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For certain Reynolds numbers, airfoils are subject to sporadic high-amplitude fluctuations in the aerodynamic

forces. These extreme excursions may be seen as prototypical of the kind of unsteady and intermittent dynamics

relevant to the flow around airfoils and wings in a variety of real-world applications. Here we investigate the

instability mechanisms at the heart of these extreme events, and how they may be harnessed for efficient data-

driven forecasting. Through a wavelet and spectral analysis of the pressure and vorticity, we find that the extreme

events arise due to the instability of a specific frequency component distinct from the vortex shedding mode. During

these events, this extreme event frequency draws energy from the energetically dominant vortex shedding flow and

undergoes an abrupt transfer of energy from small to large scales. We propose a preprocessing algorithm to extract

this extreme event frequency from the surface pressure data, which in conjunctionwith an extreme event-tailored loss

function, allows us to avoid the commonly used long short-term memory architecture in favor of a simple feed-

forward network—a significant reduction in cost over the previous state-of-the-art. Our model requires only three

pressure sensors, and it is robust to their location—showing promise for the use of our model in dynamically varying

applications. Finally, we show that relying solely on the statistics of the pressure and drag data for optimal sensor

placement fails to improve model prediction over uniform or random sensor placement.

Nomenclature

a = acquisition function
F = Fourier transform operator
f = temporal frequency
I = mutual information
ks = spatial wavenumber w.r.t s
P = airfoil surface pressure
~P = filtered airfoil surface pressure

P̂ = wavelet transformed airfoil surface pressure

q = filtered drag coefficient
q̂ = model prediction of filtered drag coefficient
r = temporal correlation function
s = arc length along airfoil surface
u;ω, p = fluid velocity, vorticity, and pressure
W = wavelet transform operator
α� = maximumadjusted area under precision-recall curve
Γ = vector of γ and its derivative
γ = wavelet transformed airfoil surface pressure evalu-

ated at extreme event frequency
σq = model uncertainty in prediction of filtered drag coef-

ficient
τ = lead time for prediction of q
χ = extreme event rate

Ω̂ = wavelet transformed vorticity

~Ω = Fourier and wavelet transformed vorticity

Subscripts

EE = conditioned on extreme events
e = evaluated at extreme event frequency
iu = integrated uncertainty

j = pressure sensor index
ow = output weighted
s = evaluated at airfoil surface
v = evaluated at vortex shedding frequency

I. Introduction

M ANYengineering systems are subject to rare high-amplitude
fluctuations commonly referred to as extreme events [1].

While here we focus primarily on fluid–structure interactions, such
events occur in a wide variety of systems ranging from climate
systems to stock markets. Although rare, events like gusts or rogue
waves have a disproportionate effect on the fatigue life of aircraft,
naval vessels, or marine infrastructure. Due to their rare nature, the
prediction of these events is inherently challenging, especially
as they often occur in complex systems were the physical mech-
anisms are unknown [2]. Various authors have ventured to address
this problem through strategies such as optimal sampling [3–5]
or training strategies which preferentially amplify rare events
[6–8].
Two-dimensional airfoil flow is one of the canonical test cases for

the dynamics of fluid–structure interaction and has been the subject
of extensive study for decades [9,10]. However, the advent of
machine learning and data-driven techniques has unlocked new
lenses to study this and other classical problems in the field of fluid
dynamics [11–13]. In particular, several authors, including Rudy and
Sapsis [8], Gomez et al. [14], and Maulik et al. [15], have proposed
neural network models for the reconstruction of the flow from sparse
measurements of a range of flow observables. However, data-driven
predictions based on the airfoil surface pressure have been of par-
ticular interest due to their practical measurability. In particular, the
development of effective strategies for the optimal distribution of
pressure sensors is of critical importance, as the design constraints on
aircraft necessitate the sparse distribution of such sensors. To this
end, a range ofmethods have been investigated for the purpose of data
assimilation from sparse measurements and the development of
predictive tools, such as linear systems theory [16] and neural net-
works [8,17–19].
Oscillator flows such as airfoil flows are generally insensitive to

noise and exhibit multiple characteristic time scales [20,21]. This
makes them an ideal candidate for the study of multiscale slow–fast-
type extreme events—as classified by Farazmand and Sapsis [22].
From this perspective, the Reynolds number regime O ∼ �104� is of
particular interest. This regime lies between steady laminar and fully
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turbulent regimes, and it is especially susceptible to highly nontrivial
dynamics, which depend significantly on angle of attack and Reyn-
olds number [23–25]. One tool for the study of such systems is the
continuous wavelet transform, which, in a manner analogous to the
short-time Fourier transform, quantifies the time-varying strength of
a signal’s frequency components [26,27]. Wavelet analysis has pre-
viously been used in the context of extreme events by Cousins and
Sapsis [28,29], Bayındır [30], and Srirangarajan et al. [31] for the
detection of rogue waves and turbulent bursts in pipe flow, respec-
tively. The majority of these studies have focused on spatial wavelet
transforms, while here we perform a temporal analysis. Additionally,
the combination of wavelet analysis with machine learning models
using the type of output weighted strategies discussed above remains
largely unexplored.
This work conducts an investigation of the physical mechanisms

driving the extreme bursting events observed in the flow over a two-
dimensional airfoil at R � 17; 500 at constant angle of attack. We
first analyze the statistical connection between various observables
with the aim of identifying the causal mechanisms driving the
observed extreme events. We analyze basic correlations as well as
mutual information, which is a measure of mutual dependence
between two signals [7,32,33].We connect the results of this analysis
to further spectral analysis of the data with the aim of shedding light
on the spatiotemporal scales driving the extreme event dynamics.
We then build on previous work by Rudy and Sapsis [8], who studied
the data-driven reconstruction of this flow using a range of neural
network architectures. We exploit the findings of our analysis to
design extreme event tailored—also referred to as output-weighted
[4]—data processing and training strategies for the efficient data-
driven prediction of extreme events from optimal sparse sampling of
the surface pressure. For a broad discussion of output-weighted
strategies for neural networks applied to this and other systems, see
Rudy and Sapsis [34].
The rest of the paper is organized as follows. In Sec. II we describe

the problem under investigation. In Sec. III we perform a statistical
analysis of the data and describe the physical mechanisms driving the
extreme events, and how these manifest in the observed data. In
Sec. IV we discuss the limitations of offline optimal sensing algo-
rithms. Themain results of this work are then presented in Sec. V, and
we provide some discussion of our findings in Sec. VI.

II. Problem Description

We consider a two-dimensional direct numerical simulation of an
incompressible flow around aNACA4412 airfoil at an angle of attack
α � 5° and a cord-length-based Reynolds number R � 17;500. The
flow is governed by the Navier–Stokes and continuity equations:

∂u
∂t

� u ⋅ ∇u −
1

R
∇2u�∇p � 0 (1)

∇ ⋅ u � 0 (2)

whereu ≡ �u�x; y; t�; v�x; y; t�� is the velocity,p�x; y; t� is the pressure
field, t is time, and x, y are the spatial dimensions parallel and
perpendicular to the freestream, respectively. The simulation is carried
out using the open source spectral element codeNek5000 developed by
Fischer et al. [35]with4368elements at spectral order 7 andaconvective
outflow boundary condition [36].We use the same data set as Rudy and
Sapsis [8], who report that further refinement of the numerical grid did
not meaningfully alter the results. At this Reynolds number the flow is
susceptible to intermittent, yet nonperiodic turbulent bursts which
manifest as high-amplitude fluctuations in a range of observables, most
notably the drag. These eventsmaybe seen as prototypical of the kindof
unsteady dynamics faced in a variety of aerospace applications. In this
work we focus on two observables: the surface pressure and the drag
coefficient. The former is a practically measurable quantity and will
serve as the input to ourmodel, while the latter acts as the extreme event
indicator and will serve as the model output.
Throughout this work we define s as a generalized measure of arc

lengthmeasured clockwise from the leading edge (as shown in Fig. 1).
For example, s ∈ �0; 0.5� refers to the upper surface of the airfoil and
s ∈ �0.5; 1� refers to under side. The surface pressure is saved at 100
equally spaced locations around the airfoil surface. A visualization of
the airfoil flow, the simulation grid, and the arc length measure are
summarized in Fig. 1, and we refer the interested reader to Rudy and
Sapsis [8] for a more detailed discussion of the numerical method.
The aerodynamic forces are computed using skin friction and

surface pressure according to

F�t� �
s
�τ�s; t� � nP�s; t�� ds � D�t�êx � L�t�êy (3)

Here t is time, and x and y represent the directions parallel and normal
to the freestream, respectively. The lift and drag coefficients are then
defined as

CD�t� ≡
D�t�
ρU2

∞c
; CL�t� ≡

L�t�
ρU2

∞c
(4)

To distinguish the extreme events from the background vortex shed-
ding, we apply a Gaussian smoothing operation to the time series of
the drag coefficient to extract the nonperiodic behavior:

q�t� ≡ �K � CD��t� (5)

whereK�t 0� ∝ exp�−�t 0∕2fv�2� is a Gaussian smoothing kernel and
fv � 1.44 is the most energetic frequency corresponding to periodic
vortex shedding.Moving forward we simply refer to q�t� as the drag.
In addition to the raw pressure signal, we also consider a version of
the pressure with the same Gaussian filter applied:

Fig. 1 Airfoil geometry, with arclength measure s (dots represent every other sensor location), snapshot of vorticity, and computational grid.
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~P�s; t� ≡ �K � P�s; t���s; t� (6)

We refer to P�s; t� and ~P�s; t� as the raw and filtered pressures,
respectively. In general we will consider the pressure measured at
subset of discrete sensor locations, and thus treat the surface pressure
as a vector valued quantity P�t� ∈ Rn, where n is the number of
sensors. An illustrative example of the drag as well as the raw and
filtered pressures is shown in Fig. 2.
This flow was previously investigated by Rudy and Sapsis [8]

using a deep long short-term memory (LSTM) network. Those
authors considered a variety of input observables, and found that
the extreme events could be predicted from a range of different
observables including full- and reduced-order descriptions of the
flowfield as well as surface pressure. This suggests that the extreme
events are a result of an underlying physical instability inherent in the
governing equations. Practically, we aim to exploit thismechanism to
predict future extreme events observed in the drag from sparse
measurements of the surface pressure as efficiently as possible. In
other words we seek a data-driven map

P�t� → q�t� τ� (7)

for maximum lead time τ, with minimal dim�P�, and at minimal
computational cost. All the code used to generate the results pre-
sented in this work can be found at https://github.com/ben-barthel/
Airfoil_EE_2023.

III. Statistical Analysis and Physical Mechanisms of
Extremes

To gain a deeper insight into the dynamics of the flow and
mechanisms driving the extreme events, we first perform a detailed
statistical analysis of the data.We first analyze the surface pressure, as
this will serve as the basis of our modeling efforts, then in Sec. III.C
we analyze the vorticity field—both globally and locally along the
airfoil surface—to further probe the extreme event dynamics. Before
presenting our results, we first review some definitions we use
throughout the following sections. For a signal x�t� with discrete

values xi and distribution X, we define the mean μx, variance σ
2
x, and

the probability density function fX�x�. For two signals x�t� and y�t�
the covariance is defined as

σxy ≡ cov�X; Y� � 1

n − 1

n

i�1

�xi − μx��yi − μy� (8)

To further quantify the connection between two signals we alsomake
use the mutual information defined as

I�X; Y� ≡
y x

fX;Y�x; y� log
fX;Y�x; y�
fX�x�fY�y�

dx dy (9)

where fX;Y is the joint probability density function of X and Y. The
mutual information is the Kullback–Leibler (KL) divergence
between the joint probability distribution and the product of the
marginal probability distributions—it quantifies the error in the
assumption that two distributions X and Y are uncorrelated. We also
propose the “extreme event conditioned mutual information,”
defined as the mutual information integrated only over values of
the output greater than two standard deviations from the mean: y >
2σy (all values of the input X are included):

IEE�X; Y� ≡
x y>2σy

fX;Y�x; y� log
fX;Y�x; y�
fX�x�pY�y�

dx dy (10)

We choose a cutoff of two standard deviations; however, we found
that the results were not sensitive to changes of 	σ. For all results
presented in this work the probability density functions are approxi-
mated using Monte Carlo estimation, and the relevant integrals are
carried out using trapezoidal integration.

A. Covariance and Mutual Information Structure

To investigate the spatial dynamics of the surface pressure we
compute the covariance andmutual informationmatrices: cov�P�s; t�;
P�s 0; t�� and I�P�s; t�; P�s 0; t�� for both the raw pressure P and the

filtered pressure ~P. These quantify the information shared between
different locations along the airfoil. The covariance matrices and
mutual informationmatrices are shown inFigs. 3a and3b, respectively.
The left plot shows the raw pressure signal and the right shows the
filtered pressure. We notice that the results for the raw and filtered
pressure are qualitatively similar, and thus the following discussion
applies to both.
These results reveal three distinct regions. First, the underside of

the airfoil, 0.5 < s < 1.0. This region displays a high degree ofmutual
information and strong correlation. Second, the front section of the
upper surface, 0 < s < 0.3. This region exhibits similar features as the
underside: strong mutual information and correlation; however, in
this region the mutual information drops off muchmore quickly with
separation between the sensor locations. These results imply that
these regions are amenable to sparse sensor distribution, since any

Fig. 2 From top to bottom: filtered drag coefficient, raw pressure signal, and filtered pressure signal. Pressure data are taken at a single representative
sensor location 25% of the way along the upper surface.
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additional sensor is unlikely to contribute new information. Note also

that due to the airfoil having a nonzero angle of attack we see strong

negative correlation between the upper and lower surface pressures.

However, there is little mutual information between the upper and

lower surfaces. This implies that measurements on one surface do not

necessarily provide information about the other. The exception to this

is the rear part of the upper surface, 0.3 < s < 0.5. In this region there
is little to no mutual information and significant variation in the

correlation. As a result, this region likely requires relatively higher

sensor density. We note that the transition point between the first two

regions, s � 0.3, coincides with the point of flow separation (see

Fig. 1). Therefore the increased disorder observed in Sec. III is likely

due to the complexity and increased unsteadiness of the flow in this

region.

We also compute the standard and extreme event mutual infor-

mation between the surface pressure and the drag coefficient:

I�P�s; t�; q�t� τ�� and IEE�P�s; t�; q�t� τ��. These are plotted in

Fig. 4 for the raw and filtered pressure signals for a range of τ. As we
are interested in the spatial variation of these quantities, to ease

comparison we normalize each by its maximum value. In all cases

we do not observe strong dependence on the lead time τ. As with the
intrapressure mutual information we see strong spatial dependence

in the region 0.3 < s < 0.5. For both the raw and filtered pressure

signal, the extreme event mutual information is (locally) peaked in

this region. We note that the local peak is less pronounced for the

raw data, because in that case the vortex shedding frequency over-

whelms all other frequency content. On the other hand, for the

standard mutual information this region lies in the trough of

the spatial distribution. This suggests that the mechanisms driving

the extreme events are strongest in the separation region. However,

due to their rarity, this connection is not reflected in the standard

mutual information profile. Next, we analyze this extreme event

Fig. 4 Normalized mutual information (left) and extreme event mutual information (right) between raw (top row) and filtered (bottom row) pressure
signal as a function of arc length s for τ � 0;3;7 (blue circles, red triangles, green crosses).

Fig. 3 Pressure covariance matrix cov �P�s�;P�s 0�� (a) and mutual information matrix I�P�s�;P�s 0�� (b). Raw pressure (left); filtered pressure (right).
Here s is the generalized arc length.
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mechanism, and its connection to the extreme event mutual infor-
mation in more detail.

B. Extreme Event Mechanisms

Extreme events occurring in dynamic systems are known to arise
due to a variety of factors—not all of which are fully understood. One
class of dynamic systemknown to give rise to extreme events is slow–
fast multiscale systems [2]. In such cases, the system evolves on two

or more manifolds that have significant separation of characteristic
time scales. At most times, the system evolves along the slower
manifold. Occasionally, the trajectory may encounter instability of
this slowmanifold, resulting in the trajectory rapidly approaching the
fast manifold. Once the unstable region has passed the system relaxes

back to the slow manifold. Such phenomena are often observed as
sporadic high-amplitude bursts [2].
Airfoil flow is an example of such a multiscale system. Such

systems have multipeaked spectral content—or in other words they
have multiple characteristic frequencies. At this Reynolds number
there are two high frequencies (fast manifolds), the vortex shedding
frequency, fv � 1.44, corresponding to the energetically dominant

oscillatory flow, and a second frequency corresponding to the
extreme event dynamics, fe � 0.4. Figure 5a shows the standard
and premultiplied temporal Fourier power spectrum of the filtered
surface pressure defined as

P�s; f� ≡ P�s; t�e−ift dt (11)

and

Ppm�s; f� ≡ fP�s; f� (12)

respectively. The latter is useful for visualizing higher frequency
content as it de-emphasizes the slow dynamics (f → 0). In the

standard power spectrum there is a clear maximum close to f � 0,
corresponding to the slow dynamics. The extreme event frequency
is also evident in the plain spectrum, but is best seen in premultiplied
spectrum, which exhibits a clear peak around f � 0.4. We limit
the frequency axis to f ∈ �0; 1�—which does not included the vortex

shedding frequency, f � 1.44—as it is much stronger than either
the slow or extreme event dynamics and obscures these when
included in the figure. Note also the increased magnitude in the
region 0.3 < s < 0.5 consistent with the results of Sec. III.A. To
illustrate the relative strengths of fv and fe, Fig. 5b shows the power
spectrum of the surface pressure for f ∈ �0; 1.5� at a single location
along the airfoil.
The connection between this frequency and the extreme events is

best interpreted through the wavelet transform. The wavelet trans-
form allows for the visualization of the time-varying strength of a
signal’s frequency content. The wavelet transform has been used in
the past to identify extreme events by for example Srirangarajan et al.
[31] to detect bursts in pipe flow and Cousins and Sapsis [28,29] for
the early detection of roguewaves. The continuouswavelet transform
of a signal x�t� is defined as

X̂�f; t� ≡W�x�t�� � f

fc

∞

−∞
x�s�ψ f

s − t

fc
ds (13)

Hereψ�t� is thewavelet function, andfc is thewavelet specific center
frequency. The wavelet function is not unique, but must satisfy
several conditions, including finite energy and localized support
[26]. Here we use the Morlet wavelet

ψ�t� � e−t
2∕2 cos�5t� (14)

Moving forward we refer to the wavelet transform of the pressure

signal as P̂�s; f; t�, where f is the frequency. Thewavelet transform of
the pressure signal at s � 0.34 is shown in the upper panel of Fig. 6.
This location corresponds to the peak in the spatial power spectrum in
Fig. 5. Figure 6 clearly shows the bursts of energy at f � fe � 0.4.
We define the extreme event indicator γ as the wavelet coefficient

thatmaximizes the spectrogramof the filtered pressure signal, i.e., for
f � fe

γ�s; t� ≡ P̂�s; fe; t� (15)

In the lower panel of Fig. 6 we show the clear correlation between γ
and the extreme drag events. These results suggest that the extreme
events observed in this flow are indeed of the multiscale system
type. Furthermore, viewing them in relation to the relative global
energy content of fv and fe illustrated in Fig. 5b highlights the
limits of energy-based reduced-order modeling strategies such as
principle component analysis (PCA) or proper orthogonal decom-
position (POD) when used in the context of extreme event predic-
tion in such systems. These methods rank modes based on total
energy content, a criterion that in this case would significantly
underestimate the role of the extreme event frequency and neces-
sitate retaining a large number of modes in order to capture the
extreme event dynamics. This is consistent with the findings of
Rudy and Sapsis [8], who observed very slow convergence with
rank when approximating the flowfield using POD. In Sec. V we

Fig. 5 Standard (left) and premultiplied (right) power spectrum of the
surface pressure (a). Power spectrum of surface pressure at a single
location (b).

Fig. 6 Absolute value of wavelet-transformed pressure signal at s �
0.34 (upper panel). Extreme event indicator γ � jP̂jf�fe

at same location

(red triangles) compared to drag coefficient (black line) (lower panel).
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show that preprocessing the pressure signal to extract this extreme

event frequency allows for a drastic reduction in the model com-

plexity and data required for accurate forecasting.

C. Flowfield Analysis

In Secs. III.A and III.B we identified the unstable extreme event

frequency and its connection to the separation region of the airfoil.

Here we zoom out and analyze the full boundary layer to better

understand the mechanisms at the heart of the instability and the

subsequent extreme drag events. To this end we follow the time

evolution of the vorticity field

ω�x; y; t� ≡ ∂v
∂x

−
∂u
∂y

(16)

over the course of a single extreme event from t � 911–931, with a
peak at t � 922. The top panel of Fig. 7 shows three snapshots of

the vorticity field over this time interval—for clarity we focus on the

region near the boundary layer. The corresponding values of

the instantaneous drag coefficient are shown in the small inset of

the same figure. The red markers in the latter represent the time

instances of the three vorticity snapshots. We see clear evidence of

boundary-layer separation/disorder during the time instance corre-

sponding to the peak in drag coefficient. Although we show only a

single extreme event here, this disordered behavior of the boundary

layer was observed during the peak of all extreme events.
The transient dynamics observed in the full vorticity field are

subtle, and thus to better understand these transient dynamics we

compute the wavelet transform of the entire vorticity field:

Ω̂�x; y; t; f� � W�ω�x; y; t�� (17)

This allows us to investigate the component of the vorticity evolving

with the extreme event frequency identified in Sec. III.B—which is

not the dominant energetic contributor to the full field, and is thus

liable to be obscured in the snapshots of the full solution.

1. Global Dynamics

To analyze the dynamics of the boundary layerwe first consider the

wavelet transform of the full flowfield—focusing on the extreme

event frequency

Ω̂e�x; y; t� ≡ Ω̂�x; y; t; f�
f�fe�0.4

(18)

and the vortex shedding frequency

Ω̂v�x; y; t� ≡ Ω̂�x; y; t; f�
f�fv�1.44

(19)

The wavelet components associated with the extreme event fre-

quency (18) and the vortex shedding frequency (19) are plotted in

the center and lower panels of Fig. 7, respectively. In the former, we

see clear evidence of a coherent structure with relatively small

characteristic spatial length scale that undergoes a transient instabil-

ity, resulting in a temporary loss of coherence during the extreme

event before recovering as the drag coefficient returns to its nominal

state. The vortex shedding mode has a much larger characteristic

length scale—on the order of the vortical structures observed in the

full vorticity field—and does not appear to undergo any significant

changes in its dominant length scale during the extreme event.
To further illustrate the dynamics of these two frequency compo-

nents we compute the temporal correlation function

rα�t0; t� ≡ Ω̂�
α�x; y; t0�Ω̂α�x; y; t� dx dy (20)

where the superscript “�” denotes the complex conjugate and α �
e; v and the integration is performed over the entire domain. For the

special case where t0 � t this is equivalent to the L2 norm of the

wavelet mode

Ω̂α
2�t� ≡ Ω̂α�x; y; t�

2
dx dy (21)

Fig. 7 Snapshots of vorticity traversing a single extreme event. Top panel: full vorticity ω. Center and low panels: wavelet coefficient evaluated at the

extreme event frequency Ω̂e and vortex shedding frequency Ω̂v, respectively.
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These metrics, respectively, quantify the temporal evolution of the

shape (length scale) and magnitude of the vorticity at a specific

temporal frequency.

The correlation (20) is plotted in the upper panel of Fig. 8 for

both Ω̂e (blue circles) and Ω̂v (red triangles). We fix t0 � 911
as a representative snapshot corresponding to the vorticity structure

during the quiescent periods—however, any quiescent time instance

could be used. We clearly observe a systematic and drastic loss of

coherence in the extreme event mode during the spikes in the drag

coefficient. Inspection of the center panel of Fig. 7 suggests that this is

at least in part due to an increase in the dominant spatial length scale.

The coherence of the vortex shedding mode actually fluctuates—

with what further analysis reveals to be at close to the extreme event

frequency—with an amplitude that slightly increases during the

extreme events; however, no drastic loss of coherence is observed.

The significance of this fluctuation is not immediately clear, but it

suggests some interaction between the two frequency components—

the investigation of which is the focus of ongoing research.

The lower panel of Fig. 8 shows the time evolution of the norm (21)

of the extreme event mode (blue circles) and vortex shedding mode

(red triangles). To ease comparison, both norms are normalized by

their value at t0. For referencewe also plot the drag coefficient (black)
and the normalized extreme event wavelet coefficient (15), evaluated

at the same representative location discussed previously, s � 0.34
(green squares). While as previously noted, the magnitude of γ peaks
in sync with the extreme drag events, the global norm of the extreme

event component of the vorticity, Ω̂e, drops in magnitude during the

same time intervals. In contrast to both of these, the dominant vortex

shedding mode, Eq. (19), is significantly more stable and exhibits a

much smaller relative drop in magnitude during the extreme events.

2. Dynamics on the Airfoil Surface

To better understand the instability of the extreme event mode and

the associated transfer of energy, we also compute the spatial Fourier

transform of the temporally wavelet transformed vorticity evaluated

at the airfoil surface. In other words we compute

~Ωs�t; f; ks� ≡ F�Ω̂�x�s�; y�s�; t; f��

� Ω̂�x�s�; y�s�; t; f�e−ikss ds (22)

Fig. 9 Isocontours of vorticity amplitude on the airfoil surface as a function of temporal frequency f , spatial wavenumber ks, and time t. Blue arrows
represent direction of energy transfer.

Fig. 8 Top panel: normalized correlation function (20) for t0 � 911 for Ω̂e (blue circles) and Ω̂v (red triangles). Bottom panel: normalized vorticity
wavelet coefficient norms and normalized surface pressure wavelet coefficient γ�s;t�s�0.34 (15) (green squares). Drag coefficient q�t� is shown

in black.
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where ks is the spatial wavenumber with respect to the arclength s
along the airfoil surface defined in Sec. II, and x�s� and y�s� are the
coordinates of that surface. This reduces the spatial dimensions from
two to one, and thus allows us to visualize the transfer of energy
betweenvarious spatial and temporal scales as a function of time. The
isocontours of this quantity are plotted in Fig. 9 over a time horizon
covering two extreme events—the drag coefficient is also plotted
for reference. This plot succinctly summarizes the observations
discussed above. First we see that during the quiescent periods, the
energy of the extreme event mode, which actually seems to meander
slightly about f � 0.4, is concentrated at a wavenumber ks ≈ 20.
Then during the extreme events, energy is drawn from the higher
frequency vortex shedding mode, which serves as an energy reser-
voir, leading to the instability of the extreme eventmode that abruptly
transfers its energy to a lower wave number ks ≈ 10. This appears in
Fig. 9 as the “pinching off” of the isocontours during the spikes in the
drag. This is the manifestation of loss of coherence and increase in
spatial scale of the extreme event mode observed in center panel of
Fig. 7 and quantified in the upper panel of 8. We note in closing that
this phenomenon of the extreme events evolving on a manifold
distinct from the energetically dominant one has been observed in
other systems, such as Kolmogorov flow [37,38]. In that case the
energy of the flow is dominated by a specific triad of spatial wave-
numbers; however, projecting the flow onto this triad fails to predict
the extreme energy dissipation events observed in that flow. Simi-
larly, in the case of the airfoil flow considered here, extracting only
the dominant vortex shedding dynamics would miss the extreme
event dynamics entirely. However, our findings are contrary to the
far more common phenomenon of instabilities transferring energy
from large to small scales.

IV. Offline Sparse Sensor Placement

The analysis of mutual information structure described in Sec. III
indicates that certain sections of the airfoil are statistically more
informative of the drag coefficient. To test the practical implications
of this discovery,we first propose anoffline strategy to optimally select
sensor locations. Such an algorithm does not require actually training
the neural network. Therefore, it can be thought of as a prepossessing
step that allows us to optimally design the network architecture before
training.At each iteration, the sampling algorithm,which is outlined in
Algorithm 1, selects the next best sensor location bymaximizing a cost
function referred to as an acquisition function. Throughout this work
we use the term “acquisition function” strictly in connection with such
a sampling strategy, and the term “cost function” to refer to the cost
function used to train a given model.
For a given application, the choice of acquisition function is not

obvious; see, for example, Chaloner and Verdinelli [39], Sapsis [40],
and Yang et al. [41]. In this framework, sensor locations are selected
sequentially, and therefore we seek locations that are maximally
informative of the drag coefficient and minimally redundant with
respect to the previously placed sensors. Thus, we propose the
following two acquisition functions based on the previously defined
standard and extreme event mutual information:

a1j�1 s; s�j � I�P�s�; q�
�1∕j� j

k�1 I P�s�; P s�k
(23)

a2j�1 s; s�j � IEE�P�s�; q�
�1∕j� j

k�1 I P�s�; P s�k
(24)

where s� is the vector of optimal sensor locations that have already
been placed. The numerator—the mutual information between the
pressure signal with the drag coefficient—rewards predictive
capability. The denominator—the average of the intrapressure sen-
sor mutual information—penalizes redundancy. This second con-
dition ensures that sensors are not placed in locations that do not
contribute information not already encoded in previously placed
sensors.

There is no unique way to quantify the connection between a
prospective sensor location and the previously placed sensors, and
the average used here is only one option. Therefore, we also consid-
ered a second acquisition function where the arithmetic mean in the
denominator of Eqs. (23) and (24) is replacedwith a geometric mean,
but we did not observe significantly different results. Amore exhaus-
tive study of candidate functions is beyond the scope of thiswork, and
so for the sake of brevity we restrict ourselves to Eqs. (23) and (24).
Going forwardwe refer to any results obtained using this algorithm as
offline-mutual-information (OMIN), where N is the number of
sensors.

A. Results: Sensor Placement

We apply Algorithm 1 with acquisition functions (23) and (24) to
our data set to compute the first six optimal sensor locations.
Because the results of Fig. 3b indicate that the general behavior
of the mutual information is not dependent on the lead time τ, we fix
τ � 0. Additionally, in order to facilitate comparisonwith Rudy and
Sapsis [8], we consider only the raw pressure signal. The acquisition
function landscape at each iteration is plotted in Fig. 10. The
optimal senor locations after each iteration are then summarized
in Fig. 11.
The globally optimal sensor locations are simply the points of

maximum standard and extreme event mutual information—these
are located at approximately s � 0.15 for Eq. (23) and s � 0.3 for
Eq. (24), respectively. However, inspection of Fig. 10 indicates that in
the latter case the acquisition function landscape does not display any
significant variation along the airfoil, calling into question the viabil-
ity of Eq. (24) as a practical metric for optimal sensor placement. For
the standard mutual information case, Eq. (23), at iterations 2–4 the
acquisition function exhibits multiple local maxima of roughly equal
value in the region 0.3 < s < 0.5. These multiple peaks are sequen-
tially “picked off” throughout the iterations 2–4. This phenomenon is
also observed, but to a slightly lesser extent, in the extreme event
mutual information case (24). The similarity of these local maxima
mean that these four sensor locations should be thought of as an
“optimal grouping” rather than a strict ranking, since measurement
noise or numerical errors could affect their ordering. However, we
note that adding small amounts of noise did not significantly impact
the qualitative features of the results. Figure 11 highlights that while
the ordering of the sensors varies between the standard and extreme
event versions of the model, the final distribution of the optimal
sensors is qualitatively very similar.
The underside of the airfoil �0.5 < s < 1� is completely ignored

by the algorithm until iteration 5 for the standard case and iteration 6
for the extreme event case, where a strong maximum is observed
just downstream of the leading edge. This solitary underside sensor
near the leading edge is consistent with the mean pressure profile
observed in the flow over an inclined airfoil. The mean pressure
gradient (w.r.t. arc length) is generally significant along the upper
surface but relatively weak along the lower surface. Therefore, a
single sensor can capture a significant amount of the information of
the pressure field along the lower surface, since once the jump in
pressure across the leading edge is established there is not much
more to be gained from further probing the pressure along the
underside of the airfoil.

B. Results: Evaluation

To test the efficacy of the proposed offline sensor placement
algorithm we train the same LSTM network described in Rudy and
Sapsis [8] using the first five optimal sensor locations predicted using

Algorithm 1: Optimal placement
ofN sensors

while j < N do

s�j�1 � argmax
s

aj�1�s; s�j �
update s�j�1 � �s�j ; s�j�1�

end while
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Algorithm 1 with acquisition function (23). Due to the similarities of

the sensor locations predicted by Eqs. (23) and (24) and the high

computational cost of training the network,we omit the predictions of

Eq. (24) from this analysis.We compare those results to those inRudy

and Sapsis [8] using 50 sensors spaced equally around the airfoil. The

network architecture is

→ FC32 → LSTM32 → LSTM32 → FC32 → FC16 → FC8

→ FC4 → FC1 → (25)

where FC and LSTM stand for “fully connected feed forward” and

“long short-term memory,” respectively, and the swish activation

function is applied between each layer [42]. To isolate the effects of

the sensor placement, we make no changes to the architecture or

other than the input dimension and utilize the same training strat-
egies as Rudy and Sapsis [8]. Training is conducted using 70% of
the data, with the remaining 30% split evenly between validation
and testing. The model was trained over three restarts using 140
history points and amean square error (MSE) loss function until the
validation error failed to decrease for 10 epochs—no regularization
was used. The interested reader is referred to Rudy and Sapsis [8]
for a more detailed description of the network architecture and
training strategy.
We compare three different models: the reference case from Rudy

and Sapsis [8] using 50 sensor locations, theOMI5 model, as well as
a second reference case using five uniformly spaced sensors—all
three use the raw pressure data as an input. The last case is included to
verify that any potential benefit of our algorithm is actually due to the
algorithmic placement of the sensors and not simply a reflection of
oversampling by Rudy and Sapsis [8]. The three models are summa-
rized in Table 1.
To compare the predictive capabilities of the models we compute

both the MSE of the model prediction as well as the “maximum
adjusted area under the precision-recall curve”—a metric introduced
by Guth and Sapsis [6] that quantifies the accuracy of extreme event
prediction. The area under the precision-recall curve is then defined
as

α�χ� �
1

0

S�R; χ� dR (26)

where the event rate χ is defined as the probability that the output
exceeds some threshold, the precision S is the ratio of correct event
predictions to total event predictions, and the recall R is the ratio of
correct event predictions to the actual number of events. The maxi-
mum adjusted value is then defined as

α� � max
χ∈�0;1�

�α�χ� − χ� (27)

When the value of α� is large (approaches unity) the model is very
good at predicting rare events; alternatively, when the value

Fig. 11 Optimal sensor locations after each iteration N (a). Optimal
sensor locations on airfoil: standard mutual information (blue) and
extreme event mutual information (red) (b).

Table 1 Summary of neural net models compared in Fig. 12

Name Sensor placement Input observable No. of sensors �N�
OMIN OMI algorithm P�t� N

uni5 Uniform P�t� 1.5

uni:50 Uniform P�t� 50

Fig. 10 OMI acquisition function landscape for sensors 1–6 (left to right, top to bottom)—maxima indicated by stars. Standardmutual information (23)

(blue squares); extreme event mutual information (24) (red triangles).
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approaches zero a model does no better than a guess based on the

aggregate frequency of extreme events.
Figure 12 compares the mean absolute error (MAE) and α� of the

various models for a range of lead times τ. As expected, for all cases
MAE increases and α� decreases with τ—it is more difficult to

predict the far future. Comparing the models, we first observe that

there is no significant difference between the two reference cases

with 5 and 50 sensors, suggesting that the neural network model

developed by Rudy and Sapsis [8] is amenable to far more sparse

sensor distributions than is suggested by those authors. Addition-

ally, we see no clear distinction between the results of the model

trained using our predicted optimal sensor locations and the uni-

formly sampled reference cases. This highlights the limitations of

themutual information as a practical tool for engineering design. To

further highlight this limitation and exclude the possibility of our

conclusions being influenced by oversampling, we train the model

using the five optimal sensor locations individually. In other words,

we train fivemodels, eachwith a single sensor (the nth optimal OMI

prediction) as its input. The same error metrics for this experiment

are plotted in Fig. 13. Again we see that the optimal sensor location

s � 0.14 performs no better, and in many cases worse, than the

suboptimal locations—see, for example, the value of α� at τ � 0
and 7. These results strongly suggest that optimal sensing based

purely on mutual information does not adequately capture the

extreme event mechanism identified in Sec. III.B and thus fails as

a practical tool for optimal sensing.

V. Wavelet Preprocessing for Extreme Event Prediction

Despite its robustness to sensor location, the LSTM network con-

sidered in Sec. IV is expensive to train, so here we explore a different

avenue of model reduction: preprocessing the data through offline

identification of the extreme event dynamics. In Sec. III.B we find that

the extreme event dynamics are directly related to the dynamics of a

single frequency component. Here we show that exploiting this obser-

vation through the event indicator (15) allows for the forecasting of the

extreme events using very simple network models.

A. Methods

The extreme event indicator γ defined in Eq. (15) is not only highly
correlated with the bursting events, as it represents an isolated

frequency component, but also free of noise. This makes it amenable

to accurate numerical differentiation. We therefore define the follow-

ing transformation:

Dn�γ�∶γ → �γ; _γ; : : : ; γ�n�� (28)

which allows us to track not only the value of γ, but also its growth
rate. This is crucial as we seek to forecast bursting for nonzero lead

times τ, and therefore it is imperative for the model to observe

growth and not just magnitude. The differentiation operation in

Eq. (28) is essentially a phase shift of the signal and thus aids the

forecasting capabilities of the model, i.e., the predictions for τ > 0.

Fig. 12 Maximumadjusted areaunder the precision recall curve,α�, andmeanabsolute error,MAE, for themodels summarized inTable 1 as a function
of the lead time τ.

Fig. 13 Maximum adjusted area under the precision recall curve, α�, and mean absolute error, MAE, for models trained using a single sensor as a
function of the lead time τ.
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We find that, for this flow, a single derivative (n � 1) is sufficient,
and including a second derivative did not meaningfully improve

results. Note that this differentiation is applied offline, and thus does

not affect the computational cost of training the model. We propose

a preprocessing procedure described in Algorithm 2, in which we

replace Eq. (7) with

Γ�t� → q�t� τ� (29)

Here the input data are defined as

Γ ≡D1�γ� � �γ; _γ� (30)

and γ is defined in Eq. (15). We utilize a fully connected feed

forward neural network f∶Rn → R1 with layers

→ FC8 → FC16 → FC16 → FC8 → FC1 → (31)

with the swish activation function [42] applied between each layer.

A regularization constant of 0.01 was applied to the activation

layers—no regularization was applied to the kernels. Note that,

unlike the LSTM network (25) utilized by Rudy and Sapsis [8],

this network does not map sequences to sequences; it simply maps

values of Γ at time t to values of q at time t� τ. To train the model

we use both a standard and output-weighted MAE loss function:

MAE �
j

jq̂j − qjj (32)

MAEOW �
j

jq̂j − qjj
fq�qj�

(33)

Here q̂j is the model prediction, qj is the training data, and fq�qj� is
the probability density function of the training data evaluated at qj.
Rudy and Sapsis [34] found that output-weighted loss functions

significantly improve prediction of outlier events in a variety of

flows, including airfoil and Kolmogorov flow. While those authors

use the MSE, we find that in our case the MAE consistently

performed slightly better. Our model is summarized graphically

in Fig. 14.
To quantify the uncertainty of our model, we perform an ensemble

analysis resulting in amean prediction q̂�t� and variance σq�t�.We set

aside 80% of the data set for training, and for each iteration of the

ensemble we randomly select 75% of that training data (60% of the

total) to use for training. The remaining 20% of the data are used for

testing. All results presented here are computed exclusively using

these test data.

B. Results: Basis Comparison

To illustrate the advantages of the wavelet basis and the output-

weighted loss function, we compare the model predictions using the

three basis types P, ~P, and �γ; _γ� and the two loss functionsMAE and

MAEOW. In all cases we use four evenly spread sensor locations

at s � 0.05; 0.35; 0.65; and 0.95. The first two sensor locations

represent areas identified in Secs. III.A and III.B as predictive of

the drag. The latter two locations are chosen as to not neglect the

underside of the airfoil. In all caseswe train an ensemble of 10models

for 250 epochs.
Figures 15 and 16 compare the model prediction of the drag

coefficient to the true value for τ � 0 and τ � 7. At τ � 0, the filtered
pressured model and the wavelet model, shown in blue and red,

respectively, perform well, with only the raw pressure model, shown

in green, suffering from significant noise corruption. In fact, in this

case the smooth pressure model slightly outperforms the wavelet

basis—best seen by comparing the predicted probability density

functions in Fig. 17. This is because there exists an accurate linear

mapping from the smooth pressure ~P�t� to the dragq�t�, and in taking
the wavelet transform of the filtered pressure some information is

lost—limiting the potential accuracy of the wavelet model. See the

Appendix for a brief discussion on this linear mapping. Furthermore,

we observe that for zero lead time the models trained using theMAE
loss function perform slightly better than those trained using the

MAEOW loss—The benefit is most pronounced for the raw pressure

data.
The benefits of the wavelet basis and the output weighted loss

functions do not become apparent until considering nonzero lead

times—a reflection of the nonlinearity of the time shift operation

q�t� → q�t� τ�. In this case, when using the standardMAE loss, all

three models entirely fail to capture the extreme events. However,

whenwe use the output-weighted loss, thewavelet basis retainsmuch

of the accuracy observed for τ � 0, while the performance of the raw

and filtered pressure models deteriorates significantly. The filtered

pressure model still traces the occurrence of the extreme events, but

suffers from significant noise corruption, leading to a number of

false-positive predictions. This phenomenon is even more pro-

nounced for the raw pressuremodel, which, as expected, suffers from

even greater noise corruption. The distinction between the three basis

types is less evident in the predicted probability density functions

shown in 17. Here we see again that the models trained using the

standardMAE loss fail to capture the tails of the distribution entirely;

however, with theMAEOW loss both the filtered pressure andwavelet

models capture the general shape of the distribution. The wavelet

model does, however, capture the small peaks around q � −1.5 and
q � 3 slightly better than the others.
To quantify the forecasting capabilities of eachmodel, we track the

number of extreme events predicted as a function of time. For this

purposewe define an extreme event as a localmaximum,whosevalue

ismore than 2 standard deviations greater than themean. Thus, a time

instant tj is considered to represent an extreme event tEE if it satisfies
the following conditions:

tEE∶tj s:t:
∂q
∂t tj

� 0 & q�tj� > 2σq (34)

We then define the number of extreme events NEE�t1; t2� as the

number of extreme events in the interval, t1 to t2, or more explicitly,

Fig. 14 Illustration of wavelet preprocessing Algorithm 2. Elements outlined in red represent the contributions of this work.

Algorithm 2: Wavelet preprocessing

1. Input data: P�t�
2. Compute spectrogram: jP̂�t�j
3. Select maximum: γ�t� ≡ jP̂�f; t�jf�fe

4. Differentiate: Γ � �γ; _γ�
5. Output: Γ�t�
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N�tn; t0� �
jn

j�j0

δtj;tEE (35)

where tj is treated as a discrete series and j0 and jn are the indices of tn
and t0, respectively. To avoid overpenalizing noise, we enforce a
minimum separation of the identified extreme events equal to the
characteristic period of the extreme event frequency: TEE � 1∕fEE.
While it relies on two user-defined parameters (the extreme event
threshold and the minimum peak separation), this metric provides a
useful quantification of the forecasting capabilities of each model.
This metric is plotted in Fig. 18 for the filtered pressure and

wavelet models for τ � �0; 3; 7; 10�—we omit the raw pressure
model due to its poor performance. Since the models trained using
the MAE loss perform so poorly for τ > 0, we plot only the results
obtained using the MAEOW loss. Again we see that for τ � 0 both
models perform similarly, with the filtered pressure model slightly
outperforming the wavelet model. However, as the lead time τ
increases, the wavelet model retains much of its accuracy, while the
filtered pressure model, on the other hand, dramatically overesti-
mates the number of extreme events. This is due to the significant
noise in the filtered pressure model, the magnitude of which is often
comparable to the underlying signal.

We also compute the MAE,MSE, and α�, defined in Eq. (27), as
well as the error in the total number of extreme events predicted.
These are plotted in Fig. 19. Again, both pressure models overesti-
mate the number of extreme events defined by Eq. (34)—we again
omit the raw pressure model due to its poor performance. However,
for the aggregate error metrics,MAE,MSE, and α�, the differences
are less pronounced. Both the filtered pressure and wavelet model
significantly outperform the raw pressure model, but the difference
between those two is minimal.
The discrepancy in performance between the three basis types can

be understood through the simple nature of the model architecture.
The large amplitude of the high-frequency fluctuations in the raw
pressure is comparable and sometimes even larger than the bursting
amplitude—see Fig. 2—therefore a one-to-one map is destined to
fail. This phenomenon is mitigated by filtering the vortex shedding
frequency out of the pressure data—in this case there is indeed a
linear map for zero lead time. However, for nonzero lead times the
amplitude of the fluctuations at the extreme event frequency are
significant enough to introduce significant ambiguity in a one-to-
one map. Conversely, the wavelet basis is free of noise and fluctuates
on a time scale associated with the mean time between extreme
events, thereby greatly improving the feasibility of such a simple
mapping.

Fig. 15 Time series of predictions for raw pressure (green), filtered pressure (blue), andwavelet (red) models, compared to true values (black) for τ � 0.
Loss function:MAE (a);MAEOW (b).
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C. Results: Optimal Sensing

We now assess the potential of using the wavelet preprocessing

algorithm in the context of optimal sensor selection. For the sake of

brevity we focus exclusively on τ � 7 and forgo comparison with the

raw and filtered pressure models. As in Sec. IV we use Algorithm 1;

however, in this case the acquisition function requires training the

network (and is minimized, not maximized). In particular we con-

sider the following two acquisition functions, which penalize uncer-

tainty in the model prediction:

aiu �
1

T

T

0

σq�t� dt �
1

N

N

j�1

σq;j (36)

aow � 1

T

T

0

σq�t�
fq�q�t��

dt � 1

N

N

j�1

σq;j
fq�qj�

(37)

We refer to these as “integrated uncertainty” (iu) and “output

weighted” (ow), respectively. To distinguish the effects of the loss

and acquisition functions, we perform three iterations of Algorithm 1

with each acquisition function with both theMAE andMAEOW loss

functions. As the acquisition functions need to be evaluated at every

sensor location, we use a slightly reduced ensemble of seven models

and train over only 70 epochs during the active search. Once the

optimal sensor locations are found, we retrain an ensemble of 10

models using those optimal sensors locations for 200 epochs. Due to

the increased cost of performing the search algorithm (as compared to

the offline search in Sec. IV) and our observations that beyond three

sensors the marginal improvement due to each additional sensor

drops off significantly, we restrict our analysis to three sensors.

The resulting optimal sensor locations are summarized in Fig. 20.
Figure 21 compares the output probability density function and time

series of the mean predictions of the model trained with each loss

function and each acquisition function—each using their respective

optimal sensor locations. As a comparison we also include the pre-

dictions of a reference model with three evenly spaced sensors. For

both the time series and the pdf, we observe that regardless of the

acquisition function the models trained using the standard MAE loss

fail, while the models trained with the output-weighted MAEOW

predict the bursting events relatively accurately. To further compare

the models we plot the time series of the uncertainty bound, q̂�t� 	 σq
in Fig. 22. Consistent with the results of Sec. IV, we observe the model

to be robust to specific sensor locations, with little distinction between

the three sensor distributions.
Interestingly, inspection of Figs. 21a and 22 indicates that the

output-weighted acquisition function (37) performs slightly worse

Fig. 16 Time series of predictions for raw pressure (green), filtered pressure (blue), andwavelet (red) models, compared to true values (black) for τ � 7.
Loss function:MAE (a);MAEOW (b).
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than the others—exhibiting some false-positive fluctuations between
t � 920 and t � 960. Furthermore, the results using the non-output-
weighted acquisition function (36) do not exhibit any meaningful
improvement over the reference case. These findings indicate that
the specific locations of the sensors are of secondary importance
when compared to the effects of the output-weighted loss function
and the wavelet preprocessing. The latter of which extracts the
bursting events from the input data a priori. These results indicate
that further emphasizing extreme events through strategies such
as output-weighted optimal sensing is not only unnecessary, but

could result in a loss of accuracy during the quiescent periods. Our
findings here and in Sec. IVare consistent with recent work by Zhong
et al. [19], who also found that sensor location had only minor effects
when using surface pressure measurements for the data-driven
reconstruction of unsteady airfoil flow.
From a practical point of view, the similarity of these results is

significant. The active regions of the flow, and thus the optimal sensor
locations predicted here and in Sec. IV, are likely to vary with
Reynolds number and angle of attack. However, aircraft experience
a wide range of flow speeds and orientations, making the robustness

Fig. 17 Probability density function of predictions for raw pressure (green), filtered pressure (blue), and wavelet (red) models, compared to true values

(black) for τ � 0 (a) and τ � 7 (b). Loss function:MAE (left); MAEOW (right).

Fig. 18 Predicted number of extreme events by filtered pressuremodel (blue) andwaveletmodel (red) compared to true number (black) for from top left
τ � �0;3;7;10�.
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to sensor location a valuable asset. These results support the pos-
sibility of a sparse sensing strategy that is applicable for a wide range
of airfoil designs and is robust to dynamic changes in angle of attack.
A parameter study over Reynolds number and flow geometry to
confirm this hypothesis is beyond the scope of the present work,
but is the topic of ongoing research.

VI. Conclusions

We have investigated the mechanisms driving the nonperiodic
bursting phenomena observed in the two-dimensional flow over a
NACA 4412 airfoil at finite angle of attack. We have conducted a
detailed analysis of the spatiotemporal statistics of the airfoil surface
pressure and its connection to the extreme events observed in the drag
force. Through a wavelet analysis we found that the surface pressure
exhibits multiscale behavior with three distinct time scales. In addi-
tion to the dominant vortex shedding frequency, the flow exhibits a
slowly varying quiescent time scale and a second energetic frequency
component—at approximately one-third the vortex shedding fre-
quency. We established that the extreme excursions of the drag first
observed by Rudy and Sapsis [8] correspond to instabilities of this
latter frequency component in the surface pressure.
These findings were corroborated by an analysis of the wavelet

transformed vorticity field. This analysis revealed that during quies-
cent times the extreme event frequency evolves independently of the
vortex shedding frequency; however, occasionally the extreme event
frequency undergoes a transient instability that links the fortunes of

these two generally disparate time scales. This instability is com-
posed of two steps: first the extreme event frequency draws energy
from the higher-frequency vortex shedding flow, and then at the
extreme event frequency there is an abrupt nonlinear energy transfer
from smaller to larger spatial length scales. Interestingly these find-
ings are contrary to the far more common situation where linear
instabilities transfer energy from a slowly evolving (or stationary)
mean flow to faster time scales and smaller length scales. Therefore,
while we have identified the slow–fast system at the heart of the
bursting events, the exact mechanism bywhich the instabilities in the
pressure and vorticity are translated to the aerodynamic forces is not
yet clear, and remains the topic of ongoing research. For example, it is
still unclear what causes the global (integrated over the full domain)
magnitude of the extreme event mode to decrease during the extreme
events—see the lower panel of Fig. 8—or why the temporal corre-
lation of the vortex shedding mode exhibits fluctuations resembling
the extreme event frequency—see the upper panel of the same figure.
Furthermore, here we have considered only a single angle of attack,
and further study is required to establish how the orientation of the
flow impacts both the active regions of the airfoil and the extreme
event frequency.
From a modeling perspective, we pursued two separate strate-

gies. First, in Sec. IV we investigated the implications of these
results for the existing LSTM architecture developed by Rudy
and Sapsis [8]—which takes raw pressure as its input. We consid-
ered an optimal sensing strategy based purely on the statistics of the
data, and therefore did not require the computationally costly step of

Fig. 19 From top left:MAE,MSE, error in the number of predicted extreme events, and α�. Models: raw pressure (green), filtered pressure (blue), and
wavelet (red).

Fig. 20 Optimal sensor locations predicted using Algorithm 1 with IU (left column) and OW (right column) acquisition functions with MAE (top
row) andMAEOW (bottom row) loss functions.
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training model. Using the LSTM model this mutual-information-

based algorithm failed to predict sensor locations that performed

better than a simple uniform sensor distribution. This failure of the

purely mutual-information-based sensor placement demonstrated

the limitations of a purely statistical offline sampling strategy and

highlighted the limitations of mutual information as a practical tool.

Additionally, the model complexity incurred by the LSTM layers

needed to process rapidly varying time series such as the fluctuating

surface pressure remains cumbersome regardless of the sparsity of

the sensor array.

Second, we also developed a preprocessing algorithm (see Fig. 14)

to extract the time-varying magnitude of the extreme event frequency

component from the raw pressure signal. By isolating the wavelet

coefficient associated with the extreme event frequency, we eliminate

the high-frequency fluctuations resulting in a signal that slowly fluc-

tuates on a time scale associated with the mean time between extreme

Fig. 21 Predicted time series (a) and probability density functions (b) for reference (green), IU (blue), andOW (red) acquisition functions to true values
(black).MAE (top/left) andMAEOW (bottom/right).

Fig. 22 Predictions for reference (green), IU (blue), and OW (red) acquisition functions to true values (black). Shaded area represents mean � one
standard deviation of ensemble prediction.
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events—which are by definition rare. This enables the (approximate)
one-to-one mapping of the wavelet coefficient, which is free of rapid
high-amplitude noise, to the drag for lead times τ > 0. This then
eliminates the need for a costly LSTM architecture and allows for
accurate prediction using a simply connected feed forward neural net-
work. These results are consistent with findings of Cousins and Sapsis
[28,29], who used a spatial wavelet transform wavelet transform to
extract unstable spatial length scales to efficiently predict rogue waves
in variety of dynamic systems, including the Majda–McLaughlin–
Tabak model and the modified nonlinear Schrodinger equation.
While this preprocessing drastically reduces the noise in the signal,

it can, and in our case does, eliminate some potentially useful
information as well. As noted in Sec. V.B and in the Appendix, for
τ � 0 there exists an accurate linear map from the surface pressure to
the drag coefficient. By isolating a singlewavelet coefficient, some of
the information in the pressure signal is lost, leading to the wavelet
model performing slightly worse than the filtered pressure model for
τ � 0. However, the predictions from thewavelet model are far more
robust to increasing values of τ. At τ � 7 the predictions of the
wavelet model have degraded only slightly, while the raw and filtered
pressure models exhibit significant noise corruption. The higher the
frequency of oscillation, the more nonlinear the transformation
q�t� → q�t� τ�—resulting in the degradation of the filtered and
raw pressure models for τ > 0.
This preprocessing alleviates the need for recursive or convolu-

tional network architectures as used by authors such as Rudy and
Sapsis [8] andHou et al. [17].However, evenwith this highly extreme
event-targeted algorithm, we found that training the model using an
output-weighted loss function is necessary for accurate predictions.
Most interestingly, we find that with these training interventions the
specific locations of the sensors is of secondary importance. This is
incredibly advantageous as it suggests that the predictive capabilities
of our approach are robust to dynamic changes in angle of attack or
freestream velocity—however, this requires further study. Our find-
ings suggest that improving the prediction of rare events does not
necessarily require more complex models, but can be achieved by
identifying observables that reflect the underlying physical mecha-
nisms and through tailored training strategies—as also discussed by
various authors, including Sapsis [4], Blanchard and Sapsis [5], Rudy
and Sapsis [34], and Farazmand and Sapsis [37]. We believe that the
herein-proposed wavelet-based analysis is applicable to a wide range
of slow–fast systems and remains the topic of ongoing research.

Appendix: Linear Mapping

Here we illustrate the linear map from the vector-valued filtered
pressure signal ~P�t� to the scalar drag coefficient q�t�. Let
~P ∈ RN×100 and q ∈ RN×1 be their discrete representations-N is
the number of data points (time steps). We then seek a linear repre-

sentation q̂ � ~Pa that minimizes theL2 norm kq − q̂k2. The optimal
coefficient vector is given by

a� � ~P�
trainqtrain (A1)

where the superscript “�” denotes the pseudo-inverse, and the sub-
script “train” refers to the subset of data used for training.Herewe use
the first 10% of the data to fit the regression (38) and the last 20% for
testing. FigureA1 compares the predictions of the linear regression to
the truth for τ � 0 and τ � 7. For τ � 0 the linear prediction is
indistinguishable from the truth, while for τ � 7 the linear model
completely fails. This is a reflection of the highly nonlinear nature of
the time shift operation q�t� → q�t� τ�.
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