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a b s t r a c t

Many scientific and engineering problems require accurate models of dynamical systems with rare
and extreme events. Such problems present a challenging task for data-driven modeling, with many
naive machine learning methods failing to predict or accurately quantify such events. One cause
for this difficulty is that systems with extreme events, by definition, yield imbalanced datasets and
that standard loss functions easily ignore rare events. That is, metrics for goodness of fit used to
train models are not designed to ensure accuracy on rare events. This work seeks to improve the
performance of regression models for extreme events by considering loss functions designed to
highlight outliers. We propose a novel loss function, the adjusted output weighted loss, and extend
the applicability of relative entropy based loss functions to systems with low dimensional output. The
proposed functions are tested using several cases of dynamical systems exhibiting extreme events and
shown to significantly improve accuracy in predictions of extreme events.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Accurate prediction and quantification of extreme events are
ritical tasks in many areas of science and engineering. Specific
ases include the study of extreme weather patterns [1], tur-
ulence [2], macroeconomic fluctuations [3], rouge waves [4],
nd many others [5,6]. Recent research has developed tools for
xperimental design aimed towards uncertainty quantification in
ail regions of systems with extreme events [7–9], prediction in
he sense of classification of upcoming events in turbulent fluid
lows [10–12], and regression problems for systems exhibiting
xtreme events [13,14].
These recent works fall into the broader category of data-

riven approaches to dynamical systems and fluid dynamics [15,
6]. Uses for such methods are motivated by cases in which
hysics based models fail due to intractable complexity, com-
utational requirements, or insufficient measurements. In these
ases machine learning and in particular deep learning offer a
otential tool for improved predictive modeling. Successful ap-
lications of deep learning to problems in dynamical systems
nclude flow reconstruction [17], physics informed neural net-
orks [18], closure models [19,20], sub-grid scale models [21,22],
limate modeling [23], operator inference [24], and embedding
nd lifting transformations [25–27].
Several recent works have explored the use of specific loss

unctions for training prediction models in the context of extreme
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ttps://doi.org/10.1016/j.physd.2022.133570
167-2789/© 2022 Elsevier B.V. All rights reserved.
events. Guth and Sapsis [12] develop the maximum adjusted area
under the precision recall curve and show that it is effective in
predicting extreme events in systems including the Kolmogorov
flow and Majda–McLaughlin–Tabak model [28]. However, their
proposed metric is not differentiable and not well approximated
by small samples. Implementation for high dimensional models
such as neural networks would therefore be challenging. Doan
et al. [13] use a physics informed loss function to improve the
accuracy of echo-state networks for forecasting a Galerkin model
of a turbulent flow with intermittent quasi-laminar states. While
effective, this approach is constrained to problems where there
is a known dynamic model for the quantity being predicted.
Authors of [14] use a relative entropy based loss function to
forecast the truncated Korteweg–de Vries equation, a simplified
model of turbulent surface waves. This is shown to significantly
improve performance, but requires a high dimensional target
quantity. More recently, the use of various model architectures
for predicting extreme events has been studied in [29].

In this work we seek to develop more broadly applicable
loss functions and evaluate their performance on several chal-
lenging test problems. While the loss functions proposed in this
work may be applied to arbitrary regression models, the included
examples problems both employ neural networks. We assume
the reader is familiar with common deep learning techniques
including recurrent neural networks, stochastic optimization, and
early stopping. The unfamiliar reader may find an excellent and
free online reference in [30]. In particular, we make use of long-
short-term-memory networks [31] for each of the test cases used

https://doi.org/10.1016/j.physd.2022.133570
https://www.elsevier.com/locate/physd
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2022.133570&domain=pdf
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n this work. The results could almost certainly be improved
ia more carefully thought out network structures, training, and
ther user decisions [29]. However, such considerations are not
he focus of this work which focuses solely on the effect of loss
unctions.

The paper is organized as follows; In Section 2 we outline
he motivation for extreme event specific loss functions and de-
elop methods including output weighted variations of the mean
quare error and a relative entropy method based on work in [14].
e also discuss error metrics for evaluating the proposed loss

unctions. In Section 3 we present results of the proposed loss
unctions applied to two test cases; Kolmogorov flow at Reynolds
umber Re = 40 and the flow around a square cylinder at
e = 5000. A discussion of the results, limitations, and outlook
s presented in Section 4.

. Methods

In this section we outline the proposed loss functions used for
raining neural networks to predict and quantify extreme events.
hese include two weighted variations of the mean square error
s well as a relative entropy, also known as KL-divergence, based
oss. We also describe methods for approximating the density
unction of the target variable y and the metrics we use to
easure accuracy of the trained networks.

.1. Problem statement

Let (X, Σx, µ) be a probability space with X ⊆ Rn and µ abso-
utely continuous with probability density function px. For some
nknown function f , we have a dataset D = (X, y) where X =

x1, . . . , xm}, xi ∼ px, y = {y1, . . . , ym} with yi = f (xi), perhaps
erturbed by measurement noise. We will make use of the fact
hat since p(D) =

∏
i px(xi) we have ED[

1
m

∑
g(xi)] = Ex[g(x)]

or any g such that the expectation is finite. That is, empirical
verages over D are unbiased approximations of integrals over
x.
We are interested in parametric models f̂ approximating f

hich accurately predict and quantify outlier values of y and
hich accurately capture the induced probability density function
hrough a measure transformation: py(y) = d/dyµ(f −1(−∞, y)).
o this end, both the structure of the model and training pa-
ameters have important effects. We seek to develop objective
unctions tailored for extreme event prediction that accurately
apture extreme events, are differentiable, and may be approx-
mated from finite datasets.

Throughout the remainder of the paper, we will use the terms
rue and false positive and negative to describe various results
rom a continuous regression model. In this context, we loosely
efine a true positive to be a prediction f̂ (x) such that py(f (x)) ∼

y(f̂ (x)) ≪ 1. That is, when both the true and predicted values of
are rare. Likewise, a true negative is when py(f (x)) ∼ py(f̂ (x)) ∼

(1), a false positive is when py(f (x)) ∼ O(1) and py(f̂ (x)) ≪ 1,
nd a false negative is when py(f (x)) ≪ 1 and py(f̂ (x)) ∼ O(1). In
ome places, these definitions will be made rigorous by applying
hresholds to py(f (x)) and py(f̂ (x)).

.2. Output-weighted variations of mean square error

The mean square error is the most common loss function used
or training regression models with real valued outputs. It is given
y,

MSE (f̂ ) = Ex

[
ef̂ (x)

2
]

=

∫
ef̂ (x)

2px(x) dx = ED

[
1 ∑

ef̂ (xi)
2

]
, (1)
X m
D

2

here ef̂ = (f (x)− f̂ (x)). Squaring the error makes LMSE more sen-
itive to true outliers than the mean absolute error, but if outlier
alues make up a small fraction of the total dataset then LMSE may
till be small while missing large y. Moreover, if some rare values
f y are not separated from the core of py by substantial distance
hen they may be missed with little added error. To better see
his, consider the case where µ admits a disintegration over the
nduced measure on y. Then we can express LMSE as an integral
ver Y of the regular conditional expectation of the square error.
hat is,

MSE(f̂ ) = Ey

[
Ex

[
ef̂ (x)

2
⏐⏐⏐ f (x) = y

]]
=

∫
Y
py(y)Ex

[
ef̂ (x)

2
⏐⏐⏐ f (x) = y

]
dy,

(2)

where the conditional expectation is defined using the disinte-
gration of px over py [32]. For rare events, the value of py(y)
s small, allowing large error in the prediction of such events
ithout significantly affecting LMSE .
The insensitivity of LMSE to rare events may be mitigated via

ntroducing a weighting function. Specifically, consider the case
here the square error is weighted according to py(f (x))−1. The
esulting function is given by,

OW (f̂ ) = Ex

[
py(f (x))−1ef̂ (x)

2
]

=

∫
Y
py(y)Ex

[
py(f (x))−1ef̂ (x)

2
⏐⏐⏐ f (x) = y

]
dy

=

∫
Y
Ex

[
ef̂ (x)

2
⏐⏐⏐ f (x) = y

]
dy.

(3)

ote that the expression py(f (x))|f (x)=y is simply py(y) and there-
ore cancels the py(y) term outside the conditional expectation.
e call the expression given by Eq. (3) the output-weighted loss,

OW since the square error is weighed by the inverse of the likeli-
ood of the true output f (x). Expressions with similar form have
een used for sequential sampling strategies for rare events [8,9].
owever, these works were focused on experimental design and
sed least squares or Gaussian process regression to model f .
q. (3) is also related to oversampling techniques commonly used
or classification problems with imbalanced data [33].

As a cost function, Eq. (3) has some potential drawbacks. In
articular, the weight given to each error is proportional only to
he inverse likelihood of the true value, py(f (x)), and is indepen-
ent from py(f̂ (x)). Thus, error accumulated on false negatives is
enalized far more than that made on false positives. As we will
how in Section 3, minimizing Eq. (3) often yields models that
ver-predict rare events.
The problem of false positives may be addressed with the

nclusion of a second term weighing the square error. The weight
unction 1/py(f (x)) in Eq. (3) amplifies any error realized on
xamples with rare y. This included true positive and false neg-
tive predictions. To distinguish between true negative and false
ositive predictions, we require a weight function that depends
n py(f̂ (x)). The ratio py(f (x))/py(f̂ (x)) is large only in the case
here the likelihood of the predicted output is lower than that
f the true output. Thus, the expression given by,

FP (f̂ ) = Ex

[
py(f (x))
py(f̂ (x))

ef̂ (x)
2

]
, (4)

s a measure of the error made on false positive predictions.
umming Eq. (3) with Eq. (4) gives,

AOW (f̂ ) = LOW (f̂ ) + LFP (f̂ )

= Ex

[(
1

p (f (x))
+

py(f (x))
ˆ

)
ef̂ (x)

2

]
(5)
y py(f (x))
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Fig. 1. Visualization of weights used by LOW and LAOW . Left most figure shows hypothetical boundaries for true/false positive/negative regions. Pseudocolor plots
show output weight, adjusted output weight, and difference. Disagreement is primarily within the false positive region.
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which we will call the adjusted output weighted loss, or LAOW .
or true positives, when both py(f (x)) and py(f̂ (x)) are small,
he second term in the parentheses is O(1) ≪ py(f (x))−1. The
ntegrand therefore agrees with that of Eq. (3). For true negatives
nd false negatives, the integrand is also of similar magnitude to
hat in Eq. (3). However, for false positives, the second term in
he parenthesis is large. The expression therefore penalizes errors
ade as false positive predictions to a greater degree than Eq. (3).
The added penalization of false positives comes at the cost of

ncreased complexity. Eq. (3) is a weighted least squares problem
nd does not add any computational complexity to Eq. (1) beyond
re-computing {py(yi)}mi=1. In particular, Eq. (3) has closed form
olution for linear problems. This is not the case for Eq. (5), where
terative optimization is required. For f̂ depending nonlinearly
n parameters, such as neural networks, the difference is less
mportant, as iterative methods must be used in either case.

Differences between the weighting functions in the integrands
f Eq. (3) and (5) are visualized in Fig. 1. We plot values of the
ach term using hypothetical values of py(f (x)) and py(f̂ (x)). The
eft most plot illustrates a rough partitioning of the domain into
rue/false positives and negatives. Note that many expressions of
he likelihoods of the true and predicted y could be constructed
o find novel loss functions. The authors suspect that this would
e a fruitful research direction, but it is not within the scope of
his work.

.3. Approximating py

Computation of the two weighted variations of the mean
quare error in the previous section requires evaluating py at
oints yi in the training set. For Eq. (3), this may be done offline
sing any off-the-shelf density estimation technique. Evaluat-
ng (5) further requires py ◦ f̂ , which changes during training
nd must be evaluated rapidly. Gradient based optimization also
equires evaluating p′

y ◦ f̂ . Thus, minimizing Eq. (5) requires a
ow-computational-cost differentiable approximation of py. This
ules out non-parametric density estimates such as kernel density
stimation (due to slowness), histograms (due to lack of differen-
iability), and k-nearest-neighbors (slow and not differentiable).
e instead use a combined method of nonparametric estimation
f log(py(yi)) which we then fit using a Gaussian process with
ew collocation points, allowing for rapid evaluation of py and its
erivative.
Estimates of py(yi) are initially made using a histogram of

yi}mi=1 with nb = 100 evenly sized bins. Defining Bi = [bi, bi+1) for
i = 1, . . . , 99 and B100 = [b100, b101] where bi are evenly spaced
values between min(yi) and max(yi) we have for y ∈ Bi,

log p̂(ci) ≈ log

(⏐⏐{j : yj ∈ Bi
}⏐⏐

ml

)
(6)

where l = b − b and c = (b + b )/2.
i+1 i i i i+1

3

Following estimation of the log densities via histogram, the
values at the center of each bin are fit to a Gaussian process [34].
We use the Matern-52 kernel with additional white heteroscedas-
tic noise. The mean function of the Gaussian process is set to be
the log of machine epsilon, enforcing that the approximation goes
to zero away from the sampled data. That is,

log p̂y(y) ∼ GP
(
µ, k(y, y′) + σ 2

w(y)δy,y′
)
, (7)

where µ = log(10−16), σw(y) is the white noise term and δy,y′ is
he Kronecker delta function. Fitting the logarithm of the proba-
ility rather than the probability helps to get accurate estimates
n the tails of py. We obtain estimates of the density at sample
oints y using the conditional mean of the Gaussian process;

ˆy(y) = exp
(
k(y, c)

(
k(c, c) + σ 2

w(c)I
)−1

log p̂y(c) + µ

)
= exp

(
k(y, c)α + log(10−16)

)
.

(8)

here ci = (bi + bi+1)/2 and vector α is pre-computed and
tored. The expected gradient of the exponent is given by simply
ifferentiating the kernel [35]. This allows for queries p̂y(y) and
ts gradient with the simple computation of k(y, c) and k′(y, c). In
ractice we found training to be more stable when a floor was set
or the value of py(y). Examples in this work all used an effective
ensity equal to p̂y(y) + 10−5 which has negligible effect of most
vents.
We note that the same process could be easily implemented

or y with dimension greater than one but still low. Initial esti-
ates of py at training points of the Gaussian process could be

aken with any standard non-parametric density estimation [36]
nd subsequently fit to a GP. However, for higher dimensional y,
oth density approximation and Gaussian process interpolation
ecome non-trivial. It is possible that in these cases the density
y could be substituted for that of a relevant observable g(y), but

such work is beyond the scope of the present manuscript.

2.4. A relative entropy based loss function

The use of relative entropy as a loss function for neural net-
works was explored in [14]. Qi and Majda used the relative
entropy (i.e. KL-divergence) between truth and prediction, after
applying the soft-max function. Specifically, for y ∈ Rs, [14] uses
a loss function defined for a single datapoint by,

LQM (x) = KL
(
σ (f (x)) ∥ σ (f̂ (x))

)
+ αKL

(
σ (−f (x)) ∥ σ (−f̂ (x))

)
=

∑(
σ (f (x)) log

(
σ (f (x))
σ (f̂ (x))

)
+ασ (−f (x)) log

(
σ (−f (x))
σ (−f̂ (x))

))
(9)
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here log is taken elementwise, the sum is over s dimensions of
he vector enclosed in the parenthesis, and the soft-max function,
, is defined by,

(y) =
exp(y)∑
exp(y)

(10)

The use of σ weights outputs by the exponent of their mag-
nitude, thus ensuring the loss focuses on accurate learning of
large magnitude features. This approach is extremely effective
in [14], where y the solution to a PDE and thus high dimensional.
However, it may not be applied directly in the case of scalar
output y. This is because for any y ∈ R1, σ (y) = 1. Moreover,
Eq. (9) is only able to weight extreme values within one output
sample, rather than comparing multiple y. However, it is possible
to derive similar loss functions where a soft-max like operator
is applied to multiple samples, rather than the indices within a
single sample.

Let us assume that f and f̂ are such that Ex[exp(f (x))] and
x[exp(f̂ (x))] are finite and non-zero. Note that this is a mild
ssumption that holds on a set containing L∞(X). Then we can
efine an operator G(f ) by,

(f )(x) = ef (x)px(x)
(∫

X
ef (x)px(x) dx

)−1

= ef (x)px(x)Ex
[
ef (x)

]−1
.

(11)

his operator acts as a continuous analog of the soft-max func-
ion. Functions in the range of G are probability density functions
n X where the value of G(f )(x) is proportional to the sample
ensity px(x) and the exponent of f (x). G(f ) therefore has mass
oncentrated on those values of x whose likelihood under px is
ot vanishing and whose image under f is large, or in other
ords, extreme. Note that in the case where f is linear the
perator defined in Eq. (11) is known as exponential tilting [37],
hich has previously been used in importance sampling [38]. We
efine the relative entropy loss as,

RE(f̂ ) = KL
(
G(f ) ∥ G(f̂ )

)
. (12)

ote that compared to Eq. (9) used in [14], the normalization of
(f ) used in Eq. (12) is taken across the input space X rather than
imensions of y. This allows for exponential weighting of outputs
y their magnitude even in the case of scalar y. We are interested
n minimizing Eq. (12) with respect to f̂ . Expanding Eq. (12) and
gnoring terms whose value does not depend on f̂ we find,

RE(f̂ ) = Ex

⎡⎣ ef (x)

Ex
[
ef (x)

] log
⎛⎝ ef (x)px(x)Ex

[
ef̂ (x)

]
ef̂ (x)px(x)Ex

[
ef (x)

]
⎞⎠⎤⎦

∝ Ex

[
ef (x) log

(
ef (x)−f̂ (x) Ex

[
ef̂ (x)

])]
= Ex

[
ef (x)(f (x) − f̂ (x)) + ef (x) log

(
Ex

[
ef̂ (x)

])]
.

(13)

Individual expectations in the above expression may be estimated
with sums over the dataset. However, the term inside the log is
problematic. By Jensen’s inequality,

log
(
Ex

[
ef̂ (x)

])
= log

(
ED

[
1
m

m∑
i=1

ef̂ (xi)
])

≥ ED

[
log

(
1
m

m∑
i=1

ef̂ (xi)
)] (14)

where the second and third expectations are over the random
samples D. Thus, the expected log of the empirical average of
exp(f̂ (x)) is an underestimate. We therefore find an upper bound
 t

4

for Eq. (14) that may be accurately approximated and minimized.
Note that for any α, log is bounded above by its first order Taylor
expansion about α. Therefore,

log
(
Ex

[
ef̂ (x)

])
= log

(
α +

(
Ex

[
ef̂ (x)

]
− α

))
≤ log(α) +

Ex

[
ef̂ (x)

]
− α

α
.

(15)

he error in the Taylor expansion and thus tightness of the bound
s on the order of (Ex exp(f̂ (x)) − α)/α2. We therefore want to
ick some α as close to Ex exp(f̂ (x)) as possible. Consider α =

x exp(f (x)) which for f ≈ f̂ we assume will be close. In this case
he upper bound for LRE simplifies dramatically to,

RE(f̂ ) ≤ Ex

⎡⎢⎣ef (x)(f (x) − f̂ (x))

+ef (x)

⎛⎝log
(
Ex
[
ef (x)

])
+

Ex

[
ef̂ (x)

]
− Ex

[
ef (x)

]
Ex
[
ef (x)

]
⎞⎠⎤⎦

= Ex

[
ef̂ (x) − ef (x) f̂ (x)

]
,

(16)

here we have ignored terms that do not depend on f̂ . In partic-
lar, the log expectation term, log(α), has been removed since it
oes not depend on parameters. The remaining terms are easily
pproximated from dataset D by,

RE(f̂ ) = Ex

[
ef̂ (x) − ef (x) f̂ (x)

]
= ED

[
1
m

∑
D

(
ef̂ (xi) − ef (xi) f̂ (xi)

)]
.

(17)

ollowing [14] we note that the relative entropy loss only fo-
uses the error on large positive values of f (x) and introduce the
eneralization,

RE,λ(f̂ ) = LRE(f̂ ) + λL(−)
RE (f̂ ), (18)

here L(−)
RE (f̂ ) is defined by replacing f and f̂ in Eq. (17) with −f

nd −f̂ respectively. The value of λ is a tuning parameter that can
e set according to the skew of the dataset. Data considered in
his work contains extremes that skew positive. We therefore set
= 0.1, so that the loss function focuses on predicting positive
utliers.

.5. Performance measures for regression with extreme events

Goodness of fit in the context of regression for extreme events
s non-trivial to define. In Section 2.1 we outlined three criteria
or a ‘‘good’’ predictor. That is, we seek models that accurately
redict extreme events (in the sense that they may be used as a
lassifier), quantify extreme events, and yield accurate densities
n the tails of py. In this section we present metrics for quantifying
ach of the three criteria and discuss potential shortcomings of
ur approach towards error analysis.

.5.1. Accurate quantification of tails of py(y)
Finally, we seek models such that the push-forward density

nder the learned model is similar to the true density py. We
re particularly interested in loss functions yielding densities
hat match the tails of the true density. Following [8,9] use the
ifference between logarithms of the two density functions over
he intersection of their support. This is normalized by the size of
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t
s

D

w

Ω

a

w

he intersection to penalize distributions that only intersect on a
mall domain. The metric is given by;

(py, p̂y) =
1

|Ω(py, p̂y)|2

∫
Ω(py,p̂y)

⏐⏐log(py(y)) − log(p̂y(y))
⏐⏐ dy,

(19)

here

(py, p̂y) ≈ supp(py) ∩ supp(p̂y). (20)

nd p̂y is the density under the learned model. Since py and p̂y
are approximated from data, their support is unknown and be-
havior in low density regions extremely challenging to quantify.
Unfortunately, D depends strongly on both of these quantities.
We therefore approximate the support of each distribution as
the interval covering the observed range of values. This is an
underestimate of the true width, but allows for a consistent
method of computing D.

2.5.2. Accurate quantification of extreme events
Accurate quantification is indicated by models achieving low

error on predictions from x ∈ X such that f (x) is rare. We quantify
this with the expected mean square error over the set of inputs
corresponding to rare events. For example, consider the mean
square error restricted to the set of events with py(y) < ϵ;

MSEϵ = Ex
[
e(x)2

⏐⏐ py(f (x)) ≤ ϵ
]
, (21)

for values of ϵ > 0. Models that accurately quantify rare events
should have low MSEϵ for ϵ ≪ 1. A more informative metric
would condition on py(f (x)) = ϵ, but computation of such a
quantity requires a parametric model or smoother. We therefore
do not include it in this work.

2.5.3. Accurate prediction of extreme events
Models trained for regression may be used along with some

threshold value to function as classifiers. For a variety of extreme
event rates, we track two metrics of classifier accuracy. Follow-
ing [12], we use the extreme event rate dependent area under the
precision recall curve given by,

α(ω; y, ŷ) =

∫
R
s(1y≥a, 1ŷ≥b)

⏐⏐⏐⏐ ∂

∂b
r(1y≥a, 1ŷ≥b)

⏐⏐⏐⏐ db (22)

here s and r are the precision and recall and a = F−1
y (1 − ω)

where F−1
y is the quantile function for y. This quantity has in

fact been used to train models with lower dimensional parameter
spaces. However, the use of distinct thresholds for y and ŷ may
be undesirable. Note for example that for any strictly increasing
function g we have α(ω; y, ŷ) = α(ω; y, g(ŷ)). We therefore also
consider a metric that uses the same threshold for both y and ŷ.
The extreme event rate dependent F1 score is given by,

F1(ω; y, ŷ) = F1(1y≥a, 1ŷ≥a) where a = F−1
y (1 − ω) (23)

where the F1-score is given by the harmonic mean of precision
and recall.

In many practical settings, the consequences of false positive
or negative predictions will be disproportionate. In these cases,
the metrics given by Eq. (22) and (23) will not reflect the utility
of the learned model and more setting specific metrics should be
considered.

3. Results

In this section we present the results of using each of the
loss functions discussed in Section 2 to two challenging super-

vised learning problems resulting from fluid dynamic systems

5

with extreme events; the Kolmogorov flow at Reynolds number
40, and the flow around a square cylinder at Reynolds number
5000. Numerical simulations of the incompressible Navier–Stokes
equations in each case were performed using the spectral element
method implemented in Nek5000 [39,40], an open source Fortran
code for incompressible fluids. Details on numerical simulation
and data preparation are given in Appendix A. In both cases,
target data y is centered and normalized to have zero mean and
unit variance.

In each case we use LSTM networks implemented in tensor-
flow [41] and trained using Adam [42] with early stopping to
avoid over-fitting. Inputs to the neural networks consist of short
time series of Fourier modes or surface pressure up to some
time t from which we seek to forecast energy dissipation or
drag at a future time. Networks used for each example consist
of a sequence of dense layers acting on each snapshot of the
input time series independently, followed by an LSTM layer and
another sequence of dense layers acting on the final LSTM output.
Datasets are split into training (50%), validation (10%) and testing
(40%). Each partition if formed from a contiguous set of samples
so that phenomena observed in each are distinct. Further details
on training, as well as details on network structure, layer sizes,
and dimension are given in Appendix B. We report the metrics
outlined in Section 2.5 evaluated on the portion of the data
reserved for testing.

For each result we present data from twenty randomly ini-
tialized and trained networks. Plots show mean value of across
all trials as a solid line and shade region between 10th and
90th percentiles, thus excluding the two highest and two lowest
values.

3.1. Kolmogorov flow

We first consider two dimensional Kolmogorov flow at Re =

40. Dynamics follow the incompressible Navier–Stokes equations
with a sinusoidal forcing term and periodic boundaries. Specifi-
cally,

∂u
∂t

+u ·∇u = −∇p+
1
Re

∇
2u+sin(kf y)e1, ∇ ·u = 0, (24)

where e1 = (1, 0), kf = 4, and where we have boundary
conditions u(2π, y, t) = u(0, y, t) and u(x, 2π, t) = u(x, 0, t). We
are interested in this flow due to the behavior exhibited by the
energy dissipation rate, given by a re-scaling of the enstrophy,

D(t) =
ν

|Ω|

∫
Ω

|∇u(z, t)|2 dz, (25)

where ν = Re−1 is the viscosity and Ω = [0, 2π )2 is the computa-
tional domain. Solutions to Eq. (24) with the prescribed boundary
conditions are known to exhibit large bursts in energy input
and dissipation rate resulting from intermittent alignment of the
velocity field with the external forcing [43]. A single snapshot of
the velocity field in the x-direction, as well as the time series for
the energy dissipation rate and its density are shown in Fig. 2.

The intermittent bursts apparent in Fig. 2 have been the sub-
ject of several previous works seeking to predict their occur-
rence in advance [12,29,43]. In particular, Farazmand and Sapsis
[10] showed that the intermittent behavior could be explained
through triadic interactions between Fourier modes. Here we
consider the same problem, but seek to predict bursts in the
energy dissipation using neural networks. The target (y) quan-
tity is the energy dissipation rate D(t), normalized to have zero
mean and unit variance. We use the time varying magnitudes
of the three Fourier modes identified in [10] as inputs; x(t) =

(a (t), a (t), a (t)). In order to ensure accurate statistical
0,kf 1,0 1,kf
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Fig. 2. Kolmogorov flow. Left: snapshot of x-velocity. Center: Time series for energy dissipation. Right: Empirical density function of energy dissipation for
t ∈ [0, 40, 000].
Fig. 3. Mean predictions for subset of test data for the Kolmogorov dataset at lead time τ = 6. Blue time series is true D(t) and red is mean prediction across 20
trained neural networks.
Fig. 4. Density for the Kolmogorov flow energy dissipation using true data (blue) and 20 realizations of neural networks trained with each loss function (red).
eported D is mean of Eq. (19).
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escriptions of errors, a simulation of the Kolmogorov flow run
or 4 · 104 time units.

We train neural network predictors of D(t+τ ) from {x(s) : s ≤

} for several lead times τ . LSTM networks [31] are used to allow
or historical data to assist in prediction. Further details on the
eural network structure and training procedure may be found
n Appendix B. For each network configuration and lead time,
e train twenty networks from randomly initialized weights.
subset of the test data results is shown for a lead time of
= 6 in Fig. 3. The true value of D(t) is shown in blue and the
ean prediction across twenty networks for each loss function

s shown in red. A cursory inspection reveals that LMSE appears
o underestimate the large fluctuations, though it does appear
6

o predict their locations. Each of the three other loss functions
ppear to quantify the peaks more accurately, with LOW having

the most pronounced false positives.
Estimates of the densities py using test set values of yi =

f (xi) and predictions ŷi = f̂ (xi) with f̂ trained using each of
he loss functions considered in this work are shown in Fig. 4.
he normalized difference between logs metric D is also shown
longside each loss function and lead time. At each lead time, the
nduced density using models trained with LMSE has the highest
idelity in the core of the pdf, but these distributions dramatically
nderestimate the density in the high dissipation tail region. At a
ow lead time of τ = 2, densities from models trained using LRE ,

, and L perform approximately equally. For higher τ , L
OW AOW RE
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Fig. 5. Comparison of MSEϵ for models trained using LMSE (blue) and extreme event specific loss functions (red) for the Kolmogorov dataset. Note that high − log(ϵ)
orresponds to rare events.
Fig. 6. Comparison of α(ω) for models trained using LMSE (blue) and extreme event specific loss functions (red) for the Kolmogorov dataset.
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and LAOW outperform LOW , with the latter tending to overestimate
the density positive outliers. Excepting τ = 10.0, the minimal
value of Eq. (19) is obtained by LAOW . At τ = 10 LMSE achieves
lower D

(
py, pŷ

)
than both LRE and LAOW . However, the estimated

density function reveals significant underestimation of tail events.
The low value of D

(
py, pŷ

)
is therefore explained by the restric-

tion of the integral in Eq. (19) to the intersection of the supports
of py and pŷ. At τ = 10 LRE and LAOW both have significantly higher
error in the tails of py than at τ = 8 and thus higher D

(
py, pŷ

)
.

The rare event error given by Eq. (21) is shown in Fig. 5. Each
subplot includes error statistics for twenty networks trained with
LMSE in blue and networks trained using each of the specialized
loss functions in red. In all cases, LMSE has lower error when ϵ

is small, which is unsurprising since this is the objective LMSE
minimizes. The difference is more pronounced when compared
to LOW or when τ is small. For rare events, each of the specialized
loss functions has lower error.

The performance of the trained networks as classifiers for rare
events is shown in Figs. 6 and 7. Fig. 6 shows that area under
the precision recall curve as a function of extreme event rate.
At low lead times and extreme event rates, LOW and LAOW show
some improvement over MSE, but all methods are approximately
equivalent in other cases. Note however, that α(ω) allows for
alternative thresholds to be applied to y and ŷ. Fig. 7 shows very
clearly that across all cases the extreme event specific loss func-
tions yield models that are more accurately able to distinguish
extreme events when the same threshold is applied.

3.2. Flow around a square cylinder

Our second example considers the flow around a square cylin-
der at Reynolds number Re = 5000. The square has unit side-
length and is positioned in a stream having unit inlet velocity
7

and viscosity ν = 2 · 10−4. The flow is characterized by ex-
tremely chaotic vortex shedding in the wake of the cylinder,
shown in the left panel of Fig. 8 and large deviations in the forcing
applied to the cylinder by the fluid. The drag coefficient is a
non-dimensional quantity given by,

Cd(t) =
2

ρu2
∞
C

∮
∂S

(τ(t) − p(t)n) · ex ds (26)

where τ, p, and n are the skin shear stress, pressure, and normal
vector, and ∂S is the boundary of the square cylinder. ρ, u∞, and
C all have numerical value of 1 and are included only for their
dimension. The time series of Cd(t) for a simulation of length

= 2·104 and empirical density function are shown in the center
nd right panels of Fig. 8.
We consider the problem of predicting Cd(t + τ ), centered

nd normalized to unit variance, from 40 evenly spaced mea-
urements of pressure on the surface of the cylinder, P(t) ∈ R40.
he contributions of τ and p(t) to Cd are called the skin friction
rag and pressure drag, respectively. In this example, pressure
rag is several orders of magnitude larger than skin friction drag.
herefore, assuming a sufficiently dense distribution of pressure
easurements prediction of Cd at zero lead time is proportional

o the difference of average pressure on the front and back of
he square. However, for τ > 0 the problem rapidly becomes
hallenging.
We test of the loss functions proposed in Section 2 using an

STM network described in further detail in Appendix B. Time
eries of the true drag coefficient as well as the mean prediction
rom twenty neural networks trained using each of the loss func-
ions are shown in Fig. 9 for a lead time of τ = 1. It is immediately
clear that predictions made by networks trained with different
loss functions exhibit substantially different behavior. Consistent
with the Kolmogorov flow data, LMSE substantially underestimates
fluctuations, while L has many false positives.
OW
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Fig. 7. Comparison of F1(ω) for models trained using LMSE (blue) and extreme event specific loss functions (red) for the Kolmogorov dataset. Lines indicate mean
and shaded region is bounded by 10th and 90th percentiles.
Fig. 8. Flow around a square cylinder at Re = 5000. Left: Snapshot of vorticity close to cylinder. Center: Time series for drag coefficient. Right: Empirical density
unction of drag coefficient.
Fig. 9. True centered and normalized drag coefficient (blue) and mean time series predictions (red) for test set data from each neural network for the drag on a
square cylinder. Results are for a lead time of τ = 1.
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Estimates of the density of y and of ŷ formed from test set
ata for each loss function and several lead times are shown in
ig. 10. As expected, networks trained with LMSE underestimate
he likelihood of events in the tails of the distribution of y while
OW overestimates these same events. LRE and LAOW generally
oth capture the correct tail behavior for extreme events skewing
ositive, with LAOW achieving lower D. We note that while LRE
erforms poorly for quantifying py when y < 0, this may be
consequence of our choice of parameter λ, which weighed
ositive values ten times as much as negative. In each case, LRE
nd LAOW notable outperform LOW which in turn outperforms MSE
ith regards to mean D. Plots of MSEϵ are shown in Fig. 11.
s expected loss functions tailored to extreme events are better
ble to quantify events occurring with a low probability (high
log(ϵ)), while underperforming LMSE for more frequent events.

his is consistent with expectations and supports the use of
pecialized loss functions for quantifying rare events.
Classification metrics for the square data are shown in Figs. 12

nd 13. Fig. 12 provides evidence that challenges the utility of
he extreme event specific loss functions. At a lead time of τ =

, LRE slightly outperforms LMSE in the low extreme event rate
egion. However, LMSE has the highest α(ω) in all other cases.
8

his suggests that while networks trained LMSE do a poor job at
uantifying extreme events for this example, they are in fact able
o do a better job than others at separating extreme from qui-
scent events given an appropriate pair of thresholds. However,
his is not true when the same threshold is applied to each of y
nd ŷ. Fig. 13 shows that each of the extreme event specific loss
unctions outperforms LMSE when the same threshold is used.

. Discussion

In this work we have developed and evaluated several can-
idate loss functions for use in regression problems seeking to
ccurately quantify and predict extreme events. We have taken
are to describe the motivation for each of the loss functions
s an approximation of a continuous functional, allowing for
reater intuition and providing a framework upon which further
mprovements may be made. The test cases used to evaluate
he loss functions include the Kolmogorov flow, which has been
tudied extensively as a canonical example of a turbulent fluid
low exhibiting extreme events and the flow around a square
ylinder at Re = 5000. This latter example has, to the best of our
nowledge, not been studied in the context of extreme events. In
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Fig. 10. Density functions for the drag on a square cylinder using true data (blue) and 20 realizations of neural networks trained with each loss function (red).
Fig. 11. Comparison of MSEϵ for models trained using LMSE (blue) and extreme event specific loss functions (red) for the square dataset. Note, high − log(ϵ) corresponds
o rare events.
Fig. 12. Comparison of α(ω) for models trained using LMSE (blue) and extreme event specific loss functions (red) for the square dataset.
ach case, the proposed loss functions yield models with signif-
cantly improved error in the tails of the output, more accurate
stimates of the tail likelihoods, and improved classification when
n equal threshold is applied to prediction and ground truth.
We have also provided evidence, however, that prediction and

uantification of extreme events are distinct problems. Fig. 12
akes it clear that improved performance in extreme event quan-

ification does not necessarily mean greater performance in clas-
ification, as measured by the area under the precision recall
urve. However, this result requires distinct thresholds for what is
onsidered an extreme event under f and f̂ . Thus, the area under
9

the precision recall curve interprets f̂ not as an interpolation of f
but as a distinct metric used for classification.

The ‘‘best’’ loss function for a particular task will depend on
the problem, dataset, and goals. Of those studied in this work,
LMSE and LRE have the advantage of not requiring an estimate of py.
The extent to which this proves troublesome will depend on the
dimension of y, sample size, and on the distribution py. Tail events
are most accurately quantified by LOW , though at the cost of poor
performance on events in the core of py. This is partially miti-
gated by LAOW . Networks used in any application setting should
be selected via cross-validation using a problem-appropriate
metric.
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Fig. 13. Comparison of F1(ω) for models trained using LMSE (blue) and extreme event specific loss functions (red) for the square dataset.
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An obvious challenge in the use of loss functions which include
y is that the number of samples required for density approxima-

tion grows geometrically in the dimension of y. This requirement
s particularly important in the context of quantifying probabili-
ies for rare events such as those studied in this work, and may
ake extension of the proposed methods to higher dimensional
roblems challenging. We have focused on the case where y is
calar valued and thus avoided the issue. Problems in higher
imensions may require approximating density through some
bservable or via distance to neighbors along a low dimensional
anifold via technique like diffusion maps [44], if such a manifold
xists. The relative entropy loss does not require approximation
f py, but does equate importance of a particular sample with
ts exponentiated magnitude. Thus, it may not be an ideal choice
hen the rare events of interest are not substantially different in
agnitude from the core of the distribution. Further investigation
f such problems would be an interesting research direction, but
e consider it to be outside the scope of this work.
The proposed extreme event loss functions may be a poor

hoice for certain classes of prediction problems, even if the data
as extreme events. Consider for example the task of learning
dynamic model for a system with extreme events using short

ime series or velocity data as in [13,45]. In this scenario, errors in
he prediction phase are compounded and the higher error rate
n the core of the distribution will render long term forecasts less
ccurate. This is in contrast to models trained with LMSE where
rror accumulation will likely be more focused on rare events.
There exists a wide spectrum of functional forms used in

achine learning that allows researchers to select or construct
odels they deem fit for a particular task. Less attention is paid

o the choice of functional indicating the performance of those
odels, though some works have considered this question and
roved its importance [13,14]. This may be due to the wide
ffectiveness of the often used mean square error, and its clear
otivation as a maximum likelihood estimate given Gaussian
rror. However, as we have shown, performance on certain tasks
s significantly improved with tailored loss functions. The present
anuscript extends this important research direction.
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ppendix A. Details on datasets

Numerical simulations of the Kolmogorov flow and flow
round a square cylinder were performed using Nek5000 [40],
n open source Fortran based spectral element code for incom-
ressible flow [39]. Time integration was carried out using a
econd order semi-implicit scheme described in [47]. Simulations
ere stabilized with a small degree of filtering as described

n [48]. Mesh was generated using gmsh [49]. The Kolmogorov
low dataset uses 144 elements of order 7 and the flow around
square cylinder uses 1728 elements of order 7. The domain for
he square cylinder flow extended from x = −12 to x = 30 and
y| ≤ 12 with the square having sidelength 1 centered at the
rigin. Geometry and case files for rerunning simulations as well
s files with numerical values of output data used in this work
re available on GitHub at https://github.com/snagcliffs/EE_loss.
The mean and standard deviation of the energy dissipation

or the Kolmogorov flow dataset used in this work are 0.116065
nd 0.037559, which are respectively within 0.64% and 2.1% of
hose reported in [10]. The grid for the flow around a square
ylinder was validated via comparison to a short simulation
sing a finer mesh. The mean drag coefficient on the interval
∈ [200, 2000] using 1728 spectral elements was found to be
pproximately 1.34% different from that using 4480 elements,
hich was deemed sufficiently resolved for the purpose of this
ork.

ppendix B. Neural networks details

Neural networks used in this manuscript were implemented
n Python using the tensorflow library [41] as well as the Numba
ibrary [50]. Gaussian process models for py were initially trained
sing GPy [51], a Python library for Gaussian processes. Learned
arameters were subsequently used to build non-trainable Gaus-
ian process models in tensorflow, allowing for their use with
eural network optimization tools. Source code for neural net-
orks and scripts used to train examples used in this work are
vailable on GitHub at https://github.com/snagcliffs/EE_loss.

https://github.com/snagcliffs/EE_loss
https://github.com/snagcliffs/EE_loss
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Table 1
Parameters for neural networks.
Network Pre-LSTM

Dense
LSTM Post-LSTM

Dense
Input Size
(dim.×time)

Input dt

Kolmogorov 4,8,16 32 16,8,4 3 × 20 1.0
Square Cyl. 4,8,16 16 16,8,4 40 × 5 0.1
Networks were built using a combination of dense layers and
ong-short-term-memory (LSTM) layers [31]. Details on the net-
ork structures and training are given in Table 1. Both networks
ere trained using a batch size of 1000 and used the swish
ctivation function [52].
Neural networks are widely known to be prone to over fitting.

o mitigate this, we used early stopping [53] and noise injection
n the training data. Data was separated into disjoint tempo-
ally contiguous sets for training, validation, and testing using a
50/10/40%) split and training was stopped when validation set
oss failed to yield a new minimum for 5 consecutive epochs.
o avoid transient behavior, the initial 200 time units of each
imulation were discarded. Noise injection has been shown to
mprove generalization performance [29,54], which may be due
n part to its relation to Tikhonov regularization [55]. During the
raining procedure, we sampled random noise from a Gaussian
istribution having standard deviation equal to 10% of the data
nd added it to the neural network input.
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