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Active learning for optimal intervention 
design in causal models

Jiaqi Zhang    1,2, Louis Cammarata2,3,4, Chandler Squires1,2,4, 
Themistoklis P. Sapsis1  & Caroline Uhler    1,2 

Sequential experimental design to discover interventions that achieve a 
desired outcome is a key problem in various domains including science, 
engineering and public policy. When the space of possible interventions 
is large, making an exhaustive search infeasible, experimental design 
strategies are needed. In this context, encoding the causal relationships 
between the variables, and thus the effect of interventions on the system, 
is critical for identifying desirable interventions more efficiently.  
Here we develop a causal active learning strategy to identify interventions 
that are optimal, as measured by the discrepancy between the 
post-interventional mean of the distribution and a desired target mean. 
The approach employs a Bayesian update for the causal model and 
prioritizes interventions using a carefully designed, causally informed 
acquisition function. This acquisition function is evaluated in closed 
form, allowing for fast optimization. The resulting algorithms are 
theoretically grounded with information-theoretic bounds and  
provable consistency results for linear causal models with known causal 
graph. We apply our approach to both synthetic data and single-cell 
transcriptomic data from Perturb–CITE-sequencing experiments to 
identify optimal perturbations that induce a specific cell-state transition. 
The causally informed acquisition function generally outperforms 
existing criteria, allowing for optimal intervention design with fewer  
but carefully selected samples.

An important problem across multiple disciplines, ranging from bio-
engineering to mechanical systems, operations research and envi-
ronmental regulation, is the discovery of interventions on a system 
that can produce a desired outcome. With little prior knowledge of 
the outcome before performing the intervention, one can have a huge 
number of possible choices for the optimal design. In particular, the 
interventions in many applications are combinatorial, resulting in an 
exponential-size design space, making an exhaustive search infeasi-
ble. Examples include experimental design of genetic perturbations, 
such as those for cellular reprogramming in regenerative medicine1, 
optimal feedback control in mechanical systems2 as well as turbulent 

flows3, dynamic pricing strategies in customer networks4 and iterative 
intervention research for climate change adaption5.

In this context, ‘active learning’ has been proposed as a machine- 
learning strategy to efficiently explore the search space6. Such meth-
ods sequentially and strategically acquire new interventions, with 
the goal of discovering an optimal or a close-to-optimal intervention 
using the fewest number of samples. Although it can be of interest to 
identify optimal interventions for ‘estimating’ particular quantities in 
the model (for example, ref. 7), in this work, we consider the optimality 
of an intervention with respect to ‘optimizing’ its effect. Specifically, 
this is done by successively (1) updating the model belief using samples 
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model (SCM)17,18. Precisely, the ‘causal structure’ of the system is rep-
resented by a directed acyclic graph (DAG), and we assume that the 
joint distribution P of x factorizes with respect to the DAG; that is, 
P(x) = ∏p

i=1 P(xi|xpa(i)), where pa(i) = {j ∈ [p]: j → i} denotes the parents 
of node i in the DAG. In this formulation, the conditional distributions 
are the ‘causal mechanisms’ that generate the variable xi from its parents 
xpa(i). Assuming a linear Gaussian model, then

xi =
p
∑
k=1

Bikxk + ϵi, ∀i ∈ [p], (1)

where the real-valued coefficients Bik = 0 if k ∉ pa(i) and the exogenous 
noise variables ϵi ∼ 𝒩𝒩(0,σ2i ) with variance σ2i > 0 are mutually inde-
pendent. An example of this model is given in Fig. 2. For simplicity, we 
assume that the system is centred to be mean zero, but intercepts can 
be easily added to equation (1) and the following approaches still apply.

An intervention, denoted by a vector a ∈ ℝp, modifies the con-
ditional distribution P(xi∣xpa(i)) into a new conditional distribution,  
Pa(xi∣xpa(i)). Every i ∈ [p] for which ai ≠ 0 is called an ‘intervention tar-
get’. In this work, we consider shift interventions19,20 (which are a 
special class of soft interventions21), in which the interventional dis-
tribution Pa(x) of the modified system under intervention is given by

xi =
p
∑
k=1

Bikxk + ai + ϵi, ∀i ∈ [p], (2)

where ai = 0 for every i that is not an intervention target. This can be writ-
ten in matrix form as x = Bx + a + ϵ, or x = (I − B)−1(a + ϵ), where I is the pth 
order identity matrix and ϵ ∼ 𝒩𝒩(0,Σ) with Σ being the diagonal matrix 
with σ21 ,… ,σ2p on its diagonal. These interventions can be used to model 
a broad class of genetic perturbations including clustered regularly inter-
spaced short palindromic repeat (CRISPR) interference and activation22, 
and transcription factor overexpression23. Although we consider the case 
in which all variables can be intervened on, as for example in genetic 
perturbation experiments24, for other applications, it may be of interest 
to consider extensions in which only a subset of variables can be inter-
vened on. We also note that an extension to hard interventions can be 
obtained by setting Bik to 0 for every i that is an intervention target and 
subsequently defining the post-interventional mean.

Whether or not an intervention induces the desired outcome is 
decided through samples obtained in the intervened environment, 
that is, x ~ Pa. Since x is random, it is intuitive to use the average over 
multiple samples20,25, that is, the empirical estimate of the distribution 
mean, and compare this with the ‘target mean’ μ*, which is user speci-
fied and describes the desired outcome. Formally, we seek an interven-
tion a ∈ ℝp such that, after obtaining n samples x(1),… ,x(n) ∈ ℝp, which 
we denote by x[n], the squared distance between the empirical mean 
and the target mean, that is, the quantity ∥ 1

n
∑n

m=1 x
(m) − μμμ∗∥22, is mini-

mized. Denoting by ϵ(1),…, ϵ(n) (or short ϵ[n]) the exogenous noise vectors 
independently sampled from 𝒩𝒩(0,Σ), then the squared distance 
between the empirical and target mean can be written as

‖
‖‖‖
(I − B)−1 (a + 1

n
n
∑
m=1

ϵ(m)) − μμμ∗
‖
‖‖‖

2

2

(3)

using the matrix form. Here 1
n
∑n

m=1 ϵ(m) accounts for the finite number 
n of interventional samples, where n is user specified based on the 
available budget. However, as ϵ[n] does not depend on the choice of a, 
we can discard this term for the minimization of equation (3) with 
respect to a by considering its infinite-sample version. When the sam-
ple size goes to infinity, by the law of large numbers, 1

n
∑n

m=1 ϵ(m) = 0 
almost surely, and thus, the optimal intervention a* achieves the min-
imum value of zero in equation (3) and has an explicit form a* = (I − B)μ*, 
which, as expected, depends on the unknown parameter B.

acquired so far from different interventions and (2) selecting the next 
intervention to obtain samples from by constructing and optimizing 
an acquisition function, which prioritizes interventions that are more 
informative for the desired outcomes (Fig. 1).

Standard approaches towards this problem are correlation based. 
More precisely, the idea is to estimate associational relations between 
intervention and outcome to update the model belief and make deci-
sions about which samples to acquire next. The two main approaches 
use either statistical theory, by minimizing the posterior variance of 
the outcome estimate8, or information theory, by maximizing the 
mutual information between its samples and the quantity of interest9. 
Although these methods are being widely applied, correlation-based 
approaches are not optimal when the underlying model is causal, 
as they do not take into account the structural information that can 
reduce the number of feasible models. Many systems that are relevant 
for applications are causal, in which an intervention can only have an 
impact on downstream variables. It is therefore of interest to develop 
methods that learn what is necessary about the underlying causal 
mechanisms to identify optimal interventions more quickly.

These limitations of correlation-based approaches have been noted 
in the related bandit setting, in which the goal is to minimize the cumula-
tive regret by selecting arms iteratively, and causal relations have been 
used to improve over standard regret bounds10,11. Recent works in the 
related field of Bayesian optimization have also considered exploiting 
causal structure12–14. We provide a detailed review of these works in Sup-
plementary Information I. Our work extends these works in two ways: 
(1) rather than optimizing a single target node, we optimize the entire 
distribution mean, and (2) rather than considering discrete or finite 
interventions, we consider continuous-valued interventions. This is 
important for various applications, such as optimizing drug dosages or 
product prices. As a concrete example, consider cellular reprogramming 
in genomics, a problem of great interest for regenerative medicine1,15. 
The aim in this field is to reprogramme easily accessible cell types into 
a desired cell type via continuous-valued interventions such as the over-
expression of particular transcription factors and genes. Because such 
interventions act on genes, which regulate each other through different 
pathways16, this problem can be formulated as optimal intervention 
design in a causal model represented by a directed network on genes.

In particular, we model the underlying causal model in a Bayes-
ian way using a structurally informed prior. We then construct an 
acquisition function based on this model and show how to efficiently 
evaluate and optimize it. The acquisition function both enjoys an 
information-theoretic bound and provably recovers the optimal 
intervention in the appropriate limit. We demonstrate experimentally 
that our algorithms outperform baselines on both synthetic data and 
the design of genetic perturbations in the context of single-cell gene 
expression data. Finally, we conclude with an outlook to future research 
directions and discuss other potential applications.

Problem set-up
The state of the system of interest is described by a p-dimensional ran-
dom variable x = (x1,… , xp) ∈ ℝp  sampled from a structural causal 

Obtain samples
Acquisition function

Structural
causal model

Update model Select intervention

Fig. 1 | Overview schematic of the active learning framework for optimal 
intervention design in causal models. Iterative process of active learning 
for intervention design in causal models, in which the main design steps are to 
update the structural causal model using the obtained samples and to select the 
next intervention based on an acquisition function.
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In what follows, we assume that the DAG structure is given; that 
is, the sparsity pattern of B is known but not the edge weights Bik for 
Bik ≠ 0. This assumption is natural in many applications including fluid 
mechanics26 and optimal pricing4, in which there are pre-specified 
networks given by either known laws or prior information. For appli-
cations in which the network cannot be assumed to be known such 
as problems in biology, the common approach is to use existing data 
from various sources to learn the DAG first15,27. Further discussions on 
the implications of an unknown DAG structure are provided in Sup-
plementary Information D.

Let 𝒟𝒟t = {(x[n1],a(1)),… , (x[nt],a(t))} be the ‘current’ dataset, consist-
ing of all samples obtained so far by performing interventions a(1),…, 
a(t); here, n1,…, nt denotes the number of samples obtained for each of 
the t interventions. To simplify notation, we will assume n1 = ⋯ = nt = n 
in the following, but all results still hold when using different sample 
sizes for each intervention. Given this dataset, the goal is to select the 
next intervention a(t+1) ∈ ℝp  such that the resulting dataset 
𝒟𝒟t+1 = 𝒟𝒟t ∪ (x[n],a(t+1)) contains as much information as possible about 
the underlying optimal intervention a*. The overall aim of iteratively 
picking interventions is to find the optimal intervention a* with a mini-
mum number of samples.

Design of the acquisition function
To sequentially select the next best intervention, there are two important 
steps (Fig. 1): (1) updating the posterior of the edge weights in the causal 
model based on the samples in 𝒟𝒟t  collected so far and (2) constructing 
an ‘acquisition function’, h(a, 𝒟𝒟t), such that the new dataset 𝒟𝒟t+1 after 
adding samples from a(t+1) = argminah(a, 𝒟𝒟t) is most informative of the 
optimal intervention a* and can be evaluated and optimized efficiently.

For the first step, we generalize the DAG–Wishart distribution28–30 
to define a Bayesian model on the parameters B, which can be updated 
efficiently given a dataset 𝒟𝒟t  (Methods). For the second step, we first 
characterize the uncertainty in estimating the optimality of an arbitrary 
intervention a. Recall that the optimality of a is given by the square 
distance in equation (3), which measures how close the intervention is 
to achieving the target mean. As B is unknown, we can only estimate 
this square distance based on the current collected samples in  
𝒟𝒟t. The uncertainty of the estimation can be characterized by its vari-
ance Var(∥ (I − B)−1(a + 1

n
∑n

m=1 ϵm) − μμμ∗∥22|𝒟𝒟t) . However, this quantity 
is typically hard to evaluate as it involves (I − B)−1, whose posterior does 
not have a closed form. We instead multiply the term inside the variance 
by I − B and characterize the following variance:

σ2g(a)|𝒟𝒟t
∶= Var (g(a) | 𝒟𝒟t) , (4)

where we define

g(a) ∶=
‖
‖‖‖
(a + 1

n
n
∑
m=1

ϵ(m)) − (I − B)μμμ∗
‖
‖‖‖

2

2

. (5)

Interestingly, g(a) can be interpreted as a noisy version of the ‘optimal-
ity gap’ by noting that the gap between an arbitrary intervention  
a and the optimal intervention a* = (I − B)μ* can be written as 
∥ a − a∗∥22 =∥ a − (I − B)μμμ∗∥22 , which is a version of g(a) without noise 
terms.

Building upon equation (4), the next acquired intervention  
should be such that after adding its samples to 𝒟𝒟t  to obtain 𝒟𝒟t+1, the 
uncertainty σ2g(a)|𝒟𝒟t+1

 conditioned on 𝒟𝒟t+1 is minimized. However, as 
the samples are unobserved before performing the intervention,  
we do not have access to 𝒟𝒟t+1  yet. Therefore, when deciding  
which intervention to perform, we consider the a′-augmented  
dataset 𝒟𝒟t(a′) = 𝒟𝒟t ∪ (x̄ ′

[n],a′)  with ‘hypothetical samples’ x̄ ′
[n] of  

a′, which are n repetitions of the plug-in estimator defined as 
x̄′ ∶= (I − 𝔼𝔼(B|𝒟𝒟t))

−1
a′ .  This estimator is obtained through  

x′ = (I − B)−1(a′ + ϵ)  by using the maximum a posteriori estimate 
𝔼𝔼(B|𝒟𝒟t), which concentrates to B as 𝒟𝒟t  grows31, and replacing ϵ with its 
mean 0.

By denoting the feasible set of interventions by 𝒜𝒜, a reasonable 
choice is to select a(t+1) based on integrating the uncertainty σ2g(a)|𝒟𝒟t(at)

 
over all a ∈ 𝒜𝒜. Formally, we let

a(t+1) = argmina′∈𝒜𝒜h(a′, 𝒟𝒟t), (6)

and define the causal integrated variance (CIV) acquisition function 
h as follows.

Definition 1. The CIV acquisition function evaluated 
at a′ with current dataset 𝒟𝒟t is

h(a′, 𝒟𝒟t) = ∫
𝒜𝒜
σ2g(a)|𝒟𝒟t(a′)

dν(a), (7)

where ν is a non-negative measure on 𝒜𝒜.
Intuitively, this acquisition function provides a one-step looka-

head of the overall uncertainty after acquiring intervention a′. Minimiz-
ing it will prioritize interventions that are most informative towards 
estimating the optimal intervention. This acquisition function also 
automatically accounts for the causal model by using a posterior on B.

Note that in this formulation, we can choose the measure ν. For 
example, a uniform measure treats each intervention a ∈ 𝒜𝒜 equally 
and the resulting uncertainty captures how well we can estimate the 
entire landscape of the optimality gap g. In most cases, an overly con-
centrated measure (for example, a Dirac measure at a single point) is 
not preferred, as it can lead to the erroneous estimation of g(a) for most 
a ∈ 𝒜𝒜, which makes minimizing g hard. Inspired by a recent line of work 
on output-weighted acquisition functions32,33, we describe how to 
choose a non-uniform measure ν in the next section.

We discuss how to optimize CIV to solve for a(t+1) in Methods, in 
which we show that the variance σ2g(a)|𝒟𝒟t(a′) can be computed in closed 
form. Considering 𝒜𝒜 to be the unit hypersphere and ν to be the uniform 
measure on it, this then leads to an explicit formula for CIV, which 
enables fast gradient-based optimizers to be used.

Making the acquisition function output weighted
Although the use of a uniform measure ν places an equal weight on 
reducing the variance of estimating the optimality gap for all a in 𝒜𝒜, 
as our goal is to identify the optimal intervention (that is, which 
minimizes the optimality gap), it is desirable to place more weight 
on interventions a in 𝒜𝒜 with a smaller optimality gap. Note that as 
the ambient dimension grows, the volume (and thus the probability) 
of interventions with the optimality gap under a certain threshold 
shrinks (Supplementary Information C). This motivates the follow-
ing measure, which uses the inverse of the optimality gap probabil-
ity to up-weight interventions a in 𝒜𝒜 that are closer to the optimal 
intervention:

x2

x3

x4

x1

B21

B31

= ε1
B32

B42

= B21x1 + ε2

= B42x2 + ε4

= B31x1 + B32x2 + ε3

Fig. 2 | Example causal model. An example of a linear SCM with Gaussian noise 
on a four-node DAG, in which nodes and edges are labelled with variables and 
coefficients, respectively.
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dν(a) = fa(a)
f∥a−b∥22 (∥ a − b∥22)

da, (8)

where b = (I − 𝔼𝔼(B|𝒟𝒟t))μμμ∗ is the estimated optimal intervention, and 
the probability density function f∥a−b∥22 is the distribution on the opti-
mality gap ∥ a − b∥22 induced by the uniform distribution fa on 𝒜𝒜.

Figure 3a shows that, as desired, the proposed weighting puts 
more mass on interventions that are closer to b as the dimension 
increases. When p = 3, however, ν degenerates to a uniform weighting 
(Supplementary Information C). In this case, we can use the bimodal 
von Mises–Fisher distribution, which behaves similar to equation (8) 
in higher dimensions (Fig. 3b and Supplementary Information C). Note 
that the weighting proposed here is symmetric and also puts more 
mass on interventions that are closer to −b. The reason for this is that 
the optimal intervention can also be recovered by maximizing the opti-
mality gap ∥a − a*∥2 which gives −a* (Supplementary Information C).

The corresponding causal output-weighted integrated variance 
(CIV-OW) acquisition function is given by

hOW(a′, 𝒟𝒟t) = ∫
𝒜𝒜
σ2g(a)|𝒟𝒟t(a′)

⋅ fa(a)
f∥a−b∥22 (∥ a − b∥22)

da. (9)

Methods for evaluating and optimizing CIV-OW are given in Supple-
mentary Information C and Supplementary Figs. 1 and 2.

Theoretical results
We provide two interpretations of the introduced CIV acquisition 
function. First, taking an information-theoretic perspective, we show 
that the proposed uncertainty measure can be lower bounded by the 
‘negative’ mutual information between the variables of interest and 
the newly acquired samples. Thus, minimizing the uncertainty cor-
responds to maximizing a lower bound to the mutual information, 
which means that CIV approximately prioritizes the most informative 
interventions. Second, taking a graphical perspective, we illustrate 
how the causal structure is utilized by the CIV acquisition function 
to identify an intervention that is asymptotically consistent with 
the optimal intervention. The details underlying these theoretical 
results are provided in Methods, and Fig. 4 illustrates our consistency 
results experimentally, showing that a gradient-based optimizer with 
initialization close to the optimal intervention a* converges to a*  
as t increases.

Applications
Experiments on the synthetic dataset
To create a generative model following the linear SCM in equation (1), 
we first generate a DAG with p nodes (Supplementary Information G 
and Supplementary Fig. 3). Then, we randomly draw edge weights, 
namely, Bik with k ∈ pa(i), from a uniform distribution bounded away 
from zero. Next, we generate a sparse set of intervention targets and a 
randomly sampled optimal intervention a* over these targets. Finally, 
we calculate the target mean μ* using a* and the ground-truth causal 
model. These steps construct a synthetic instance of a causal system 
and optimal intervention a*. A more detailed description of the above 
procedure is given in Methods and Supplementary Information G.

We compare our two acquisition functions, CIV in equation (7) and 
CIV-OW in equation (9), against four relevant baselines. The ‘random’ 
baseline corresponds to a passive setting, in which each intervention 
is selected at random and no information from the collected samples 
is used. We also compare against three other active methods. The 
‘greedy’ baseline selects the next intervention a(t) = (I − 𝔼𝔼(B|𝒟𝒟t))μμμ∗  
purely based on the current estimate of a* (which is given by 𝔼𝔼(B|𝒟𝒟t), 
where B is estimated from 𝒟𝒟t). The MaxV baseline seeks to select inter-
ventions that minimize the posterior variance of the estimate of the 
model parameters B. It uses as acquisition function a scalar version of 
this variance, namely, hMaxV(a′, 𝒟𝒟t) = maxi∈[p] ∥ Var(Bi,pa(i)|a′, 𝒟𝒟t)∥2 , 
where ∥⋅∥2 denotes the spectral norm of the covariance matrix of Bi,pa(i). 
As different rows of B (for example, Bi,pa(i) and Bj,pa(j) for i ≠ j) are  
independent (Definition 2), we use the maximum of the spectral norms 
over i ∈ [p]. Whereas our acquisition functions concentrate on  
estimating the model parameters that are relevant for a*, this baseline 
estimates the entire model. Finally, the CV baseline seeks to minimize 
the posterior variance of estimating a* and uses the spectral  
norm of its covariance matrix as acquisition function; that is, 
hCV(a′, 𝒟𝒟t) =∥ Var((I − B)μμμ∗|a′, 𝒟𝒟t)∥2. This is in contrast to our approach 
that integrates the estimation uncertainty over the entire feasible set 
of interventions.

To reduce evaluation noise effects, we run each method 20 times 
over 10 instances of a fixed DAG and optimal intervention a*. Figure 5 
shows our results for 30-node DAGs with 10 intervention targets and 
sample size n = 1 per time step. Denoting the obtained samples at time 
step t with 𝒟𝒟t, we use the unbiased estimate a∗t = (I − 𝔼𝔼(B|𝒟𝒟t))μμμ∗ of a* 
to obtain the current estimate of the target mean using the true model 
parameters, that is, μμμ∗t = (I − B)−1a∗t . Figure 5a shows the decline in the 
relative distance between current and target mean ∥ μμμ∗t − μμμ∗∥2/ ∥ μμμ∗∥2 
across time steps. Figure 5b highlights the statistics of the last time 
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Fig. 3 | Illustration of output-weighted non-negative measure ν(a) on the 
space of all possible interventions 𝒜𝒜. a, Values of da/dν(a) (up to constant 
multipliers) plotted against values of ∥ a− b∥22 on the half sphere with 
∥ a− b∥22 ≤ 2. Solid lines correspond to f∥a−b∥22

 in different dimensions; the 
dashed line is the non-degenerate replacement for p = 3 using the bimodal von 

Mises–Fisher distribution. b, Visualization of ν(a) in three dimensions using the 
bimodal von Mises–Fisher distribution. Here b ∈ 𝕊𝕊2 was randomly generated 
and the points on the sphere are coloured corresponding to the value of dν(a)/da, 
which is larger for directions that are more aligned with b.
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step. As is apparent from these experiments, our proposed acquisition 
functions consistently outperform all baselines, with CIV-OW improv-
ing upon CIV by using an output-weighted measure. In Supplementary 
Information G, we examine the effect of varying different parameters 
including graph size, number of intervention targets and graph  
structure, demonstrating the robustness of our results (Extended Data 
Figs. 1–4). We also include three additional baselines from prior 
works9,12,34,35 (Supplementary Information G and I) on a ten-node DAG 
(Extended Data Fig. 5) and an experiment to examine the effect  
of misspecifying the underlying causal structure (Supplementary  
Fig. 4 and Extended Data Fig. 6). These results further demonstrate  
the effectiveness of our proposed method in terms of both accuracy 
and efficiency.

Experiments on the biological dataset
We next study the performance of our method to identify the optimal 
intervention for inducing a desired cell-state change in human mela-
noma cells, thereby mimicking a cellular reprogramming experiment. 
For this, we use Perturb-CITE-sequencing(Perturb–CITE-seq) data 
from ref. 36 consisting of single-cell transcriptomic readouts for a 
large collection of patient-derived melanoma cells. Here an interven-
tion is a genetic perturbation that targets one or multiple genes and 
drives the expression of these genes towards zero (more precisely, 
these are knockout interventions). Cell states are measured by the 
joint distribution of the expression of a collection of genes. Samples 
from these distributions correspond to gene expression vectors of 
individual melanoma cells. To avoid dealing with batch effects, we use 
only one of the screens from ref. 36 (namely, the control screen with no 
additional treatment), which contains 5,039 cells with no perturbation 
and 30,486 cells with interventions on subsets of 248 genes associated 
with immunotherapy resistance (Supplementary Fig. 5). Gene expres-
sion of each sampled cell is captured as a vector of log-transformed 
transcripts per million.

For our optimal intervention design task, we focused on a par-
ticular functional context, namely, the p = 36 genes among the 248 
interventional targets that are involved in interferon-γ signalling and 
immune response36 (Supplementary Information H). As multi-target 
interventional samples are extremely scarce in this dataset, with most 
such interventions having no more than one sample (Supplementary 
Fig. 6), we only consider single-target interventions. We use the obser-
vational samples, that is, the cells with no perturbation, to learn a DAG 
over these 36 genes (Methods, Supplementary Fig. 7 and Extended Data 
Fig. 7). We model each of the 36 single-target interventions as a down-
shift of the target gene by its observational mean; that is, knocking out 
target gene i ∈ [p] is modelled as a shift intervention a with ai being 
the negative of the observed mean of this gene, and all other entries 
being zero. This model assumes that the perturbations are effective 
at knocking out their target genes. This assumption is not always met 
by current technologies: we observe that some interventions do not 

downregulate their target genes in a statistically significant manner 
(Supplementary Information H). However, this is only known after 
performing the experiments, and thus, we use the idealized model. If 
another dataset or prescreen (usually on a smaller scale) is available to 
help determine the effectiveness of an intervention to target a specific 
gene, then we can easily replace the idealized model with this estimate. 
As we will show, the idealized model still extracts enough signal for our 
method to aid in finding good interventions.

To evaluate our approach, we use the observational distribution 
as the source cell state and a particular single-node interventional dis-
tribution as the target cell state. The aim is to identity this single-node 
intervention or an intervention with similar effect using the least num-
ber of samples. For benchmarking purposes, we use a setting in which 
the optimal intervention is contained in the feasible set of interven-
tions, but we note that this is not a requirement and the target cell state 
can be any desired distribution, the experimental design goal then 
being to identify an intervention that moves the distribution as close 
as possible to the target distribution.

Figure 6a shows three representative examples of interventional 
distributions (targeting CDH19, SOX4 and HLA-C), visualized using a 2D 
projection along the most variable directions obtained using contras-
tive principal component analysis (PCA) (Methods). These examples 
highlight that the alterations induced by single-target interventions are 
subtle (Supplementary Fig. 8), with SOX4 being more similar to CDH19 
than HLA-C as also corroborated by the squared distance between the 
interventional means (Fig. 6b). This observation is consistent with 
previous melanoma studies showing that HLA-C is associated with 
positive immune response37, whereas CDH19 and SOX4 are associ-
ated with metastasis and immune evasion38,39. Figure 6c shows the 
performance of our results with the optimal intervention targeting 
gene CDH19. More examples using other target genes are given in 
Supplementary Information H. Each method is run 50 times, in which 
each run starts with a warm-up set of 100 observational samples and 
then n = 10 interventional samples per time step. In Fig. 6c, we present 
the comparison between three acquisition functions: CIV and the two 
baselines random and greedy. More implementation details as well as 
the full results are given in Extended Data Figs. 8–10. Similar to what 
we observed in the synthetic data experiments, CIV outperforms the 
benchmarks in terms of distance to target mean across all time steps. 
This suggests that the proposed approach is beneficial for identifying 
perturbations to induce a desired cell-state change.

Discussion
In this work, we developed an active learning framework for optimal 
intervention design in causal models. Our method has two main ingre-
dients: (1) modelling and updating the edge weights in the causal model 
using a Bayesian approach (using the DAG–Bayesian linear regression 
(BLR) distribution) and (2) optimizing the next intervention from which 
to obtain samples using a class of causally aware acquisition functions 
(CIV acquisition functions). The DAG–BLR distribution respects the 
underlying causal structure and allows for efficient posterior updates. 
The proposed CIV class of acquisition functions prioritizes the most 
informative intervention with respect to identifying the optimal inter-
vention for moving the system towards a desired mean by minimizing 
an uncertainty quantity weighted based on the directions of interest. 
Importantly, the designed CIV acquisition function allows for efficient 
optimization by having tractable closed-form evaluations. In addition, 
we showed that the introduced acquisition function is characterized 
by attractive theoretical properties, such as by mutual information 
bounds and consistency. Finally, we demonstrated the developed active 
learning framework on both synthetic data and a biological dataset. In 
both cases, the designed acquisition function outperforms empirical 
analogues, allowing for accurate predictions with fewer experiments.

We made various assumptions that may be limiting for some appli-
cations and motivate future research directions. First, we focused on 
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the setting with known causal structure. An important future research 
direction is to consider the case in which the causal structure is partially 
or entirely unknown. We discuss potential avenues to approach this 

problem in Supplementary Information D. Second, we considered 
linear SCMs with additive Gaussian noise. A potential extension to 
the nonlinear setting could be achieved using kernels with linearity 
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over the feature space. Similar derivations to our work could be used 
to evaluate or approximate the CIV acquisition functions in this set-
ting. Third, in our model, we assumed ‘causal sufficiency’17, which 
excludes the existence of latent confounders as well as the possibility 
of performing interventions only on some nodes. This is violated when 
some system variables are unobserved and thus cannot be intervened 
on or specified in the desired state. A possible approach is to use a more 
agnostic model between interventions and their effects as proposed, 
for example, in ref. 12; however, this will generally lead to weaker results 
and a loss of structural information.

Although we discussed our work in the context of applications to 
cellular reprogramming, we envision our framework to be applicable 
broadly for sequential design problems arising in complex systems. In 
Supplementary Information J, we discuss several other applications 
and how they fit into our proposed framework.

Methods
Posterior update of edge weights
The current dataset 𝒟𝒟t  induces a belief on the model parameters B. We 
consider the Bayesian setting in which the belief corresponds to a dis-
tribution. To account for the known causal structure, we assume a 
generalization of the DAG–Wishart distribution28,29, which places a prior 
on B that respects the causal structure and allows for efficient posterior 
updates (Supplementary Information A). The prior is as follows.
Definition 2. The DAG–BLR prior models B and the noise variances Σ 
jointly as ℙ(B,Σ) = ∏p

i=1 ℙ(Bi,pa(i),σ2i ), where each ℙ(Bi,pa(i),σ2i ) is

σ2i ∼ ℐ𝒢𝒢(αi,βi),

Bi,pa(i)|σ2i ∼ 𝒩𝒩(mi,σ2i Mi).
(10)

Here ℐ𝒢𝒢 denotes the inverse-gamma distribution and {αi,βi,mi,Mi}
p
i=1  

are hyperparameters satisfying certain constraints specified in Sup-
plementary Information A.

This prior is consistent with the DAG structure as it sets Bik = 0 for 
all k ∉ pa(i). Although it was developed in the observational setting40, 
the following lemma shows that it can be extended to the interventional 
setting and is a conjugate prior for the model in equation (2). Thus, the 
posterior lies in the same family of distributions.
Lemma 1. The posterior corresponding to the DAG–BLR prior satisfies 
ℙ(B,Σ|𝒟𝒟t) = ∏p

i=1 ℙ(Bi,pa(i),σ2i |𝒟𝒟t), where ℙ(Bi,pa(i),σ2i |𝒟𝒟t) is

σ2i |𝒟𝒟t ∼ ℐ𝒢𝒢 (αi(𝒟𝒟t),βi(𝒟𝒟t)) ,

Bi,pa(i)|σ2i , 𝒟𝒟t ∼ 𝒩𝒩 (mi(𝒟𝒟t),σ2i Mi(𝒟𝒟t)) .
(11)

The hyperparameters {αi(𝒟𝒟t),βi(𝒟𝒟t),mi(𝒟𝒟t),Mi(𝒟𝒟t)}
p
i=1  are specified in 

Supplementary Information A.
The hyperparameters {αi(𝒟𝒟t),βi(𝒟𝒟t),mi(𝒟𝒟t),Mi(𝒟𝒟t)}

p
i=1  can be 

updated easily using the new samples obtained at step t; thus, this 
choice of a ‘conjugate’ prior allows for efficient posterior updates.

We make one comment about the DAG–Wishart distribution. In 
previous literature28,29, this distribution has been extended to model 
the posterior beliefs of both the edge weights and the DAG struc-
ture. The posterior for the DAG structure is known as the Bayesian 
Gaussian equivalence score. Thus, although we here assume that the 
DAG is known or prefixed and we only update the posterior on the 
non-zero entries of B, our framework can be extended to the unknown 
DAG setting by placing a probability on the DAG structure using the 
Bayesian Gaussian equivalence score, as discussed in Supplementary 
Information D.

Evaluation of CIV in closed form
We discuss how to optimize CIV to solve for a(t+1). We start by providing 
a closed form of the variance σ2g(a)|𝒟𝒟t(a ′)

. For ease of reading, we here 

provide the formula for the special case in which the exogenous noise 
variances Σ are known. The general formula, which is similar in flavour 
but more complicated, including the proof is given in Supplementary 
Information B.
Proposition 1. Conditioning on Σ, we have

σ2g(a)|𝒟𝒟t(a ′)
= 2

p
∑
i=1
(v2i +

2
n
viσ2i + 2vi(ai − bi)

2) + c, (12)

where only vi ∶= σ2i μ
∗⊤
pa(i)Mi(𝒟𝒟t(a′))μ∗pa(i)  depends on the augmented  

dataset 𝒟𝒟t(a′), whereas bi ∶= μ∗i −mi(𝒟𝒟t)
⊤μ∗pa(i)  and the constant c do  

not depend on a′.
We note that the resulting expression is a function of bi and vi, 

which can be interpreted as follows: Lemma 1 can be used to rewrite 
bi = [(I − 𝔼𝔼(B|𝒟𝒟t))μμμ∗]i as the estimated shift of the optimal intervention 
at node i, and vi = μ∗⊤pa(i)Var(Bi,pa(i) | 𝒟𝒟t(a′))μ∗pa(i) as the covariance matrix 
of Bi,pa(i) scaled in the direction of the target mean μ*.

Next, we discuss how to integrate equation (12) over the space of 
possible interventions 𝒜𝒜 to evaluate h(a′, 𝒟𝒟t). Here we consider 𝒜𝒜 to be 
the hypersphere 𝕊𝕊p−1 = {a ∈ ℝp ∶∥ a∥2 = 1} and ν to be the uniform meas-
ure on the hypersphere (other types of feasible sets 𝒜𝒜, for example, 
with sparsity constraints, can be considered, and similar derivations 
can be used to identify if a closed-form integration exists). This cor-
responds to fixing the magnitude of the intervention and only optimiz-
ing over its direction. This is suitable for various applications including 
the biological problem considered below, as the strength of the inter-
vention is often designed separately or prefixed manually by the experi-
menter. We also note that for many linear problems, the uncertainty is 
decreased by making the magnitude of the selected point larger32. We 
show in Supplementary Information B that this is the case also for the 
problem considered in this paper. Considering the hypersphere allows 
us to avoid this ambiguity. The following proposition provides the 
resulting formula when Σ is known; see Supplementary Information B 
for the general case including the proof.
Proposition 2. For 𝒜𝒜 = 𝕊𝕊p−1 and ν being a uniform measure, the CIV 
acquisition function evaluated at a′, conditioned on Σ, is

h(a′, 𝒟𝒟t) = c1 ⋅
p
∑
i=1

(v2i + 2vi (
σ2i
n + b2

i +
1
p)) + c2, (13)

where c1 > 0 and c2 are constants that do not depend on a′.
The gradient of this objective function can be calculated explic-

itly also in the general case when Σ is unknown, and thus, we can 
use gradient-based optimization methods with a ball constraint to 

solve for a(t+1) = argmina ′∈𝕊𝕊p−1 ∑p
i=1(v

2
i + 2vi(

σ2i
n
+ b2

i +
1
p
)) (see the section 

Implementations below for details). For other types of feasible 
sets 𝒜𝒜, for example, with sparsity constraints or consisting of hard 
interventions, the appropriate optimization method needs to be 
adjusted accordingly. We also note that the objective function is not 
necessarily convex (Supplementary Information B), and gradient-based 
optimizers may therefore only find a local minimum.

Mutual information bound
To provide an information-theoretic interpretation of the CIV acquisi-
tion function, we use the ‘relative decay’ of the uncertainty σ2g(a)|𝒟𝒟t

 
measured by

σ2g(a)|𝒟𝒟t
− 𝔼𝔼x ′ (σ2g(a)|𝒟𝒟t∪(x ′ ,a ′))

σ2g(a)|𝒟𝒟t

, (14)

where the expectation 𝔼𝔼x ′ is taken with respect to a new sample x′ from 
a′ whose distribution is given by ℙ(x′|𝒟𝒟t,a′). To simplify the notation, 
we restrict the discussion in this section to the case of n = 1. Similar 
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results can easily be derived for sample sizes n > 1. The following theo-
rem shows that the mutual information between g(a) and a sample x′ 
from a′ can be lower bounded by this relative decay up to a multiplica-
tive factor. The proof can be found in Supplementary Information E.
Theorem 1. Conditioning on 𝒟𝒟t , the following inequality holds for  
any a ∈ 𝒜𝒜 for the mutual information between g(a) and a sample x′  
from Pa′:

I(g(a);x′|a′, 𝒟𝒟t) ≥ ρ2 ⋅
σ2g(a)|𝒟𝒟t

− 𝔼𝔼x ′ (σ2g(a)|𝒟𝒟t∪(x ′ ,a′))

σ2g(a)|𝒟𝒟t

, (15)

where ρ2 is a constant that does not depend on a′.
This result holds in general for any function g(a) and its posterior 

modelling on 𝒟𝒟t, but the constant ρ in the bound depends on the spe-
cific choice of g and its posterior modelling. For example, for the promi-
nent BLR task, Theorem 1 holds with ρ2 = 1/2 (Supplementary 
Information E).

Note that as σ2g(a)|𝒟𝒟t  does not depend on a′ ∈ 𝒜𝒜, minimizing the 
uncertainty 𝔼𝔼x ′ (σ2g(a)|𝒟𝒟t∪(x ′ ,a ′)) is equivalent to maximizing its relative 
decay in equation (14). The uncertainty σ2g(a)|𝒟𝒟t(a ′) used by the CIV acqui-
sition function (equation 7) is a computationally efficient estimator of 
𝔼𝔼x ′ (σ2g(a)|𝒟𝒟t∪(x ′ ,a ′)) in the relative decay (equation 14), where the expecta-
tion with respect to x′ ∼ ℙ(x′|𝒟𝒟t,a′) is replaced by a plug-in estimator 
x̄′ = 𝔼𝔼(x′|𝒟𝒟t,a′). It follows from Theorem 1 that minimizing the inte-
grated variance in equation (7) corresponds to selecting an interven-
tion that maximizes a lower bound on the mutual information between 
the resulting samples and g(a). This perspective shows how the CIV 
acquisition function connects to a prominent line of previous works, 
known as Bayesian active learning by disagreement (BALD)7,9,41, in which 
the idea is to select interventions that maximize the information  
gain at each step. For example, if the quantity of interest is g(a), then 
BALD seeks to find a′ such that the information gain measured by the 
entropy decay

H (g(a)|𝒟𝒟t) − H (g(a)|𝒟𝒟t ∪ (x′,a′)) (16)

is maximized. Note that this term equals I(g(a);x′|a′, 𝒟𝒟t). As a conse-
quence, BALD directly operates on the mutual information, which 
involves high-dimensional moments of the random variable g(a). This 
highlights an important drawback of BALD, namely, that it is generally 
computationally difficult to evaluate and often requires approximation 
techniques such as Markov chain Monte Carlo9. By contrast, our CIV 
acquisition function only depends on the first and the second moments 
of g(a), thereby allowing for direct computation and efficient 
optimization.

Consistency of CIV for identifying the optimal intervention
We now provide a graphical interpretation of the proposed CIV acquisi-
tion function. For simplicity, we restrict our discussion to the expres-
sion developed in Proposition 2 for the case of uniform measure and 
known variances. The general setting is discussed in Supplementary 
Information F. As c1,c2 in Proposition 2 are constants that do not depend 
on a′,  the new inter vention is obtained by minimizing 
∑p

i=1 (v
2
i + 2vi (

σ2i
n
+ b2

i +
1
p
)); with a slight abuse of notation, let

h(a′, 𝒟𝒟t) =
p
∑
i=1

(v2i + 2vi (
σ2i
n + b2

i +
1
p)) . (17)

The term vi = μ∗⊤pa(i)Var(Bi,pa(i) | 𝒟𝒟t(a′))μ∗pa(i) can be understood as the 
epistemic uncertainty of node i in the direction of interest, namely, as 
xi = B⊤i,pa(i)xpa(i) + ϵi , the variance of Bi,pa(i) characterizes the epistemic 
uncertainty of estimating xi using its parent nodes; in vi, this uncer-
tainty, presented as a covariance matrix, is transformed into a scalar 
value by scaling it in the direction of the target mean μ*. As the number 

of time steps t increases, one can show (Supplementary Information E)  
using the Bernstein–von Mises theorem31 that vi = O(1/t), which implies 
that the second-order terms v2i  are dominated by the first-order terms 
in equation (17). Note that their coefficients σ2i /n + b2

i + 1/p are larger 
for nodes i with larger noise variances and larger estimated optimal 
shift values bi = [(I − 𝔼𝔼(B|𝒟𝒟t))μμμ∗]i . This scaling is intuitive, as it puts 
emphasis on reducing the variance of nodes in which there is still a high 
uncertainty (given by σ2i ) or that require high shift values (estimated 
by b2

i ). As we show in the following theorem, the combined effect of 
these terms on acquiring new interventions is that a* will become an 
approximate local minimizer of equation (17) as t increases as shown 
in the following theorem, in which we use the conventional asymptotic 
notation, o, O and Θ, with respect to the time step t.
Theorem 2. For all a′ ∈ 𝒜𝒜, the CIV acquisition function either decays 
linearly with respect to t, that is, h(a′, 𝒟𝒟t) = Θ(1/t), or degenerates to the 
constant zero, that is, h(a′, 𝒟𝒟t) ≡ 0. The optimal intervention a* satisfies 
∥ ∇h(a∗,𝒟𝒟t)∥2 = O(1/t2) and ∇2h(a∗,𝒟𝒟t) ≽ −O(1/t2)I.

This theorem shows that as t increases, the gradient at a* vanishes 
to zero faster than the acquisition function and the Hessian becomes 
almost positive semi-definite. This suggests that gradient-based opti-
mizers with an initialization close enough to a* converge to the optimal 
intervention a* as t → ∞. In experiments, we observe this to hold even 
for a moderate number of time steps t as illustrated for a ten-node 
DAG example in Fig. 4. The proof of Theorem 2 can be found in Sup-
plementary Information F.

Implementations
Optimization of the acquisition functions was performed using a 
gradient-based solver, more precisely, sequential least squares pro-
gramming with the nonlinear constraint ∥a(t)∥2 ≤ 1. As proven in Sup-
plementary Information B, optimizing the proposed acquisition 
functions with this constraint always outputs a feasible a(t) such that 
∥a(t)∥2 = 1. For other types of feasible sets, for example, a(t) ∈ [0,1]p, one 
can use other solvers such as limited-memory Broyden–Fletcher– 
Goldfarb–Shanno with box constraints. Sequential least squares pro-
gramming was implemented using the SciPy package42 and initialized 
in two ways: (1) using the intervention a(t−1) that was selected in the 
previous time step and (2) using the current estimate (I − 𝔼𝔼(B|𝒟𝒟t))μμμ∗ of 
the optimal intervention. Of the two resulting solutions, we used the 
one with the better acquisition function value as a(t).

For the experiments on synthetic data, we generated the DAGs 
using the NetworkX package43 and the CausalDAG package44. We 
used different graph types and sizes, as detailed in Supplementary 
Information G. The edge weights were uniformly sampled from 
[−1,−0.25] ∪ [0.25,1] to ensure that the parameters were bounded 
away from zero. The exogenous noise levels were set to 1, and the 
resulting linear Gaussian SCM was then rescaled with our implementa-
tion of the standardized model as described in Appendix F of ref. 45. 
For the DAG–BLR prior (equation 10), we set the edge-weight-related 
hyperparameters as follows: mi = 0 and Mi equal to the identity matrix 
for all i ∈ [p]. We assumed the variances to be known and used the 
known-variance formula.

The transcriptomic dataset analysed in the biological applica-
tion was processed using the Scanpy package46. The kernel density 
estimate plots shown in Fig. 6a share the same coordinate axes and 
were produced by projecting the high-dimensional dataset along 
the first two principal components obtained using contrastive PCA47, 
with the unperturbed samples as ‘background’ and all interventional 
samples as ‘foreground’. The purpose of contrastive PCA is to iden-
tify low-dimensional structures in a foreground dataset relative to a 
background dataset. The greedy sparsest permutation algorithm48 
was used to learn the DAG structure from the unperturbed data. The 
parameters used in the greedy sparsest permutation are given in Sup-
plementary Information H and Fig. 7. For the DAG–BLR prior, we set 
the hyperparameters as follows: mi = 0, Mi equal to the identity matrix, 
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αi = 2 and βi = 0. These hyperparameters were then updated using 
posterior formula 1 based on 100 samples from the unperturbed data. 
Similar warm-up steps are used in the active learning literature7,32. As 
we usually have access to some observational samples in applications 
of optimal intervention design, we recommend using these to obtain 
dataset-informed hyperparameters of the DAG–BLR prior. After this 
warm-up step using unperturbed data, interventions were acquired 
based on the known-variance formula, in which we used the estimated 
mean of the noise variances as a proxy.

The codebase for updating the model posterior and optimizing 
the causally aware acquisition functions proposed in this work can 
be obtained via refs. 49. We also provide a notebook to extract and 
process the Perturb–CITE-seq data from ref. 36. Our codebase can be 
used to replicate all the main results and figures as well as for other 
user-defined applications. All methods can be run efficiently on a CPU 
for a moderate number of variables.

Data availability
The Perturb–CITE-seq36 data can be obtained from https://doi.
org/10.1038/s41588-021-00779-1.

Code availability
All code has been deposited at ref. 49.
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Extended Data Fig. 1 | Comparison of different acquisition functions in a 
simulation study where the underlying causal graph is the complete graph, 
half of the nodes are selected at random as intervention targets, and we vary 
the number of nodes p. Each plot corresponds to an average of 10 instances and 
each method is run 20 times and averaged. (A)-(C) Relative distance between the 
target mean μ* and the best approximation μμμ∗t  (defined in Fig. 5A in the main text) 

up to time step t. Lines denote the mean over 10 instances; the shading 
corresponds to one standard deviation. (D)-(F) Relative distance statistics of each 
method averaged over 10 instances at the last time step (t = 50). (G)-(I) Squared 
distance presented as mean value +/- SEM between the optimal intervention  
a* and the best approximation a∗t  that is used to obtain μμμ∗t  up to time step t.
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Extended Data Fig. 2 | Comparison of different acquisition functions in a 
simulation study where the underlying causal graph is the complete graph, 
the most downstream half of the nodes are fixed as intervention targets,  
and we vary the number of nodes p. Each plot corresponds to an average of 10 
instances and each method is run 20 times and averaged. (A)-(C) Relative 
distance between the target mean μ* and the best approximation μμμ∗t  (defined in 

Fig. 5A in the main text) up to time step t. Lines denote the mean over 10 
instances; the shading corresponds to one standard deviation. (D)-(F) Relative 
distance statistic of each method averaged over 10 instances at the last time step 
(t = 50). (G)-(I) Squared distance presented as mean value +/- SEM between the 
optimal intervention a* and the best approximation a∗t  that is used to obtain μμμ∗t  
up to time step t.

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00719-0

Extended Data Fig. 3 | Comparison of different acquisition functions in a 
simulation study where the underlying causal graph is the complete graph 
on 30 nodes, the most downstream nodes are fixed as intervention targets, 
and we vary the number of intervention targets. Each plot corresponds to an 
average of 10 instances and each method is run 20 times and averaged. (A)-(D) 
Relative distance between the target mean μ* and the best approximation μμμ∗t  

(defined in Fig. 5A in the main text) up to time step t. Lines denote the mean over 
10 instances; the shading corresponds to one standard deviation. (E)-(H) Relative 
distance statistic of each method averaged over 10 instances at the last time step 
(t = 50). (I)-(L) Squared distance presented as mean value +/- SEM between the 
optimal intervention a* and the best approximation a∗t  that is used to obtain μμμ∗t  
up to time step t.
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Extended Data Fig. 4 | Comparison of different acquisition functions in a 
simulation study where we vary the underlying causal graph (complete 
graph, Erdös-Rényi graph with edge probability 0.8, Erdös-Rényi graph with 
edge probability 0.8, path graph) and the most downstream half of the nodes 
are fixed as intervention targets. Each plot corresponds to an average of 10 
instances on a 30-node DAG with 15 perturbation targets. Each method is run 20 
times and averaged. (A)-(D) Relative distance between the target mean μ* and the 

best approximation μμμ∗t  (defined in Fig. 5A in the main text) up to time step t. Lines 
denote the mean over 10 instances; the shading corresponds to one standard 
deviation. (E)-(H) Relative distance statistic of each method averaged over 10 
instances at the last time step (t = 50). Note that the DAGs become sparser from 
left to right. (I)-(L) Squared distance presented as mean value +/- SEM between 
the optimal intervention a* and the best approximation a∗t  that is used to obtain 
μμμ∗t  up to time step t.
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Extended Data Fig. 5 | Comparison of our acquisition functions to baseline 
acquisition functions adapted from prior works (EI-Int: based on Expected 
Improvement, MI-Int: based on Mutual Information, and UCB-Int: based on 
Upper Confidence Bound) in a simulation study where the underlying causal 
graph is the complete graph on 10 nodes and the most downstream 5 nodes 
are fixed as intervention targets. Each plot corresponds to an average of 10 

instances and each method is run 20 times and averaged. (A) Relative distance 
between the target mean μ* and the best approximation μμμ∗t  (defined in Fig. 5A in 
the main text) up to time step t. Lines denote the mean over 10 instances; the 
shading corresponds to one standard deviation. (B) Relative distance statistic of 
each method averaged over 10 instances at the last time step (t = 50). (C) Runtime 
per iteration of each method in seconds.
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Extended Data Fig. 6 | Performance of the different acquisition functions 
under three types of DAG misspecifications where the underlying causal 
graph is a 5-node random Erdös-Rényi DAG with edge density 0.5 and  
3 intervention targets. Each plot corresponds to an average of the relative 

distance at time step 10 across 10 instances. Each method is run 10 times and 
averaged. SHD denotes the number of misspecified edges. (A)-(C) Three types of 
DAG misspecifications.
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Extended Data Fig. 7 | Learned linear Gaussian SCM on the 36 genes of interest 
based on the control cells. (A) Learned DAG on the 36 considered genes. Nodes 
are oriented up-down by their topological order and colored by the module/
program they belong to in Supplementary Fig. 7. (B) Parameters used in GSP48 

to learn the above DAG. (C) Pearson r scores of regressing each non-source gene 
against its parents. Blue: average scores in the learned DAG; grey (with errorbars): 
average of scores in a random graph (100 samples).
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Extended Data Fig. 8 | Comparison of the different acquisition functions for 
identifying the intervention that matches the target mean for 5 different 
ground-truth target genes. Square distance presented as mean value +/- SEM 
between the target mean μ* and the best approximation μμμ∗t  across time step t is 

reported. (A)-(E) comparison of 6 acquisition functions. (F)-( J) same as top, 
showing only 3 methods to de-clutter the plots, comparing our CIV acquisition 
function against the random and greedy baseline. Each plot is captioned with its 
ground-truth target gene.
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Extended Data Fig. 9 | Gene expression changes for three examples of different knock-out perturbations. Comparing target-gene expression in the control cell 
population and the perturbed cell population of the corresponding knock-out experiment. (A)-(C) Included target genes: MYC, EIF3K, and HLA-C. The mean expression 
of the target gene is given in each subcaption.
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Extended Data Fig. 10 | Comparison of acquisition functions for identifying interventions that match the target mean of perturbing MYC. The reported  
metric is the square distance presented as mean value +/- SEM between the target mean μ* and the best approximation μμμ∗t  across all time steps t. (A) All methods.  
(B) De-cluttered subset of methods.
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