (𝑇 , 𝑛) pair we investigated.

One difficulty with directly comparing these time costs is that
Monte-Carlo statistical uncertainty will always improve like ∼ 𝑛−

1
2

with more data, while error associated with surrogate modeling is split
between model error and statistical error. Nonetheless, we feel both
that this order of magnitude of Monte-Carlo samples for the steady state
is appropriate to resolve the pdf tails, and that 𝑛𝑠 = 625 is a conservative
equirement for surrogate construction, at least for 𝑛 ≤ 4 nonzero wave
odes.

We note that a significant portion of the CPU cost for the wave
pisode approach is bound up in initializing the simulation and damp-
ng out transients, perhaps up to 60% of the cost of the short simula-
ions. This initialization corresponds to only a negligible fraction (≈ 2%)
f the long time simulations. It is therefor likely that more optimization
15
of simulation initialization would tilt the computational balance further
in favor of wave episodes.

6. Statistics quality with respect to reduced order model parame-
ters

We now focus on measuring the performance of the developed ap-
proach on quantifying response statistics for the value of the VBM time
series. Specifically, we consider as ground truth the pdf of the VBM time
series, 𝑓𝑀𝐶 , as obtained from a direct Monte-Carlo simulation using
the random phase model (procedure described supra in Section 5.2).
On the other hand, the approximate pdf, 𝑓𝐺𝑃𝑅, was computed using a
large number of samples for 𝜶 and subsequently computing, 𝑞𝑖(𝜶), 𝑖 =
1,… , 𝑛𝑜𝑢𝑡 and samples for the VBM time series with 𝑛𝑜𝑢𝑡 = 12, except if
otherwise noted.

To measure the overall fit, we compute the 𝑙1 norm of the pdf
difference on the interval [𝑚𝑙 , 𝑚𝑢] = [−1.9, 1.5] × 109. To measure tail
fit in particular, we compute the 𝑙1 norm of the difference of pdf logs
on the same interval. That is to say, we consider the two error metrics

𝜖1 = ∫

𝑚𝑢

𝑚𝑙

|𝑓𝑀𝐶 (𝑠) − 𝑓𝐺𝑃𝑅(𝑠)|𝑑𝑠 (40)

2 = ∫

𝑚𝑢

𝑚𝑙

| log 𝑓𝑀𝐶 (𝑠) − log 𝑓𝐺𝑃𝑅(𝑠)|𝑑𝑠 (41)

e chose the particular finite endpoints in order to avoid calculations
here the Monte-Carlo pdf is poorly resolved, in particular to avoid the
umeric ill conditioning involved with the logarithm of zero. When we
ary the precise value of the endpoints, we find that the absolute value
f the metrics (especially 𝜖2) changed, but that the trends remain the
ame.

.1. Effect of wave episode length and retained wave episode KL modes

Figs. 14 and 15 show the reconstructed pdfs for various combina-
ions of wave episode length 𝑇 and number of activated input modes
. We note that as 𝑇 increases, the minimum wave episode KL modes,
, necessary for an adequate reconstruction increases. This is not a
urprise since longer waver episodes have higher complexity. However,
s the required number of modes increases the dimensionality of the
aussian process is higher and, therefore, for the same number of

amples, the GPR error increases. This leads eventually to larger pdf
ismatch for long wave episodes.

On the other hand, if the wave episode length is too small, then
he system has not enough time to dissipate the effect of the stochastic
relude. Therefore, the VBM time series is characterized by irreducible
ncertainty (Fig. 8). This is reflected in the learned noise coefficient of
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Fig. 19. Comparison of reconstructed VBM pdf for different choices of 𝑛𝑜𝑢𝑡, the number of retained output modes; (a) 𝑛 = 2 activated wave episode KL modes and wave episode
length, 𝑇 = 120; (b) 𝑛 = 4 activated wave episode KL modes and 𝑇 = 80. (c) 𝑛 = 6 wave episode KL modes and 𝑇 = 40.
the GPR, 𝜎𝑛,𝑖, 𝑖 = 1,… , 𝑛𝑜𝑢𝑡, which are, inevitably, increasing. The effect
of higher noise coefficients leads to the convergence of the produced
pdf to a Gaussian, i.e. to the ‘smoothing’ of the produced pdf.

For this reason there is an optimal combination of wave episode
parameters, 𝑇 and 𝑛. 𝑇 should be sufficient to resolve the transient
features but no longer, and 𝑛 should be appropriate to capture the
complexity of the wave episodes, but not larger than that as this will
make the GPR regression more challenging than needed (Fig. 17). This
optimal set of parameters can be seen in Fig. 16 where the two error
metrics (𝑙1 and log 𝑙1) are presented in terms of 𝑇 and 𝑛. Considering
all of these factors, we expect the optimal number of activated input
modes to be 𝑛 = 3, and the optimal duration of the parametrically fixed
region to be 𝑇 = 40.

Finally, we take a moment to describe the way that the recon-
structed statistics do and do not match the steady state. At the mode
of the distribution, the recovered pdf frequently underestimates the
pronounced asymmetric peak, especially for 𝑛 ≥ 5. This is likely due
the decreasing performance of GPR with higher dimensions — as the
surrogate attributes more features to ‘intrinsic noise,’ the resulting
statistics become more Gaussian. The other mismatch is the position of
the tails. For 𝑛 ≤ 2, and especially for large 𝑇 , too much wave energy
is lost in the KL truncation to accurately model the large VBM peaks.

6.2. Size of the training set

We discuss the convergence of the reconstructed pdf with respect
to the training set size. As described in Section 4.1, the training set is
a collection of 𝑛𝑠 input–output pairs corresponding to the parametriza-
tion 𝜶 and the VBM time series KL coefficients 𝑞𝑖(𝜶), 𝑖 = 1,… , 𝑛𝑜𝑢𝑡. We
select the vector 𝜶 by Latin Hypercube Sampling (Olsson et al., 2003).
Unlike simple Monte-Carlo samples, Latin Hypercube sampling requires
an explicit box-shaped domain. We choose a 𝑛 dimensional hyperbox
16

p

with side length given by

𝑑𝑖 = 2𝑧∗
√

𝜆𝑖, 𝑖 = 1,… , 𝑛, (42)

where 𝜆𝑖 is the KL eigenvalue corresponding to dimension 𝑖, and
𝑧∗ is a radius parameter, akin the 𝑧-score of the standard Gaussian
distribution, that specifies how many standard deviations away from
the mean we will include. This analogy is justified, because the dis-
tribution of KL coefficients for Gaussian processes is jointly Gaussian
with diagonal covariances given by 𝜆𝑖. In all presented results, we use
𝑧∗ = 4.5 to include extreme wave episodes. When we try our procedure
with smaller 𝑧∗ = 3, we found slightly better convergence near the
distribution peak and moderately worse convergence near the tails.

In Fig. 18, we show the recovered VBM pdf for different values of
𝑛𝑠, and for two different wave episode parameters: 𝑇 = 80, 𝑛 = 4
and 𝑇 = 80, 𝑛 = 6. We note that for the 𝑛 = 4 case, which we
consider to result in good performance, the pdf converges very quickly,
between 100 and 400 samples, depending on how far down the tails
we consider. For the case 𝑛 = 6, which we consider high dimensional,
the convergence is somewhat slower. In particular, the characteristic
shoulder asymmetry does not appear until around 200 samples, and the
central peak shape requires more samples to converge to the ground
truth.

For the results presented in the rest of this paper, we use 𝑛𝑠 = 625.
This choice balances computation time (both in data collection and
GP fitting), with reconstruction fidelity. However, since our goal is to
reconstruct the VBM statistics with minimal data, we consider the slow
sample convergence of the high dimensional scenarios (𝑛 = 5, 6) to be
art of the trade-off between 𝑇 and 𝑛 discussed supra in Section 6.1.
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Fig. 20. Pdf error estimates between reconstructed VBM and Monte-Carlo for different choices of 𝑛𝑜𝑢𝑡, the number of retained output modes. Left: 𝜖1 (𝑙1 norm). Right: 𝜖2 (𝑙1 norm
of the difference of logs).
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6.3. Number of retained VBM KL modes

Here we examine the dependence of the reconstructed pdf on the
number of output modes retained. Fig. 19 shows the reconstructed pdf
for three choices of 𝑇 and 𝑛 and for various choices of 𝑛𝑜𝑢𝑡 ranging from
2 to 18. We note fast convergence in the shape of pdf, consistent with
the fast decay of the output eigenspectrum as shown in Fig. 7. Values of
𝑛𝑜𝑢𝑡 ⩾ 8 appear to have a minor impact in increasing the tail-variance of
the recovered pdf. In Fig. 20 we quantify the fit between the recovered
pdf and the MC pdf using the two error metrics previously discussed in
Eq. (41). We conclude that the reconstructed pdfs converge with ≈ 6–8
output modes.

7. Conclusions

We have presented a reduced-order probabilistic framework for
parsimoniously modeling the non-Gaussian statistics of ship loads due
to nonlinear interactions with irregular waves. The first ingredient
of the framework is the formulation of random wave episodes of
finite-duration and finite-dimensionality using the KL decomposition.
These wave episodes are ‘equipped’ with a properly designed stochastic
prelude that brings the ship to a statistical steady state, before it
encounters the prescribed wave episode. A similar reduced-order rep-
resentation is used for the VBM time series, i.e. the quantity of interest.

We employed these low-dimensional representations with the hy-
drodynamic and structural numerical code LAMP for ship dynamical
responses. Using the resulted input–output vectors, we trained a GPR
scheme, which acts as a surrogate model for the wave-ship interac-
tion problem. We thoroughly discussed the choice of wave episodes
parameters 𝑇 and 𝑛 and what is their role on the accurate recovery
of the VBM pdfs even for strongly non-Gaussian regimes. A detailed
set of numerical simulations confirms that the developed framework
requires a fraction of the data and computational time compared with
traditional Monte-Carlo approaches, without major sacrifices in the
fidelity of the pdf tails (rare events). In addition, it allows us to trivially
compute the desired statistics for different sea spectra, i.e. without the
need to obtain new training data for a new surrogate model.

This approach is particularly well suited to physical tow tank exper-
iments, where data constraints are high and the physical realizability
of wave episodes is vital. However, the framework is applicable to
other marine structure problems and more generally dynamical systems
with rapid decorrelation, where the goal is the statistical response to
stochastic excitations with few samples.

Another exciting application of this approach is its combination
with active learning or optimal experimental design methods, which
will require an even smaller set of training wave episodes or experi-
ments. Additionally, ideas related to the use of models with variable
17

fidelity fit naturally to the presented framework.
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