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We present a new type of acquisition function
for online decision-making in multi-armed and
contextual bandit problems with extreme payoffs.
Specifically, we model the payoff function as a
Gaussian process and formulate a novel type of
upper confidence bound acquisition function that
guides exploration towards the bandits that are
deemed most relevant according to the variability
of the observed rewards. This is achieved by
computing a tractable likelihood ratio that quantifies
the importance of the output relative to the inputs
and essentially acts as an attention mechanism that
promotes exploration of extreme rewards. Our
formulation is supported by asymptotic zero-regret
guarantees, and its performance is demonstrated
across several synthetic benchmarks, as well as two
realistic examples involving noisy sensor network
data. Finally, we provide a JAX library for efficient
bandit optimization using Gaussian processes.

1. Introduction
Online decision-making defines an important branch
of modern machine learning in which uncertainty
quantification plays a prominent role. In most stochastic
optimization settings, evaluating the unknown function
is expensive, hence new information needs to be acquired
judiciously.

Classical applications include recommendation systems
for articles and products, where the goal is to maximize
the total revenue of the product maker given limited user

2022 The Author(s) Published by the Royal Society. All rights reserved.
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feedback [1,2]; control and reinforcement learning, where the reward is obtained after a sequence
of experiments or actions and the objective is not only to obtain optimal rewards but also avoid the
potentially negative effects of uncertainty [3,–6]; environment monitoring, where sensor data is
used to identify areas of interest as in traffic flow estimation [7] and room temperature monitoring
[8]; and optimal design of expensive experiments [9,10].

More recently, new applications have appeared beyond machine learning, including optimal
sampling in cardiac electro-physiology and bio-engineering [11,12], multi-fidelity design of
experiments [13,14], hyper-parameter tuning in high-dimensional design spaces [15–17] and
prediction of extreme events in complex dynamical systems [18,19].

Many of these applications can be formulated as multi-armed bandit problems, for which
effective sampling algorithms exist [4,7,8,20,22–]. These algorithms are generally characterized
by two key ingredients. First, they involve building a model for the latent payoff function
given scarce and possibly noisy observations of past rewards. To enable effective sampling and
exploration of the decision space, uncertainty in the model predictions needs to be accounted for
in the predictive posterior distribution of the latent payoffs, which can be obtained via either a
frequentist or a Bayesian approach. The second critical ingredient pertains to designing a data
acquisition policy that can leverage the model predictive uncertainty to effectively balance the
trade-off between exploration and exploitation while ensuring a consistent asymptotic behaviour
for the cumulative regret.

(a) Previous work
Multi-armed bandit problems provide a general setting for developing online decision-making
algorithms and rigorously studying their performance. Early research in this setting includes
the celebrated ε-greedy algorithm [22], where random exploration is introduced with a small
probability ε to prevent the algorithm from focusing on local sub-optimal solutions. Despite its
widespread applicability, ε-greedy algorithms employ a heuristic treatment of uncertainty, and
often require careful tuning in order to prevent sub-optimal exploration.

To this end, the upper confidence bound (UCB) policy [20,23] was proposed to provide a
natural way to estimate sub-optimal choices using a model’s predictive posterior uncertainty.
However, the original UCB formulation does not take into account correlations between different
bandits in a multi-armed setting and, therefore, typically requires a large number of data points
to be collected before convergence can be observed. Variants of the UCB algorithm have been
adapted to the contextual bandit problems, where contextual information is available to each
bandit as additional aid in designing a recommendation. A common setting involves problems
with linear payoffs, where the payoff function is modelled via Bayesian linear regression [21].
Gaussian process models have also been employed to account for correlated payoffs, and the
corresponding GP-UCB criteria have shown great promise in data-scarce and ‘cold start’ scenarios
[7,8,24].

Thompson sampling [25,26] provides an alternative approach to balancing the exploration–
exploitation trade-off that only requires access to posterior samples of a parametrized payoff
function. Although the algorithm was largely ignored at the time of its inception by Thompson
[25], the results of Chapelle & Li [27] have initiated a wave of resurgence, leading to significant
advances in applications (e.g. recommendation systems [2], hyper-parameter optimization [28],
reinforcement learning [3,–5]), as well as theoretical analyses (e.g. optimal regret bounds [29–
31]). More recently, Bayesian deep learning models have been considered [32] for modelling more
complex and high-dimensional payoff functions. However, their effectiveness, interpretability
and convergence behaviour are still under investigation [33].

Here, we would also like to emphasize a critical difference between contextual bandits
problems and Bayesian optimization or active learning. In the bandit setting, the goal is to
minimize the cumulative regret while searching for the optimal bandit. By contrast, Bayesian
optimization and active learning focus on the quality of the final state of a given objective,
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and therefore typically discard the intermediate states produced during the search process. As
a common example of a contextual bandit problem, consider the task of selecting which news
article to show first on the main page of your website in order to optimize the click-through
rate. The context would reflect information about different users, e.g. where they come from,
previously visited pages of the site, device information, geo-location, etc. An action is a choice
of what news article to display, tailored to each individual user. An outcome is whether the user
clicked on a link or not. The rewards in this case are binary: 0 if there is no click, 1 if there is a
click. In the contextual bandit problem, a learning algorithm can be employed to design a policy
that maximizes the cumulative rewards. In this process, the learner repeatedly observes a context,
chooses an action, and observes a reward for the chosen action only. The ultimate goal is to choose
actions in dynamic environments where the available options may change rapidly, while the cost
of data acquisition is high, therefore necessitating a judicious sampling of the decision space.

(b) Our contributions
(i) Primary contribution

All aforementioned approaches have enjoyed success across various applications, however, they
lack a mechanism for distinguishing and promoting the input/context variables that have the
greatest influence on the observed payoffs. Short of such a mechanism, regions in the decision
space that may have negligible effect on the payoffs will still be sampled as long as they are
uncertain. As we will demonstrate, this undesirable behaviour can have a deteriorating impact
on convergence, and this effect is exacerbated in the presence of extreme payoffs (i.e. situations
in which a small number of bandits yield rewards significantly greater than the rest of the bandit
population).

Motivated by the recent findings in [34–36], we introduce a novel UCB-type objective for
online decision-making in multi-armed and contextual bandit problems that can overcome
the aforementioned shortcomings. This is achieved by introducing an importance weight to
effectively promote the exploration of ‘heavy-tailed’ (i.e. rare and extreme) payoffs. We show
how such importance weight can be derived from a likelihood ratio that quantifies the relative
importance between inputs/contexts and observed rewards, introducing an effective attention
mechanism that favours exploration of bandits with unusually large rewards over bandits
associated with frequent, average payoffs. Our formulation is supported by theoretical guarantees
demonstrating that the proposed acquisition strategy will asymptotically yield a zero-regret
policy. This output-weighted approach has been shown to outperform classical acquisition
functions in active learning [37] and Bayesian optimization [36] tasks, and here we set sail for
the first time into investigating its effectiveness in online decision-making tasks, with a specific
focus on multi-armed and contextual bandit problems subject to extreme payoffs.

(ii) Comparison to previous work

We demonstrate the effectiveness of the proposed methodology across a collection of synthetic
benchmarks, as well as two realistic examples involving noisy sensor network data (specifically,
temperature and air quality measurements). In all cases, we provide comprehensive quantitative
comparisons between the proposed output-weighted sampling criterion and the most widely
used criteria in current practice, including the UCB [20], GP-UCB [7], Thompson sampling [25,27]
and expected improvement [38] methods.

(iii) Secondary contributions

We have developed an open-source Python package for bandit optimization using Gaussian
processes.1 Our implementation leverages the high-performance package JAX [39] and thus
enables (a) gradient-based optimization of the proposed output-weighted sampling criteria

1See https://github.com/PredictiveIntelligenceLab/jax-bandits.
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for general Gaussian process priors, (b) the use of GPU acceleration and (c) scalability and
parallelization across multiple computing nodes. This package can be readily used to reproduce
all data and results presented in this paper.

2. Methods

(a) Multi-armed bandits
The multi-armed bandit problem is a prototypical paradigm for sequential decision-making. The
decision set consists of a discrete collection of M arms where the ith arm may be associated with
some contextual information xi ∈ R

d. Pulling arm i produces a reward y ∈ R which is determined
by some unknown latent function

yt = f (xi) + εt, (2.1)

where εt ∼N (0, σ 2
n ) accounts for observation noise.

At each round t, we select an arm i and obtain a reward yt. The goal of sequential decision-
making is to find a strategy for bandit selection that maximizes the total reward

∑T
t=1 yt for a

given budget T. In other words, the goal is to first identify the bandits that provide the best
rewards,

x∗ = arg max
x

f (x), (2.2)

using as few arm pulls as possible, and then to keep on exploiting these optimal bandits to
maximize the total reward.

As an alternative metric of success, it is useful to consider the simple regret rt = f (x∗) − f (x), as
maximizing the total reward is essentially equivalent to minimizing the cumulative regret

RT =
T∑

t=1

rt. (2.3)

The holy grail of online decision-making is to design an effective no-regret policy satisfying

lim
T→∞

RT

T
= 0. (2.4)

(b) Gaussian processes
Gaussian process (GP) regression provides a flexible probabilistic framework for modelling
nonlinear black-box functions [40]. Given a dataset D = {(xi, yi)}N

i=1 of input–output pairs (i.e,
context–reward pairs), and an observation model of the form y = f (x) + ε, the goal is to infer the
latent function f as well as the unknown noise variance σ 2

n corrupting the observations.
In GP regression, no assumption is made on the form of the latent function f to be learned;

rather, a prior probability measure is assigned to every function in the function space. Starting
from a zero-mean Gaussian prior assumption on f ,

f (x) ∼ GP(0, k(x, x’; θ )), (2.5)

the goal is to identify an optimal set of hyper-parameters Θ = {θ , σ 2
n }, and then use the optimized

model to predict the rewards of unseen bandits. The covariance function k(x, x’; θ ) plays a key
role in this procedure as it encodes prior belief or domain expertise one may have about the
underlying function f . In the absence of any domain-specific knowledge, it is common to assume
that f is a smooth continuous function and employ the squared exponential covariance kernel
with automatic relevance determination (ARD) which accounts for anisotropy with respect to
each input variable [40].

Unlike previous works [7,8], we do not assume that the payoff function f actually comes from a
GP prior or that it has low RKHS norm. Instead, we compute an optimal set of hyper-parameters
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at each round t by minimizing the negative log-marginal likelihood of the GP model [40]. In our
setup, the likelihood is Gaussian and can be computed analytically as

L(Θ) = 1
2

log |K + σ 2
n I| + 1

2
yT(K + σ 2

n I)−1y + N
2

log(2π ), (2.6)

where K is an N × N covariance matrix constructed by evaluating the kernel function on the input
training data X. The minimization problem is solved with an L-BFGS optimizer with random
restarts [41].

Once the GP model has been trained, the predictive distribution at any given bandit x can be
computed by conditioning on the observed data

p(y | x,D) ∼N (μ(x), σ 2(x)), (2.7)

where
μ(x) = k(x, X)(K + σ 2

n I)−1y (2.8a)

and
σ 2(x) = k(x, x) − k(x, X)(K + σ 2

n I)−1k(X, x). (2.8b)

Here, μ(x) can be used to make predictions of the underlying function f (x) and σ 2(x) to quantify
the associated uncertainty. Note that μ(x) and σ 2(x) are implicitly conditioned on D, but here
we will omit this dependency to simplify our notation. Also, in all examples studied in this
manuscript, we assume that the noise process that corrupts the observed rewards has a constant
variance σ 2

n that does not depend on the context variables x. As such, the posterior mean μ(x)
function can be understood as our best approximation for the latent function f (x) that generated
the rewards y observed by our model during training (as described in equation (2.1)).

(c) Online decision-making
A critical ingredient in online decision-making is the choice of the acquisition function, which
effectively determines which bandits the algorithm should try out and which ones to ignore [7,8].
A popular choice of acquisition function is the ‘vanilla’ upper confidence bound (V-UCB),

aV-UCB(x) = μ(x) + κσ (x), (2.9)

and the closely related GP-UCB criterion [7],

aGP-UCB(x) = μ(x) + β
1/2
t σ (x), (2.10)

where κ and βt = 2 log(|D|t2π2/(6δ)) are parameters that aim to balance exploration and
exploitation (see [7] for more details). Higher values of these parameters lead to stronger
exploration while smaller values place more emphasis on exploitation. Here, |D| is the number
of bandits in the absence of context, and the dimension of the context otherwise. In V-UCB, κ

is typically considered constant, while in GP-UCB, βt depends on the round t and comes with
convergence guarantees when the payoff function is not too complex [7].

In this work, we also consider the expected improvement, whose convergence properties have
been well studied [38],

aEI(x) = σ (x)[λ(x)Φ(λ(x)) + φ(λ(x))], (2.11)

where Φ(·) and φ(·) are the cumulative distribution function and probability density function of
standard normal distribution, respectively. In (2.11), we have defined λ(x) = (μ(x) − y∗ − ξ )/σ (x),
with y∗ the best reward recorded so far and ξ a user-specified parameter controlling the
exploration–exploitation trade-off. Higher ξ values lead to more exploration. The quantity ỹ(x)
in (2.12) denotes a random sample drawn from the posterior distribution of the GP model, that is,
ỹ(x) ∼N (μ(x), σ 2(x)). Finally, another commonly used acquisition function for bandit problems is
Thompson sampling,

aTS(x) = ỹ(x), (2.12)

also known to deliver competitive results in practice [27,33,42].
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Figure 1. Sketch of the acquisition scheme from which the likelihood ratio is derived. The best next bandit x∗ maximizes the
reduction of the uncertainty in the tails of the payoff distribution (quantified by the log-difference between pμ+ and pμ− , the
respective densities ofμ± = μ ± σ 2). (Online version in colour.)

The goal in bandit optimization is to determine the best bandit to sample next by maximizing
the acquisition function

xt+1 = arg max
x

a(x|D), (2.13)

where a can be any of (2.9), (2.10), (2.11) or (2.12), and D contains all the observed context–reward
pairs up to round t.

(d) Output-weighted sampling
Blanchard & Sapsis [36] recently introduced an efficient and minimally intrusive approach for
accelerating the stochastic optimization process in cases where certain regions of the input space
have a considerably larger impact on the output of the latent function than others (i.e. extreme
payoffs in the bandit problem) by incorporating a sampling weight into several of the acquisition
functions commonly used in practice. The sampling weight, referred to as the ‘likelihood ratio’,
was derived from a heavy-tail argument whereby the best next input point to visit is selected so
as to most reduce the uncertainty in the tails of the output statistics where the extreme payoffs
reside (figure 1).

The likelihood ratio is defined as

w(x) = px(x)
pμ(μ(x))

, (2.14)

and was derived in [36]. Here, px(x) is a prior distribution that can be used to distill prior beliefs
about the importance of each bandit or environmental conditions. In this work, we assume that no
such prior information is available and treat every bandit equally by specifying a uniform prior,
px(x) = 1 for all x. The term pμ(μ(x)) denotes the output density of the payoff function and plays
an important role to determine the best arms to pull.

The intuition behind the likelihood ratio is as follows. Assuming enough data has been
collected, the GP posterior mean μ(x) provides a good estimation about the distribution of
rewards for the bandits. Bandits with unusually large rewards are associated with small values
of pμ, while bandits with frequent, average rewards are associated with large values of pμ.
Because the output density pμ appears in the denominator of (2.14), the likelihood ratio assigns
more weight to bandits with extreme payoffs. As such, the likelihood serves as an attention
mechanism which encourages the algorithm to explore bandits whose rewards are thought to be
abnormally large, while penalizing the other mediocre bandits by assigning them small weights.
This attention mechanism is expected to provide the greatest gains in situations where the
payoff of most bandits is concentrated around the average, and the highest possible payoff is
several standard deviations away from most payoff values. In other words, if the distribution
of payoffs generated by the bandits does not exhibit a heavy right tail, the benefits of using an
output-weighted acquisition function will likely be marginal.
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To obtain a well-behaved (i.e. smooth and bounded) analytical approximation of the likelihood
ratio, we use a Gaussian mixture model (GMM) [43],

w(x) ≈
nGMM∑
k=1

αkN (x; γ k, Σk), (2.15)

where N (x; γ k, Σk) denotes the kth component of the mixture model with mean γ k and covariance
Σk.

The resulting output-weighted acquisition function for the bandit optimization problem is
given by

aLW-UCB(x) = μ(x) + κw(x)σ (x), (2.16)

where the subscript ‘LW-UCB’ stands for ‘likelihood-weighted UCB’. Equation (2.16) is subject to
the same bandit-selection policy as the acquisition functions in §c:

xt+1 = arg max
x

aLW-UCB(x|D). (2.17)

In general, the minimization problem can be efficiently solved with an L-BFGS optimizer
with random restarts [41], where the gradient of the acquisition function with respect to
the inputs x can be computed analytically for the squared exponential covariance kernel
[36], or using automatic differentiation [44] for more general kernel choices. The workflow
for output-weighted sampling with LW-UCB is summarized in algorithm 1. In general, the
computation of the likelihood ratio is not restricted to a Gaussian mixture approximation.
However, the Gaussian mixture approximation helps the proposed algorithm in two ways.
First, it provides a probability density over the output weights that naturally up-weights the
importance of rare payoffs and down-weights the relatively average payoffs. Second, it acts
as a smoother for the weight function, facilitating computation of gradients of the acquisition
function (either analytically or via automatic differentiation) in gradient-based optimization.
As such, the proposed approach yields an acquisition function aLW-UCB(x) that can be cheaply
evaluated at any continuous query point x, and is differentiable with respect to x. However,
in the bandit setting, there is no need to for gradient-based optimization of aLW-UCB(x), and
instead we perform a simple grid search over all bandits to identify which one should be
evaluated next.

Algorithm 1 . The LW-UCB algorithm.

1 %%Result: Write here the result
2 Input: Small initial dataset D={(xi, yi)}n

i=1;
3 while t < T do
4 Fit GP model to dataset D using (2.6) and obtain posterior mean (2.8a) and variance

(2.8b);
5 Compute likelihood ratio (2.14) and fit Gaussian mixture model (2.15) to it;
6 Select best next bandit xt+1 by maximizing (2.16);
7 Collect new reward yt+1=f (xt+1)+εt+1 and append (xt+1, yt+1) to dataset D;
8 end

(e) Theoretical guarantees
Following the original work of Srinivas et al. [7], we are able to derive theoretical zero-regret
guarantees suggesting that the proposed LW-UCB acquisition criterion achieves asymptotic
convergence. This is a straightforward extension of the theoretical result reported in [7], with the
main difference being that here we need to consider a context-dependent exploration term that
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represents the effect of the likelihood weights w(x). Specifically, following the notation of Srinivas
et al. [7], we consider a finite-size decision set D and the acquisition function

a(x) = μt−1(x) + β
1/2
t wt(x)σt−1(x), (2.18)

where the sampling weights wt(x) are non-vanishing and bounded but otherwise arbitrary. Note
that in all experiments presented in §3, we have fixed βt = 1 for simplicity. Our main result is
summarized in the following theorem.

Theorem 2.1. Assume that b ≤ wt(x) ≤ B for all x ∈ D and t ≥ 1, with b > 0. Let δ ∈ (0, 1) and βt =
2 log(|D|π2t2/(6δ))/b2. The regret bound for the acquisition scheme in (2.18) is such that

P

{
∀T ≥ 1, RT ≤ B

√
C1TβTγT

}
≥ 1 − δ, (2.19)

where γT is the maximum information gain after T rounds (see equation (7) in Srinivas et al. [7]).

Proof. The proof is provided in the electronic supplementary material, document accompanying
this manuscript. �

We also note that Sapsis et al. [45] have recently provided new theoretical results on the
optimality of output-weighted acquisition criteria. These results are focused on quantifying the
convergence rate of approximation errors, suggesting that asymptotic convergence depends on
the number of data that one can collect, in relation to the underlying reproducing kernel Hilbert
space (RKHS) defined by the chosen GP kernel function (see §2.2 in [45] for more details).

3. Results
In all numerical studies considered in this work, we initialize the algorithm with n = 3 random
input–output pairs and compare the performance of EI, TS, V-UCB, GP-UCB and LW-UCB. Our
metric of success is the log-cumulative regret over time. Unless otherwise indicated, we conduct
a series of 100 random experiments, each with a different choice of initial data, and report the
median of the metric of interest. Variability across experiments is quantified using the median
absolute deviation.

(a) Synthetic benchmarks
We demonstrate the performance of LW-UCB for three synthetic test functions. We consider 2500
bandits arranged on a uniform 50 × 50 grid with rewards being given by the value of the test
function at that point in the domain. The rewards collected during optimization are corrupted by
small Gaussian noise with σn = 10−4.

We begin with the Cosine function from [46],

f (x) = 1 − [u2 + v2 − 0.3 cos(3πu) − 0.3 cos(3πv)], (3.1)

where u = 1.6x1 − 0.5, v = 1.6x2 − 0.5 and x ∈ [0, 1]2. For nGMM = 2, figure 2a shows that LW-UCB
performs better than the other methods as it leads to faster identification of the best bandit.
Moreover, figure 2a demonstrates how the likelihood ratio highlights the importance of the
bandits and favours exploration of those with the highest rewards. We also note the subpar
performance of EI, consistent with the discussion in [47].

Next, we consider the Michalewicz function [46],

f (x) = sin(πx1) sin20(πx2
1) + sin(πx2) sin20(2πx2

2), (3.2)

with x ∈ [0, 1]2. This function is more challenging than the Cosine function as it exhibits large
areas of ‘flatland’ (i.e. many mediocre bandits) and a very deep and narrow well located slightly
off centre (i.e. rare bandits with extreme payoffs). For nGMM = 4, figure 2b shows that LW-UCB
outperforms the competition by a substantial margin. Figure 2b also makes it visually clear that
the likelihood ratio assigns more weight to the best bandits. Interestingly, we have found that the
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Figure 2. Synthetic benchmarks. From left to right: locations of the bandits (white circles) and associated rewards (background
colour); cumulative regret for various acquisition functions; for two representative trials of LW-UCB, distribution of the likelihood
ratio (background colour) learned by the GP model from the visited bandits (open circles) after t = 150 rounds. (a) Cosine
function, (b) Michalewicz function and (c) modified Michalewicz function. (Online version in colour.)

likelihood ratio sometimes discovers a broader area where other sub-optimal solutions are also
captured.

For an even more challenging test case, we introduce a modified version of the Michalewicz
function which features multiple small ‘islands’ associated with extreme payoffs. Specifically, the
function

f (x) = sin(πx1) sin20(2πx2
1) + sin(πx2) sin20(3πx2

2), (3.3)

has six extreme local minima and a number of steep valleys in the domain x ∈ [0, 1]2, making
it quite difficult for the algorithms to identify the best bandits. Figure 2c shows that despite
the added difficulty, LW-UCB again exhibits outstanding convergence behaviour, with the
other acquisition functions struggling to identify the best bandits and therefore yielding poor
performance. We also note that the likelihood ratio not only emphasizes the best area for rewards
but is also able to identify sub-optimal solutions of somewhat lesser importance, demonstrating
the ability of our approach to provide a good balance between exploration and exploitation.

To investigate the effect of the likelihood ratio on run-time, we record the time required to
perform one iteration of the Bayesian algorithm. (This includes training the GP model, computing
the likelihood ratio and the GMM approximation for LW-UCB, and optimizing the acquisition
function.) Consistent with [36], table 1 shows that the run-times for LW-UCB are on the same
order of magnitude as the other criteria. The additional cost is attributable to the computation
and sampling of the likelihood ratio, and presumably can be alleviated using recent advances in
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Figure 3. For the synthetic functions in §a, performance of LW-UCB with various values of nGMM compared to the other
acquisition functions considered in this work. (a) Cosine, (b) Michalewicz and (c) modified Michalewicz. (Online version in
colour.)

Table 1. Single-iteration run-time (in seconds) averaged over ten experiments.

Cosine Michalewicz modified Michalewicz

EI 0.49 0.52 0.68
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TS 0.55 0.53 0.63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V-UCB 1.36 1.28 1.50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GP-UCB 1.36 1.28 1.50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LW-UCB 4.19 3.94 4.51
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sampling methods for GP posteriors [48]. We also note that the cost of training the GP model at
round t scales as O(t3)—a cost which is expected to dominate that of fitting the kernel density
estimator and the Gaussian mixture needed to compute the LW-UCB acquisition. As such, we
expect that the cost of using the LW-UCB criterion should become similar to the cost of UCB as
the total number of rounds T is increased.

We have also investigated the sensitivity of the LW-UCB criterion to the size of the GMM
used in the approximation of the likelihood ratio. For the three synthetic functions (3.1)–(3.3),
we repeated the experiments with two additional values of nGMM. Figure 3 shows that the
performance of LW-UCB is essentially independent of the number of Gaussian components
used in (2.15) when the latent function is relatively simple, and that larger values of nGMM
are preferable when the complexity of the landscape grows and the number of optimal regions
increases.

(b) A systematic study: wheel bandits
In this section, we consider a variant of the contextual wheel bandit problem discussed in [33]. The
feasible domain is the unit disc (0 ≤ r ≤ 1) which is divided into five disjoint sectors. The inner disc
(0 ≤ r ≤ ρ) is sub-optimal with reward 0.2. The upper left, lower right and lower left quadrants of
the outer ring (ρ ≤ r ≤ 1) are also sub-optimal, with rewards 0.05, 0.1 and 0, respectively (figure 4).
The optimal bandits are located in the upper right quadrant of the outer ring and return a reward
of 1, significantly higher than the other quadrants. The parameter ρ determines the difficulty of
the problem. For small ρ, the optimal region accounts for a large fraction of the domain, while for
large ρ the difficulty significantly increases. We generate the bandits on a 70 × 70 uniform grid
and retain those lying inside the unit disc. Each bandit produces noisy rewards with σn = 10−3.
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Figure 4. Wheel bandit problem. From left to right: locations of the bandits (white circles) and associated rewards (background
colour); cumulative regret for various acquisition functions; and for two representative trials of LW-UCB, distribution of the
likelihood ratio (background colour) learned by the GP model from the visited bandits (open circles) after t = 100 rounds.
(a)ρ = 0.5, (b)ρ = 0.7 and (c)ρ = 0.9. (Online version in colour.)

For nGMM = 4, figure 4 shows that the proposed LW-UCB criterion leads to significant gains
in performance compared to conventional acquisition functions, especially as the value of
ρ increases and the optimal bandits become scarcer. Figure 4 also shows that the attention
mechanism embedded in the likelihood ratio encourages exploration of the extreme-reward
region. It is also interesting to note that in all cases investigated, the expected improvement,
Thompson sampling, V-UCB and GP-UCB deliver nearly identical performance, even in the
asymptotic regime, unlike LW-UCB which provides consistently faster convergence.

(c) Spatio-temporal environment monitoring with sensor networks
Finally, we demonstrate the approach using two real-world datasets: the temperature dataset
considered in [7] and the air quality dataset considered in [49].

(i) Temperature dataset

The temperature dataset2 contains temperature measurements collected by 46 sensors deployed
in the Intel Berkeley Research lab (figure 5a). As in [7], our goal is to find locations of highest

2See http://db.csail.mit.edu/labdata/labdata.html.
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Figure 5. Spatio-temporal monitoring of room temperature with sensor networks. (a) Sensor locations; (b) cumulative regret
for various acquisition functions; and (c–h) for six representative trials of LW-UCB, spatial distribution of temperature (left panel)
and the likelihood ratio (right panel) learned by the GP model from the activated sensors (circles) after t = 50 rounds. (Online
version in colour.)

temperature by sequentially activating the available sensors while using as few sensor switches
as possible in order to save electric power. Our working dataset consists of 500 temperature
snapshots collected every 10 min over a three-day period. For each temperature snapshot, we
initialize the algorithm by randomly activating n = 3 sensors. The sensors (i.e. the bandits)
produce rewards that are corrupted by small Gaussian noise with σn = 10−4. We use nGMM = 2
for the GMM approximation of the likelihood ratio.

For this real-world problem, figure 5b shows that LW-UCB performs better than the other
acquisition schemes. Figure 5c–h shows that the likelihood ratio draws the algorithm’s attention
to the bandits whose rewards are high by artificially inflating the model uncertainty for these
bandits. We note that, in contrast to the examples considered previously, here the bandits are
few and far between. For instance, there is no sensor data available in the server room and the
stairwell (figure 5a). Because of the sparsity of the data, finding the best sensor to activate is more
challenging. But this does not seem to negatively affect the LW-UCB acquisition criterion, which
is able to identify and explore the relevant areas more intelligently than the other acquisition
functions.
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Figure 6. Spatio-temporal monitoring of air quality with sensor networks: locations of 22 out of the 24 sensors (i.e. excluding
sensors #27 (Barajas Pueblo) and #59 (Juan Carlos I)) used tomonitor air quality in theMadridmetropolitan area (original figure
from [50]).

(ii) Air quality dataset

The air quality dataset3 contains concentration measurements of pollutants and other particles
collected by 24 sensors deployed in the Madrid metropolitan area. Each sensor is uniquely
identified by its longitude, latitude and elevation. We focus on finding the locations of highest
nitrogen dioxide (NO2) by sequentially activating the available sensors to identify the region
of worst air quality. The parsed data consists of 200 pollution snapshots collected every hour
over a 10-day period in March 2018. For each pollution snapshot, we initialize the algorithm by
randomly activating n = 3 sensors. As in the temperature example, the rewards produced by each
sensor are corrupted by small Gaussian noise with σn = 10−4. We use nGMM = 2 for the GMM
approximation of the likelihood ratio.

We consider two cases: the partial-context case in which we only use longitude and latitude
as the contextual information for each sensor (we summarize the locations for the sensors in
figure 6); and the full-context case in which elevation is also accounted for. The partial-context case
is worthy of investigation because, for the geographical area considered, the effect of elevation on
NO2 concentration should be quite small. Also, the number of sensors is relatively small (24), so
using partial contextual information allows us to reduce the rank of the problem.

For both cases, figure 7a,b shows that LW-UCB outperforms the other acquisition functions
considered. The snapshots shown in figure 7c–h reinforce the utility of the likelihood ratio to
identify regions of high NO2 concentration (i.e. poor air quality) more efficiently. As in the
temperature example, the sparsity of the data does not seem to hamper the ability of LW-UCB
to converge to the optimal bandits faster than the other acquisition schemes.

4. Conclusion
We have proposed a novel output-weighted acquisition function (LW-UCB) for sequential
decision-making. Our approach leverages the information provided by the GP regression

3https://datos.madrid.es/portal/site/egob.
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Figure 7. Spatio-temporal monitoring of air quality with sensor networks. Cumulative regret for (a) the partial-context case
and (b) the full-context case; and (c–h) for the partial-context case and six representative trials of LW-UCB, spatial distribution of
NO2 concentration (left panel) and the likelihood ratio (right panel) learned by the GPmodel from the activated sensors (circles)
after t = 50 rounds. (Online version in colour.)

model to regularize uncertainty and favour exploration of abnormally large payoff values. The
regularizer takes the form of a sampling weight—the likelihood ratio—and can be efficiently
approximated by a Gaussian mixture model. The likelihood ratio provides a principled way to
balance exploration and exploitation in multi-armed bandit optimization problems where the
goal is to maximize the cumulative reward. The benefits of the proposed method have been
systematically established via several benchmark examples which demonstrated the superiority
of our method compared to classical acquisition functions (expected improvement, Thompson
sampling and two variants of UCB).

Though the proposed LW-UCB criterion yields superior performance in bandit problems,
several questions remain open. First, a theoretical analysis of the convergence behaviour of
LW-UCB is needed, in the same way that information gain has helped characterize the
convergence of GP-UCB [7,8]. The second avenue is to investigate more complex cases with high-
dimensional contexts and multi-output GP priors. The latter can be readily accommodated in
our JAX implementation which leverages automatic differentiation to allow efficient gradient-
based optimization of the LW-UCB criterion for arbitrary GP priors. The third question has to
do with extending the proposed approach to other Bayesian inference schemes, e.g. Bayesian
linear regression [21], Bayesian neural networks [33] and variational inference [51]. How to
choose the number of modes in the Gaussian mixture model is also worthy of investigation. Our
analysis here was largely empirical, and there are more systematic ways to optimally select the
number of Gaussian mixtures, such as the Silhouette score, the distance between GMMs and the
Bayesian information criterion. Fourthly, in the electronic supplementary material, B, we present
a fabricated case where the performance of the LW-UCB acquisition function could be biased
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due to the combination of very high noise and scarce data in the left tail of the payoff function
distribution. One way to mitigate this issue is to only consider the right tail of the posterior
mean for computing the importance weight. Another interesting question is that of extending
the output-weighted approach to stochastic and convex bandit problems [52,53]. Finally, there is
the question of how to adapt the proposed framework for use in more general Markov decision
processes and reinforcement learning problems [54] where contextual information is typically
high-dimensional and rewards are observed after multiple trials rather than instantaneously.
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