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A B S T R A C T

Several efforts have been dedicated to developing computational tools capable of predicting the hydrodynamic
forces and moments of Unmanned Underwater Vehicles (UUVs). However, there is no method at the moment
that allows for real-time computational modeling of all the complex hydrodynamic interaction forces and
moments that a UUV experiences when operating in close proximity to a moving submarine. Real-time
modeling of these hydrodynamic interactions is essential to simulate the motion required to launch and recover
UUVs from submarines. Potential flow models are often fast enough to be used in real time, but lack the
accuracy of Computational Fluid Dynamics (CFD) simulations, which often take hours or days to solve. Here,
we formulate the problem in the context of machine learning, specifically active learning. The goal is to develop
a surrogate model capable of predicting the UUV and submarine hydrodynamic interactions in real time using
a very small number of carefully selected CFD simulations. We introduce a new active learning framework
called Non-Myopic Multi-Fidelity Active Learning for Gaussian Process (GP) regression that accelerates the
convergence of the surrogate model by utilizing the low cost of the low fidelity simulations to explore the
domain, as well as optimally selected high fidelity simulations to improve the model accuracy. The resulting
surrogate model can be integrated into UUV control and autonomy systems and motion simulators to further
enable UUV launch and recovery from submarines. This new active learning method may also be used to create
higher accuracy and lower cost surrogate models in other real world applications.
1. Introduction

In order to enable the launch and recovery of UUVs from sub-
marines, a UUV needs to be able to overcome the hydrodynamic
interaction forces and moments between the two vehicles (Leong,
2014). These hydrodynamic interactions are often predicted using high
fidelity CFD modeling due to its high accuracy. While most CFD simu-
lations take hours to days to complete, a UUV control system needs to
respond within milliseconds in order to maintain the desired trajectory.
As such, the UUV needs to determine the hydrodynamic interaction
forces and moments in real time based on its position, heading, speed,
and proximity to its desired path.

Modeling loads on the UUV can be performed with a variety of
computational models that resolve the governing fluid equations. These
range from low fidelity and low cost models to more expensive and
more accurate models. Specifically, low fidelity models, such as poten-
tial flow solvers use simplified physics which neglects viscosity, skin
friction, boundary layer development, flow separation, and leads to the
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d’Alembert paradox which predicts zero drag on a UUV moving at con-
stant velocity (Newman, 2017; Fossen, 2011). These low fidelity solvers
are often improved and supplemented with simple parametric models
to help overcome these weaknesses and often have the capability to
be solved in real time (Anon, 2018). However, they ultimately lack
the accuracy needed to model the complex real world hydrodynamic
interactions to enable UUV launch and recovery operations. This can
be achieved by CFD solvers that rigorously model all the important
fluid mechanics phenomena, but they have significant computational
cost. Because the required accuracy of the CFD is not capable of being
delivered in real time, a surrogate model is needed that is capable
of being implemented in real time and has the accuracy of the CFD.
While CFD may be performed by some potential flow solvers, the term
CFD for this study refers to the high fidelity computational methods
that use the Reynolds-averaged Navier–Stokes equations to resolve the
UUV hydrodynamics. The potential flow solver refers to the low fidelity
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model that assumes the fluid is inviscid and determines UUV drag using
built-in empirical models.

A typical approach for building a surrogate model is to collect high
fidelity data, i.e. from expensive and highly accurate CFD solvers, and
apply reduced order modeling ideas. As such, this study uses the terms
surrogate model and reduced order model interchangeably. However,
even in an offline setting (i.e. just to produce training data), the
computational cost of CFD can be prohibitive, given that the parameter
space for a UUV is pretty significant (Leong, 2014; Fedor, 2009). For
such a case, an alternative is to combine a few, carefully selected
simulations from a CFD model with plenty of low fidelity computations,
e.g. from a potential flow solver. Integrating various fidelity models
into one surrogate is known as multi-fidelity modeling (Perdikaris
et al., 2015; Kennedy, 2000). By leveraging data from a lower cost
and less accurate model with data from a high fidelity model, the
accuracy of the surrogate model can be improved without the need
for an excessive number of high fidelity simulations. This results in a
significant reduction of the computational cost of the surrogate model
without sacrificing accuracy.

An important question for developing accurate surrogate models
is the selection of the most informative training data, i.e. what CFD
simulations one should perform to get the most important information.
This can be achieved by employing active learning, a type of machine
learning data sampling method in which the algorithm is able to deter-
mine the optimal set of input parameters for which the next simulation
should be performed (Sacks et al., 1989; Chaloner and Verdinelli, 1995;
Blanchard and Sapsis, 2021). Typical active learning algorithms are
characterized by myopia, or nearsightedness: a condition in which
lack of foresight can inhibit the ability of a sampling algorithm to
select the optimal sampling location for the surrogate model (Gonzalez
et al., 2015; Jiang et al., 2017). For example, a game exists where an
unknown random number is selected between 0 and 100. The object
of the game is to minimize the value between a number chosen by
the participant and the unknown random number. In this instance,
the optimal number to select would be 50, halfway between the two
endpoints. This ensures that the maximum error between any random
number and the selected value is 50. Now assume the participant
is allowed to select a second number. Once 50 is selected, the next
optimal value would be either 25 or 75. However, neither of these two
options reduces the maximum error because there is still the potential
to be off by 50. This problem exists because of myopia. Originally,
the participant is only considering selecting one single number. If the
selection method is non-myopic, there are different optimal values
chosen. By knowing beforehand that two selections would be made,
the optimal selections would be at 25 and 75. By selecting these two
points, the maximum value between any random number and one of the
selected values would be 25. This illustrates how having the foresight
of knowing about future sampling characteristics provides a different
set of optimal sampling locations.

This paper introduces the use of a non-myopic multi-fidelity ac-
tive learning GP regression algorithm for reduced order modeling
and compares it with standard myopic active learning techniques.
We begin with a quick review of Gaussian process regression, multi-
fidelity modeling, and active learning in a myopic and non-myopic
setup. In Section 3, we present the formulation and implementation
of the method, and subsequently, in Sections 4 and 5, we examine
its relative advantages in the context of standard benchmark functions
and prototype problems for scalar and vector outputs. In Section 6,
we examine its performance and demonstrate its favorable properties
in the context of reduced order modeling for UUV and submarine
hydrodynamic interactions.

2. Background

2.1. Gaussian process regression

The purpose of GP regression is to develop a reduced order model
2

that is capable of predicting the value of dependent variables based on
the input of independent variables. GP regression is a non-parametric
technique. This means that it does not require the developer to design
a model structure because the structure is determined by the data. In
contrast to typical regression methods, GP provides rigorous estimates
for the epistemic uncertainty of the derived model, i.e. errors due to
lack of data. The GP regression model can be expressed as a random
function,

𝑦 = 𝑓 (𝑥) + 𝜖 (1)

where 𝑥 ∈ R𝑑 , 𝜖 ∼  (0, 𝜎2) represents the noise of the model and
the random function 𝑓 follows a Gaussian distribution with prescribed
mean and covariance function (Rasmussen and Williams, 2006):

𝑓 (𝑥) ∼ (𝜇(𝑥), 𝑘(𝑥, 𝑥′)), (2)

where 𝜇(𝑥) is the mean and 𝑘(𝑥, 𝑥′) the covariance:

𝜇(𝑥) = E[𝑓 (𝑥)] (3)

(𝑥, 𝑥′) = E[(𝑓 (𝑥) − 𝜇(𝑥))(𝑓 (𝑥′) − 𝜇(𝑥′))] (4)

There are many different covariance functions (or kernels) that are
often used in GP models. Some of the more popular kernels include
the white noise kernel, squared exponential kernel, rational quadratic
kernel, and the periodic kernel (Wilson and Adams, 2013). Rather
than explore the impact of these different kernels, this study uses the
popular radial basis function (RBF) kernel with automatic relevance
determination:

𝑘(𝑥, 𝑥′) = exp
(

−(𝑥 − 𝑥′)𝑇 𝜆−1(𝑥 − 𝑥′)
2

)

(5)

where 𝜆 is the diagonal matrix containing the length scales of each
nput dimension. This kernel is selected because it simulates a Bayesian
inear regression model with an infinite number of basis functions. In
ther words, this kernel can be formed from a linear combination of
n infinite number of Gaussian-shaped basis functions (Rasmussen and
illiams, 2006). Because an infinite number of these basis functions

an determine the form of any (sufficiently smooth) output function,
his method is well suited for this study with an unknown form of the
ifferent output functions. Automatic relevance determination is used
ecause it enables the GP regression kernel to have different length
cales for each input dimension.

GP regression is ultimately used to calculate the predicted mean
(𝐗∗) and covariance 𝐾𝑦𝑦(𝐗∗,𝐗′

∗) when conditioning on a set of input–
utput data pairs. In particular, the model is trained with a data set
={𝑥𝑖, 𝑦𝑖}𝑛𝑖=1, where 𝑛 is the number of samples. We also use the

otation 𝐗 = [𝑥1,… , 𝑥𝑛] ∈ R𝑑×𝑛 and 𝐲 = [𝑦1,… , 𝑦𝑛] ∈ R𝑛 where bold
represents a matrix or vector. Likewise, 𝐗∗ = [𝑥∗1,… , 𝑥∗𝑚] ∈ R𝑑×𝑚,
is a set of 𝑚 locations within the 𝑑−dimension domain for which a
prediction is desired. Eqs. (6) and (7) determine the predicted mean
and covariance at a set of points 𝐗∗ (Rasmussen and Williams, 2006):

𝑦(𝐗∗) = 𝐾(𝐗∗,𝐗)[𝐾(𝐗,𝐗) + 𝜎2𝑛𝐈]
−1𝐲 (6)

𝐾𝑦𝑦(𝐗∗,𝐗′
∗) = 𝐾(𝐗∗,𝐗′

∗) −𝐾(𝐗∗,𝐗)[𝐾(𝐗,𝐗) + 𝜎2𝑛𝐈]
−1𝐾(𝐗,𝐗′

∗) (7)

The term 𝜎2𝑛 represents the aleatoric uncertainty or inherently ran-
dom effects of the outcome of an experiment. It is a hyperparameter
that is optimized using gradient descent methods to improve the predic-
tive capabilities of the GP regression (Rasmussen and Williams, 2006).
Additionally, it helps ensure the matrix in brackets in Eqs. (6) and (7)
is well conditioned.

2.2. Active learning

For many problems, like the one considered here, the cost of obtain-
ing accurate training data for a GP regression is very large. As such,
each new data point is selected sequentially and methodically, so that
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Fig. 1. Demonstration of active sampling method of determining the optimal sample location and updating the predicted mean of the surrogate model.
it provides the most improvement to the surrogate model. This type
of data sampling method in which the algorithm is able to determine
the optimal set of input parameters for the next sample is called active
learning or optimal experimental design (Sacks et al., 1989; Chaloner
and Verdinelli, 1995).

Suppose we have a GP regression model 𝑦𝑛−1(𝑥) with an error
of 𝜎𝑛−1(𝑥) =

√

𝐾𝑦𝑦(𝑥, 𝑥) trained from a data set with input vectors
{𝑥1, 𝑥2,… , 𝑥𝑛−1}. The aim in active learning is to use the predicted
mean and error estimate, to optimize the selection of the next sample,
𝑥∗. Specifically, active learning uses what is called an acquisition
function 𝑞(𝑥|𝑦𝑛−1, 𝜎𝑛−1) in order to determine this next optimal sample
𝑥∗ as below:

𝑥∗ = argmax 𝑞(𝑥|𝑦𝑛−1, 𝜎𝑛−1). (8)

Once this optimal sampling location 𝑥∗ is determined, the sample is
taken at that point and the new data is added to the existing data set
𝑛 = {𝑛−1 ∪ (𝑥∗, 𝑦∗)}. The new surrogate mean 𝑦𝑛(𝑥) and error 𝜎𝑛(𝑥)
are determined and the process is iterated as necessary. Fig. 1 illustrates
the active sampling process.

In Fig. 1, the optimal sampling location 𝑥∗ is determined by locating
the point in the domain with the largest model error 𝜎𝑛−1. This popular
acquisition function is known as Uncertainty Sampling (US) and is
shown in Eq. (9), Blanchard and Sapsis (2021).

𝑞𝑈𝑆 (𝑥) = 𝜎2(𝑥) (9)

The uncertainty sampling acquisition function is widely used because it
is intuitive, robust, broadly applicable, inexpensive to compute, and has
analytical gradients, which allows the use of gradient-based optimizers
so it becomes considerably more efficient than other acquisition func-
tions (Gramacy and Lee, 2009). There are many different acquisition
functions like integrated variance reduction, input-weighted integrated
variance reduction, mutual information, and likelihood-weighted ac-
quisition functions (Blanchard and Sapsis, 2021). However, for the
purpose of this study in which non-myopic active learning is explored,
only the uncertainty sampling acquisition function is used due to its
robustness.

2.3. Myopic versus non-myopic active learning algorithms

Typical active learning sampling methods are myopic or ‘‘near-
sighted’’. This means they only consider a single step into the future
when selecting the next optimal sampling location (Gonzalez et al.,
2015). Once a location is selected, the output is evaluated at that single
point and this new data is added to the existing data set. In particular,
when a new single location 𝑥𝑛 is determined using active learning
criteria, the output 𝑦 is computed from a simulation or experiment,
3

𝑛

and the data set is augmented with the new information, i.e. 𝑛 =
{𝑛−1 ∪ (𝑥𝑛, 𝑦𝑛)}. Fig. 2 illustrates this myopic sampling algorithm.

While this myopic approach is often used in practice, there are other
non-myopic approaches that provide solutions to the multi-step look-
ahead problem with better results than a myopic approach (Gonzalez
et al., 2015; Jiang et al., 2017). Specifically, a non-myopic approach
enables the algorithm to determine the next optimal sampling location
based on the influence of several future potential sampling locations.
This allows the algorithm to select the optimal sampling location with
the knowledge about how the many future sampling locations may
influence the next sample. This influence of future evaluations on
current sampling locations is illustrated in Fig. 3 using a blue line.

There are many different non-myopic algorithms that use various
acquisition functions to evaluate the impact of future samples (Gon-
zalez et al., 2015; Jiang et al., 2017; Osborne et al., 2008; Morere
et al., 2016). These acquisition functions vary in how they evaluate
and utilize the expected value of the future samples on the model.
For example, one approach is to develop a look-ahead loss function
that considers the cost or penalty of future samples. However, all of
these non-myopic sampling methods are only used for single fidelity
surrogate models and do not offer a means to which non-myopic meth-
ods can be expanded to operate between models of different fidelity.
In this study, we explore a new sampling method by bridging the
gap between non-myopic sampling and multi-fidelity GP modeling to
achieve improvements in lowering the cost and increasing the accuracy
of high fidelity simulators.

2.4. Multi-fidelity modeling

Multi-fidelity GP modeling uses multiple separate simulators or ex-
periments to develop the surrogate model. Like in the present context,
there is a high fidelity model which is computationally expensive to use
and a low fidelity model which requires much less computational effort
to perform. In the context of this work, the high fidelity simulation
is CFD and the low fidelity simulation is a potential flow solver.
Because of the different assumptions and physics being modeled, the
CFD and potential flow simulators produce different results for any
given sampling location. These results are stored in a high fidelity data
set denoted by  = {𝐗 , 𝐲} and a low fidelity data set  =
{𝐗 , 𝐲}. Kennedy and O’Hagan developed the following first-order
auto-regressive co-kriging scheme for the relationship between high
and low fidelity models (Kennedy, 2000).

𝑓 (𝐗∗) = 𝜌(𝐗∗)𝑓 (𝐗∗) + 𝛿(𝐗∗) (10)

The functions 𝑓 (𝐗∗) and 𝑓 (𝐗∗) represent the GP regression
models trained on the high fidelity and low fidelity data sets respec-
tively. The 𝛿(𝐗 ) is a GP regression model that is independent of
∗
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Fig. 2. Myopic sampling algorithm: At every step, an active learning criterion determines a single new input 𝑥𝑛, for which we obtain the output 𝑦𝑛. Recall that 𝑖 is the data set
of the inputs and outputs.
Fig. 3. Non-myopic sampling algorithm: The next sample is influenced by potential locations of future samples. This allows the method to consider the impact of future results
beyond the capability of myopic sampling.
both 𝑓 (𝐗∗) and 𝑓 (𝐗∗). The 𝜌 parameter is a scaling factor that
correlates the high fidelity and low fidelity models. This scaling factor
is set to unity for the purposes of this study because the high fidelity
CFD model and the low fidelity potential flow model both compute
the same forces so no scaling is needed between the different fidelity
simulators (Kennedy, 2000). Using a multi-fidelity modeling approach
provides the benefit of improving the accuracy and cost by combining
expensive accurate high-fidelity data with cheaper and less accurate
low-fidelity data (Kennedy, 2000; Grassi et al., 2020; Takeno et al.,
2020). This scheme and the others can be used recursively to account
for more than two levels of fidelity, but only two levels are used for this
study. There are other schemes to account for multi-fidelity modeling
besides the first-order auto-regressive co-kriging scheme. These other
schemes include a deep GP in which the scaling factor is replaced
with an unknown function 𝑧(𝑓 (𝑥)) which maps the difference be-
tween the low and high fidelity models (Damianou and Lawrence,
2013). This function 𝑧 is often another GP regression, which is why
this is often called deep GP regression, but the added layer of GP
regression comes at a steep computational price. Another scheme is
the nonlinear auto-regressive multi-fidelity GP regression scheme in
which a higher dimension GP regression model is created that jointly
relates the input space and the outputs of the lower fidelity level to the
output of the higher fidelity model. Once again, this modification to
the multi-fidelity modeling scheme increases the computational cost of
the model (Perdikaris et al., 2017).
4

As such, the first-order auto-regressive co-kriging scheme is used
for this study due to its low cost and ease of implementation (Kennedy,
2000; Damianou and Lawrence, 2013; Perdikaris et al., 2017). Eq. (10)
implies the Markov property: given 𝑓 (𝐗∗) we can learn nothing more
about 𝑓 (𝐗∗) from any other model output 𝑓 (𝐗′

∗) for 𝐗∗ ≠ 𝐗′
∗, i.e

cov{𝑓 (𝐗∗), 𝑓 (𝐗′
∗)|𝑓 (𝐗∗)} = 0, Kennedy (2000).

This allows for the following definition of the high fidelity 𝑓 (𝐗∗),
low fidelity 𝑓 (𝐗∗), multi-fidelity 𝑓 (𝐗∗), and 𝛿(𝐗∗) GP regression
models:

𝑓 (𝐗∗) ∼ (𝑦 (𝐗∗), 𝐾𝑦𝑦, (𝐗∗,𝐗′
∗))

𝑓 (𝐗∗) ∼ (𝑦 (𝐗∗), 𝐾𝑦𝑦, (𝐗∗,𝐗′
∗))

𝛿(𝐗∗) ∼ (𝑦𝛿(𝐗∗), 𝐾𝑦𝑦,𝛿(𝐗∗,𝐗′
∗))

𝑓 (𝐗∗) ∼ (𝑦 (𝐗∗), 𝐾𝑦𝑦, (𝐗∗,𝐗′
∗))

where 𝑦 (𝐗∗) = 𝑦 (𝐗∗) + 𝑦𝛿(𝐗∗)

and 𝐾𝑦𝑦, (𝐗∗,𝐗′
∗) = 𝐾𝑦𝑦, (𝐗∗,𝐗′

∗) = 𝐾𝑦𝑦,𝛿(𝐗∗,𝐗′
∗)

(11)

By expanding Eqs. (2), (6), (7), and (10) to account for the multi-
fidelity modeling approach, the predicted mean and covariance of the
low and high fidelity GP models are derived. Additionally, the 𝛿(𝐗∗) GP
regression model from Eq. (10) has a predicted mean and covariance
listed in Eq. (14). In order to determine the mean of the 𝛿(𝐗∗) GP
regression model, a vector of the outputs 𝐲𝛿 is needed. This is found by
using the difference between the high fidelity and low fidelity outputs
for each of the 𝑛 high fidelity samples at the corresponding low fidelity
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sample locations as shown in Eq. (15). This requires that the samples
of the high fidelity data set are a subset within the low fidelity data set,
i.e 𝐗 ⊆ 𝐗 .

𝑦 (𝐗∗) = 𝐾(𝐗∗,𝐗 )[𝐾(𝐗 ,𝐗 )

+𝜎2𝑛𝐈]
−1𝐲

𝐾𝑦𝑦, (𝐗∗,𝐗′
∗) = 𝐾(𝐗∗,𝐗′

∗) −𝐾(𝐗∗,𝐗 )[𝐾(𝐗 ,𝐗 ) + 𝜎2𝑛𝐈]
−1

×𝐾(𝐗 ,𝐗′
∗)

𝜎 (𝐗∗) =
√

𝐾𝑦𝑦, (𝐗∗,𝐗∗)

(12)

and
𝑦 (𝐗∗) = 𝐾(𝐗∗,𝐗 )[𝐾(𝐗 ,𝐗 )

+𝜎2𝑛𝐈]
−1𝐲

𝐾𝑦𝑦, (𝐗∗,𝐗′
∗) = 𝐾(𝐗∗,𝐗′

∗) −𝐾(𝐗∗,𝐗 )[𝐾(𝐗 ,𝐗 ) + 𝜎2𝑛𝐈]
−1

×𝐾(𝐗 ,𝐗′
∗)

𝜎 (𝐗∗) =
√

𝐾𝑦𝑦, (𝐗∗,𝐗∗)

(13)

and
𝑦𝛿(𝐗∗) = 𝐾(𝐗∗,𝐗 )[𝐾(𝐗 ,𝐗 ) + 𝜎2𝑛𝐈]

−1𝐲𝛿
𝐾𝑦𝑦,𝛿(𝐗∗,𝐗′

∗) = 𝐾𝑦𝑦, (𝐗∗,𝐗∗)

𝜎𝛿(𝐗∗) =
√

𝐾𝑦𝑦,𝛿(𝐗∗,𝐗∗)

(14)

nd

𝛿 = {𝑦 ,𝑖 − 𝑦 ,𝑖}𝑛𝑖=1 (15)

q. (11) through (15) provide the predicted mean and covariance for all
f the elements used in multi-fidelity GP regression. In summary, this
ulti-fidelity GP regression framework outlined simply in Eq. (10) can

e used to construct probabilistic models that enable the combination
f high and low fidelity simulators. This utilizes the benefits of the
ifferent fidelity simulators by capturing the high accuracy and low
omputational cost from the high and low fidelity simulators respec-
ively. This framework provides the grounds for which the non-myopic
ctive sampling concept can be incorporated into a multi-fidelity GP
egression scheme to improve the cost and accuracy of the surrogate
odel.

. Non-myopic multi-fidelity active learning

.1. Inter-model acquisition function

Motivated by the advantage of producing a low cost and high
ccuracy surrogate model using the multi-fidelity framework, as well
s a non-myopic setup for active learning, we proceed with the formu-
ation of a non-myopic multi-fidelity active learning algorithm. Before
he algorithm can be formalized, we must introduce a new type of
cquisition function called an inter-model acquisition function 𝑞𝐼𝑀 . It
s used to determine the next location for the high fidelity simulation to
e performed. This new type of acquisition function takes into account
he statistics of multiple GP regression models with differing fidelity,
ather than a single fidelity GP regression model like other acquisition
unctions. The general form of the inter-model acquisition function is
s follows:

𝐼𝑀 (𝐗∗) = 𝑓 (𝑦 (𝐗∗), 𝜎 (𝐗∗) = 𝜎𝛿(𝐗∗), 𝑦 (𝐗∗), 𝜎 (𝐗∗), 𝑦𝛿(𝐗∗)).

(16)

In order to formulate an effective inter-model acquisition function,
consider an example high fidelity and a multi-fidelity GP regression
model. Recall from Eqs. (11) and (14) that 𝑦 (𝐗∗) = 𝑦 (𝐗∗)+𝑦𝛿(𝐗∗)
and 𝜎 (𝐗∗) = 𝜎 (𝐗∗) = 𝜎𝛿(𝐗∗). Fig. 4 illustrates a high fidelity and
a multi-fidelity GP regression model from Eq. (11) with three different
5

low fidelity active samples.
Fig. 4 is an illustration used to compare the performance of high
fidelity and multi-fidelity GP regression models and demonstrate the
motivation for the inter-model acquisition function. In Fig. 4(a), the
next three optimal sampling locations are located using an acquisition
function low fidelity GP regression model. Comparing Figs. 4(a) and
4(b) demonstrates that the first two low fidelity active samples have
little impact on the mean of the multi-fidelity GP regression model.
This is because the multi-fidelity GP regression model is approximate
to the ground truth in these sampling locations so little improvement is
made by taking these samples. The model is already relatively accurate
despite having a large uncertainty at these locations. However, the
third low fidelity sample has a large impact on the multi-fidelity GP
regression model because the ground truth is farther away from the
predicted mean. For this reason, the inter-model acquisition function
in use for this study calculates the absolute difference between the
predicted mean of the high and multi-fidelity GP regression models.
This is referred to as the absolute difference inter-model acquisition
function and is defined in Eq. (17). The high fidelity sample is selected
at the location in the domain where the maximum absolute difference
between the mean of the high and multi-fidelity GP model exists. This
is chosen to capitalize on the exploration of the low fidelity sampling
to identify regions where the high fidelity model is inaccurate. If this
difference is the result of a divergence between the low and high
fidelity simulations, then the 𝛿(𝐗∗) GP model from Eqs. (10) and (11)
is updated to account for this discrepancy to retain the accuracy of the
multi-fidelity GP regression model. This allows the multi-fidelity GP
regression model to provide greater opportunities to identify optimal
locations for future high fidelity samples. This ultimately enables the
multi-fidelity inter-model active sampling to outperform high fidelity
active sampling.

𝑞𝐴𝐷(𝐗∗) = |𝑦 (𝐗∗) − 𝑦 (𝐗∗)| = |𝑦 (𝐗∗) − (𝑦 (𝐗∗) + 𝑦𝛿(𝐗∗))|

𝑥∗ = argmax 𝑞𝐴𝐷(𝐗∗) = argmax |𝑦 (𝐗∗) − 𝑦 (𝐗∗)|
(17)

In summary, the inter-model acquisition function is used to deter-
mine the next optimal high fidelity sampling location by considering
the statistics from different fidelity models. Because the low fidelity
model can be sampled many times before sampling a high fidelity
data point, the non-myopic characteristic of the acquisition function
emerges. It considers how the low fidelity model changes as it iterates
through many future low fidelity samples and uses this information
to determine the location of the next high fidelity sample. This non-
myopia allows the more robust exploration of the domain in the low
fidelity regime before a high fidelity sample is taken. Extensively
searching the low fidelity domain increases the likelihood of identifying
regions with large model errors. These regions are likely to carryover
into the high fidelity regime and provide an optimal sampling location
where a high fidelity sample will provide large improvement to the
model accuracy.

3.2. Non-Myopic Multi-Fidelity (NMMF) active learning algorithm

By combining the multi-fidelity GP regression framework with the
non-myopic approach for active learning, we proceed with the formula-
tion of a non-myopic multi-fidelity active learning algorithm. It consists
of the following steps and the pseudo-code is listed in Algorithm 1:

1. Begin with a small number of high and low fidelity simulations
to make initial data sets, i.e.  and  . These high and
low fidelity simulations are performed at the same 𝐗 locations
within the domain but result in different outputs, i.e. 𝐲 and
𝐲 . These initial data sets are used to determine 𝛿 = {𝐗, 𝐲𝛿}
from Eq. (15). Next, GP regression is performed on  , ,𝛿
to obtain 𝑦 , 𝑦 , 𝑦𝛿 , 𝜎 , and 𝜎 = 𝜎𝛿 using Eqs. (12), (13),
and (14).
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Fig. 4. Inter-model acquisition function: An example predicted mean and error of the high (blue) and multi-fidelity (orange) GP regression models are plotted against the ground
truth data (black) that all the different fidelity models are attempting to replicate. The location of the next high fidelity sample is determined by considering the difference between
the predicted mean of the high and multi-fidelity models. This optimal location is determined using the statistics of two different fidelity models.
2. Perform active learning to select an optimal sample from the
low fidelity model 𝑥∗ using Eq. (8) and run the corresponding
low fidelity simulation to obtain 𝑦∗ . The uncertainty sampling
acquisition function in Eq. (9) is used in this study due to its
robustness, but other acquisition functions are acceptable. After
the sample has been selected and simulated, GP regression is
performed using Eq. (13) to find the new 𝑦 and 𝜎 . This
low fidelity sampling is repeated for a set number of iterations
𝑗, which is a parameter set by the user. This search provides
new information about the low fidelity GP regression model at
many new points without having the cost of running multiple
high fidelity simulations.

3. Select the high fidelity sample 𝑥∗ using Eq. (17) and perform
the high fidelity simulation to obtain 𝑦∗ at this sample location.
This inter-model acquisition function is non-myopic because it
considers how the low fidelity model evolves through multiple
samples and uses this information to select the high fidelity
sampling location. Next, perform a low fidelity simulation at the
location of the high fidelity sample and add it to the low fidelity
data set  .

4. Remove any low fidelity samples from the low fidelity data
set  that are not at locations where high fidelity samples
6


are also taken. The examples in this study removed these low
fidelity samples in order to compare acquisition performance
against other acquisition methods with the same size data sets
in order to provide a fair comparison, rather than see model
improvement due to larger data sets. While removing low fi-
delity samples may potentially result in a less accurate model,
this is also a more robust approach because it prevents the low
fidelity data set from becoming too large and ill-conditioned
resulting in problematic inverse matrix operations in Eq. (13)
during GP regression. However, this algorithm may be used
without removing these low fidelity samples if the data set is
small enough to allow accurate GP regression modeling. Next,
use Eq. (15) to update 𝛿 with the new high fidelity sample.
Finally, perform GP regression on  , ,𝛿 to obtain 𝑦 ,
𝑦 , 𝑦𝛿 , 𝜎 , and 𝜎 = 𝜎𝛿 using Eqs. (12), (13), and (14).

5. Repeat steps 2 through 4 until the desired number of high
fidelity samples is taken.

The pseudo-code in Algorithm 1 outlines the non-myopic multi-
fidelity active learning algorithm for GP regression.
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Algorithm 1 Non-Myopic Multi-Fidelity (NMMF) Active Learning
Input:  = {𝑋 , 𝐲}, = {𝑋 , 𝐲},𝛿 = {𝐗𝛿 , 𝐲𝛿} where
𝑋 = 𝑋 = 𝑋𝛿
Perform GP regression on  , ,𝛿 to obtain 𝑦 ,0(𝐗∗),
𝜎 ,0(𝐗∗), 𝑦 ,0(𝐗∗), 𝜎 ,0(𝐗∗),

𝑦𝛿,0(𝐗∗), 𝜎𝛿,0(𝐗∗); equations ((12), (13), (14))
For 𝑖 = 1 to 𝑚

For 𝑗 = 1 to 𝑛
Select low fidelity location 𝑥∗ ,𝑗 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑞𝑈𝑆
(𝐗∗|𝜎 ,𝑗−1(𝐗∗));

equations ((8), (9))
Run low fidelity simulation at 𝑥∗ ,𝑗 to obtain 𝑦∗ ,𝑗
Temporarily augment data set  ,𝑗 = {(𝐗 ,𝑗−1, 𝐲 ,𝑗−1) ∪
(𝑥∗ ,𝑗 , 𝑦

∗
 ,𝑗 )}

until 𝑥∗ ,𝑖 is found
Perform GP regression on  ,𝑗 to obtain 𝑦 ,𝑗 (𝐗∗), 𝜎 ,𝑗 (𝐗∗);

equation (13)
End For
Select high fidelity location 𝑥∗ ,𝑖 =
𝑎𝑟𝑔 𝑚𝑎𝑥 𝑞𝐴𝐷(𝐗∗|𝑦 (𝐗∗), 𝑦 (𝐗∗), 𝑦𝛿(𝐗∗));

equation (17)
Run high fidelity simulation at 𝑥∗ ,𝑖 to obtain 𝑦∗ ,𝑖
Augment data set  ,𝑖 = {(𝐗 ,𝑖−1, 𝐲 ,𝑖−1) ∪ (𝑥∗ ,𝑖, 𝑦

∗
 ,𝑖)}

Restore low fidelity data set  to condition before augmented
with 𝑥∗ ,𝑗 , 𝑦

∗
 ,𝑗 , i.e.  ,𝑖−1

Run low fidelity simulation at 𝑥∗ ,𝑖 = 𝑥∗ ,𝑖 to obtain 𝑦∗ ,𝑖
Augment data sets  ,𝑖 = {(𝐗 ,𝑖−1, 𝐲 ,𝑖−1) ∪ (𝑥∗ ,𝑖, 𝑦

∗
 ,𝑖)}, and

𝛿,𝑖 = {(𝐗𝛿,𝑖−1, 𝐲𝛿,𝑖−1) ∪ (𝑥∗ ,𝑖, 𝑦
∗
 ,𝑖 − 𝑦

∗
 ,𝑖)}; equation (15)

Perform GP regression on  ,𝑖, ,𝑖,𝛿,𝑖 to obtain 𝑦 ,𝑖(𝐗∗),
𝜎 ,𝑖(𝐗∗), 𝑦 ,𝑖(𝐗∗),

𝜎 ,𝑖(𝐗∗), 𝑦𝛿,𝑖(𝐗∗), 𝜎𝛿,𝑖(𝐗∗); equations ((12), (13), (14))
End For

Overall, this new non-myopic multi-fidelity framework utilizes the
ow cost of the low fidelity simulations to explore the domain, as
ell as optimally selected high fidelity simulations to improve the
odel accuracy. This allows for GP regression models to become more

ccurate while reducing the computational cost of running high fidelity
imulations.

.3. Advantages of multi-fidelity Gaussian process regression model

While the multi-fidelity GP regression model serves a vital role in
he active learning process, there are additional benefits that come
rom using this approach. Because this multi-fidelity GP model is used
o exploit the relationship between the high fidelity and low fidelity
imulators, modeling differences between the simulators could help
evelopers to better understand the limitations of low fidelity simu-
ators. While it is necessary to have prior knowledge of the low and
igh fidelity simulator performance during development, this approach
rovides quantifiable differences and errors of the different fidelity
odels which may prove valuable. There may be portions of the input

pace in which the low fidelity model is suitable for many purposes. The
ulti-fidelity GP model helps quantify the accuracy of the low fidelity
odel with respect to the high fidelity model. Additionally, the results

f the multi-fidelity GP model could be integrated directly into the low
idelity simulators to improve their accuracy.

. Evaluation of NMMF active learning algorithm

To assess the performance of the NMMF active learning algorithm
ompared to other state of the art algorithms, a large number of high
idelity simulations needs to be performed. For this reason, we first
emonstrate its advantages on some test problems and then we apply
t to CFD problems. Specifically, the performance of the developed
lgorithm is compared to that of the traditional myopic multi-fidelity
7

d

sampling method, as well as the standard sampling method using the
uncertainty sampling acquisition function for the high fidelity model.

Two different prototype problems are selected in a multi-fidelity
setup with a number of dimensions close to that of the UUV and
submarine hydrodynamics problem. For both of the problems in this
section, the number of low fidelity samples that are performed before
selecting the high fidelity sampling location is held constant at 10 for
consistency. However, this is a parameter that may be adjusted for
other applications based on the computational cost of the low fidelity
search and the dimensionality of the domain. The error used to evaluate
the accuracy of the surrogates is the Mean Absolute Percentage Error
(MAPE). This is chosen because it normalizes the error, rather than
looking at absolutes error alone. The MAPE is defined in the following
equation in terms of the predicted quantity, 𝑦𝑝, and its exact value 𝑦𝑒:

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

|

𝑦𝑝,𝑖 − 𝑦𝑒,𝑖
𝑦𝑒,𝑖

|

|

|

|

|

(18)

4.1. Three DOF trebuchet with a hinged counterweight and sling

We first consider the simulation of projectile range from a three de-
gree of freedom trebuchet with a hinged counterweight and sling (Con-
stans, 2013; Siano, 2013; Rutan and Wieczorek, 2005). Fig. 5 illustrates
the mechanical system of the simulation.

Using Lagrangian mechanics, the equations of motion outlined
in Eq. (19) are derived to simulate the motion of the trebuchet using the
variables defined in Fig. 5. These equations of motion are coupled and
highly non-linear. These are the types of problems for which surrogate
models are often created.

⎡

⎢

⎢

⎢

⎣

𝑚1𝑙21 + 𝑚2𝑙22 + 𝑚𝑎𝑟𝑚𝑙
2
𝑎𝑟𝑚 + 𝐼𝑎𝑟𝑚 𝑚1𝑙1𝑙4 cos (𝜃 − 𝜙) −𝑚2𝑙2𝑙3 cos (𝜃 − 𝜙)

𝑚1𝑙1𝑙4 cos (𝜃 − 𝜙) 𝑚1𝑙24 0
−𝑚2𝑙2𝑙3 cos (𝜃 − 𝜙) 0 𝑚2𝑙23

⎤

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎣

�̈�
�̈�
�̈�

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

−𝑚1𝑙1𝑙4�̇�2 sin (𝜃 − 𝜙) + 𝑚2𝑙2𝑙3�̇�2 sin (𝜃 − 𝜙) − (𝑚1𝑙1 − 𝑚2𝑙2 − 𝑚𝑎𝑟𝑚𝑙𝑎𝑟𝑚)𝑔 cos (𝜃)
𝑚1𝑙1𝑙4�̇�2 sin (𝜃 − 𝜙) − 𝑚1𝑙4𝑔 cos (𝜙)
𝑚2𝑙2𝑙3�̇�2 sin (𝜃 − 𝜙) − 𝑚2𝑙3𝑔 cos (𝜓)

⎤

⎥

⎥

⎥

⎦

(19)

where 𝑚𝑎𝑟𝑚 = 𝑓 (𝑙1, 𝑙2, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠), 𝑙𝑎𝑟𝑚 = 𝑓 (𝑚𝑎𝑟𝑚, 𝑙1, 𝑙2, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠), and
𝐼𝑎𝑟𝑚 = 𝑓 (𝑚𝑎𝑟𝑚, 𝑙1, 𝑙2, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠).

The initial conditions in use to solve the system of equations are
listed below:

𝜃0 = sin−1
(

ℎ0
𝑙2

)

, 𝜙0 =
−𝜋
2
, 𝜓0 = 0, 𝜃0 = 0, �̇�0 = 0, �̇�0 = 0 (20)

The projectile is released at a constant launch hook angle 𝛽. The
aunch hook angle is the angle between the trebuchet arm 𝑙2 and
ling 𝑙3. After the projectile is released, the range of the projectile is
etermined using standard Newtonian projectile motion physics which
eglects air resistance.

These equations of motion have the potential to allow for a higher
imension domain by allowing more parameters to vary, like the launch
ook angle 𝛽 or other trebuchet arm moment of inertia parameters like
aterial density or thickness of the arm. Likewise, the domain could

e reduced by fixing certain input variables to a constant value. The
omain for this problem is selected to be six-dimensional and the range



Ocean Engineering 288 (2023) 116016B. Hammond and T.P. Sapsis
Fig. 5. Three degree of freedom trebuchet with a hinged counterweight (𝑚1) and projectile (𝑚2) mounted in a sling.
of the various input variables is as follows:

𝑙1 ∈ [0.5, 1.5]

𝑙2 ∈ [3.5, 4.5]

𝑙3 ∈ [3.0, 4.0]

𝑙4 ∈ [0.1, 1.0]

ℎ0 ∈ [3.0, 3.5]

𝑚1 ∈ [40, 400]

(21)

A simpler two degree of freedom simulation known as a trebuchet
with a fixed counterweight and sling is used for the low fidelity model.
Unlike the previous trebuchet model, the counterweight is not hinged
and is mounted directly on the end of the trebuchet rotating arm.
Because this two degree of freedom trebuchet has the same potential
as the previous trebuchet model, the performance is similar except
that the low fidelity model cannot capture the efficiency effects that
are influenced by the hinged counterweight. Fixing the counterweight
simplifies the equations of motion by removing the influence of the 𝑙4
and 𝜙 variables which reduces the computational cost.

Fig. 6 shows the performance of the different sampling methods on
the three degree of freedom trebuchet problem. The entire process of
creating a new surrogate model from 60 high fidelity active samples
is repeated 100 times. This is performed in order to reduce the varia-
tion between repetitions to better assess the accuracy of the sampling
method. Also, the same number of high fidelity samples is taken for
each sampling method to allow for fair comparison of the sampling
techniques.

Overall, the NMMF sampling algorithm outperforms both the my-
opic multi-fidelity and standard high fidelity algorithms. This sampling
method produces a more accurate model with fewer high-fidelity ex-
periments than the other sampling methods, although the benefits, in
this case, are not substantial. The fact that the myopic multi-fidelity
sampling algorithm outperforms the high fidelity sampling method is
also consistent with other results in literature (Grassi et al., 2020;
Takeno et al., 2020).

4.2. Borehole function

The borehole function is an eight-dimensional highly non-linear
equation developed by Harper and Gupta (1983). This equation is
used to determine the volumetric flow rate through a borehole that
is drilled through an upper aquifer, a nuclear waste repository, and
into a lower aquifer. This function has been used in literature to
evaluate the performance of computer models. Xiong also developed
a low fidelity approximation of this model which enables the borehole
function to also evaluate multi-fidelity models (Xiong et al., 2013). The
8

multi-fidelity borehole function, listed in Eqs. (22) and (23), is used
Fig. 6. Comparison of non-myopic multi-fidelity active learning algorithm against
other active sampling algorithms on the three degree of freedom trebuchet. The error
bands indicate one half of the median absolute deviation.

to evaluate the performance of the non-myopic multi-fidelity sampling
algorithm.

𝑦 (𝑥) =
2𝜋𝑇𝑢(𝐻𝑢 −𝐻𝑙)

ln (𝑟∕𝑟𝑤)

(

1 +
2𝐿𝑇𝑢

ln (𝑟∕𝑟𝑤)𝑟2𝑤𝐾𝑤
+
𝑇𝑢
𝑇𝑙

)−1

(22)

𝑦 (𝑥) =
5𝑇𝑢(𝐻𝑢 −𝐻𝑙)

ln (𝑟∕𝑟𝑤)

(

1.5 +
2𝐿𝑇𝑢

ln (𝑟∕𝑟𝑤)𝑟2𝑤𝐾𝑤
+
𝑇𝑢
𝑇𝑙

)−1

(23)

Eq. (24) lists the domain of the various input variables.

𝑟𝑤 ∈ [0.05, 0.15]

𝑟 ∈ [100, 50000]

𝑇𝑢 ∈ [63070, 115600]

𝐻𝑢 ∈ [990, 1110]

𝑇𝑙 ∈ [63.1, 116]

𝐻𝑙 ∈ [700, 820]

𝐿 ∈ [1120, 1680]

𝐾𝑤 ∈ [9855, 12045]

(24)

The different GP sampling methods are evaluated on the borehole
function. Each surrogate model takes 100 high fidelity samples and
repeats this process 450 different times in order to reduce the variance
of the results of the different surrogates. Fig. 7 shows how each method
performs on the borehole function test case.
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Fig. 7. Comparison of non-myopic multi-fidelity active learning algorithm against
other active sampling algorithms on the borehole function. The error bands indicate
one half of the median absolute deviation.

The NMMF sampling method is able to produce the lowest model
error in the majority of the solution space. Initially, this method has
the highest error, but it rapidly improves to the most accurate sampling
scheme, approximately after 30 to 40 simulations are conducted. This is
likely because the low and high fidelity models have a larger difference
than in the other test cases. This means that the initial high fidelity
samples are likely used to quantify the difference 𝛿(𝐗∗) (Eqs. (10) and
(11)) between the high and low fidelity models, rather than better ex-
plore the domain. Once this difference is well explored and quantified,
the exploratory benefits of the NMMF algorithm quickly outperform the
other two sampling methods.

5. Adaptations for multi-dimensional outputs

The considered prototype problems demonstrate the effectiveness
of the NMMF active learning algorithm in setups where the output is
a scalar quantity. However, for the submarine and UUV hydrodynamic
interaction problem, the surrogate model has a vector output, which
includes the surge force, sway force, and yawing moment experienced
by the UUV. One can address this issue by simply building three sepa-
rate surrogate models, one for each output. However, having multiple
outputs creates a new obstacle. When a high fidelity CFD simulation is
run at a single location in the domain, all three outputs are determined.
The acquisition functions so far have been for a single output and they
need to be modified to account for multiple outputs. The best way to
make these modifications is explored.

Three different methods are considered as options to determine the
optimal sampling location for the multiple outputs. The first is a ‘‘round
robin’’ method, meaning that the output for which the optimal point is
selected is alternated between all the outputs. The number of outputs
of the surrogate is denoted as 𝑘. Let 𝜎2𝑖 denote each one of the three
different surrogate output variances or epistemic uncertainties where
𝑖 = 1,… , 𝑘. Eq. (25) shows the ‘‘round robin’’ method in which the
sampling location is selected by alternating which output is used for
the acquisition function over the span of all 𝑛 samples.

𝑥∗𝑗+1 = arg max 𝑞𝑈𝑆
(

𝑥|𝜎𝑖
)

for 𝑖 = 𝑗 − 1(𝑚𝑜𝑑 𝑘) + 1. (25)

The second method is the ‘‘maximum variance’’ method. This ap-
proach begins by computing the optimal sampling location 𝑥′𝑖 for each
output individually. Next, the GP model is used to predict the epistemic
variance at each location 𝜎2𝑖 (𝑥

′
𝑖). This is then normalized by the actual

variance of the output data for each output 𝜎2𝑦,𝑖. Lastly, the sampling
location with the largest normalized variance is selected because this
9

is the theorized location in which a sample could best reduce the
uncertainty of the multiple outputs. Eq. (26) denotes the ‘‘maximum
variance’’ method.

𝑥∗𝑗+1 = arg max

(

𝜎2𝑖 (𝑥
′
𝑖)

𝜎2𝑦,𝑖

)

for 𝑖 = 1,… , 𝑘,

where 𝑥′𝑖 = argmax 𝑞𝑈𝑆 (𝑥|𝜎2𝑖 ) and 𝜎2𝑦,𝑖 =
1
𝑗

𝑗
∑

𝑙=1

(

𝑦𝑖,𝑙 − 𝑦𝑖
)2 .

(26)

The third method under consideration is called the ‘‘weighted’’
method. This approach looks for an optimal sampling location by
assessing the multiple outputs as a whole rather than individually.
Specifically, the statistics of the individual outputs are combined based
on a weight factor into a single weighted variance 𝜎2𝑤 to be used with
the uncertainty sampling acquisition function. The weight used for each
output is the inverse of its training data variance for that given output.
This is used as the weight in order to try and normalize the different
output variances before they are combined. If they are not normalized,
then the variance of one output could dominate the weighted variance,
even if it has a low epistemic uncertainty. This could happen because
the outputs are not normalized so outputs with larger values would
have a larger impact on the weighted variance. Once these individual
variances are combined into a single weighted variance, the optimal
sampling location is selected using the following acquisition function:

𝑥∗𝑗+1 = arg max 𝑞𝑈𝑆 (𝑥|𝜎2𝑤(𝑥)), where 𝜎2𝑤(𝑥) =
𝑘
∑

𝑖=1

𝜎2𝑖 (𝑥)

𝜎2𝑦,𝑖
(27)

An example problem with three outputs 𝑦1, 𝑦2, and 𝑦3 is used to
evaluate these different multiple output sampling methods. The Park
1, Park 2, and Colville functions listed as Eqs. (28), (29), and (30) are
used as the three surrogate outputs (Surjanovic and Bingham, 2013).
The domain of the input space is 𝑥𝑖 ∈ [0.1, 1] for all 𝑖 = 1, 2, 3, 4.

𝑦1(𝑥) =
2
3
𝑒𝑥1+𝑥2 − 𝑥4 sin (𝑥3) + 𝑥3 (28)

𝑦2(𝑥) =
𝑥1
2

⎡

⎢

⎢

⎣

√

1 + (𝑥2 + 𝑥23)
𝑥4
𝑥21

− 1
⎤

⎥

⎥

⎦

+ (𝑥1 + 3𝑥4)𝑒1+sin (𝑥3) (29)

𝑦3(𝑥) = 100(𝑥21 − 𝑥2)
2 + (𝑥1 − 1)2 + (𝑥3 − 1)2 + 90(𝑥23 − 𝑥4)

2

+10.1((𝑥2 − 1)2 + (𝑥4 − 1)2) + 19.8(𝑥2 − 1)(𝑥4 − 1)
(30)

The various multiple output sampling methods are repeated 100
times to ensure the results are consistent. Fig. 8 shows the performance
of each sampling method.

The ‘‘maximum variance’’ method slightly outperforms the other
two sampling methods. This is true when looking at each output
individually and also when looking at the average MAPE of all three
outputs. The only portion of the solution space in which the ‘‘maximum
variance’’ criterion did not outperform the other two methods is in
the early stages of the sampling with less than 20 samples for 𝑦1. The
‘‘round robin’’ method allocates optimal samples to this output despite
it having the smallest error while the ‘‘maximum variance’’ method
allocates optimal samples for the outputs with larger errors. This allows
the ‘‘round robin’’ method to temporarily outperform the ‘‘maximum
variance’’ method for 𝑦1. However, the ‘‘maximum variance’’ method
is able to quickly catch up and outperform the ‘‘round robin’’ method
for this output. The ‘‘weighted’’ method underperformed the other two
methods. To this end, the ‘‘maximum variance’’ criterion is selected
as the multiple output sampling method for the UUV and submarine
hydrodynamic interactions problem.

6. UUV and submarine hydrodynamic interaction

The NMMF active learning GP regression model with the ‘‘maximum
variance’’ multiple output selection criterion is used to model the
hydrodynamic interactions between a UUV and submarine. For this
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Fig. 8. Comparison of the ‘‘round robin’’, ‘‘maximum variance’’, and ‘‘weighted’’ multiple output active sampling methods for three test cases.
study, the high fidelity model is a commercial CFD solver known as
Star-CCM+ that iteratively solves the Reynolds-averaged Navier–Stokes
equations in order to determine the forces and moments on the UUV.
Additionally, the low fidelity model is a potential flow solver known as
FS-Flow (Anon, 2018). This tool uses simplified physics which neglects
viscosity, skin friction, boundary layer development, flow separation,
and leads to the d’Alembert paradox which predicts zero drag on a UUV
moving at constant velocity (Newman, 2017). In order to overcome
these physical limitations, this potential flow solver is supplemented
with a simple parametric model to help predict the effects of viscosity
on the moving body. FS-Flow uses the panel method to resolve the
flow around a moving body and supplements the solution with one of
four different viscous correlation lines. The frictional resistance can be
estimated using the International Towing Tank Conference (ITTC) 57,
Hughes, Grigson, or Katsui viscous correlation lines (Anon, 2018). The
ITTC-57 correction line is used for this study.

6.1. Experimental design

In order for the surrogate to be useful in modeling launch and
recovery operations, the surrogate has to accurately predict the hydro-
dynamic interaction forces and moments on the UUV. For simplicity,
the only three degrees of freedom for the UUV are surge, sway, and
yaw. This means that the output of the surrogate is chosen to be
the well defined surge, 𝑋′, sway, 𝑌 ′, and yaw, 𝑁 ′, coefficients of
the UUV (Fossen, 2011; Gertler and Hagen, 1967). The UUV position,
heading angle, speed, and size all have an impact on these output
variables, so these parameters are broken down into six input variables.

The UUV position is defined by a longitudinal separation ratio,
𝑅𝐿𝑜𝑛𝑔 , and a lateral separation ratio, 𝑅𝐿𝑎𝑡. These parameters are the
longitudinal and lateral distance between the centers of buoyancy of the
two vehicles normalized by the length of the submarine. The heading
angle, 𝜙, is the angle between the body of revolution axes of the two
vehicles with a positive heading angle corresponding to the bow of the
UUV pointing away from the submarine. Fig. 9 and Eqs. (31) and (32)
illustrate the longitudinal separation ratio, lateral separation ratio, and
heading angle.

𝑅𝐿𝑜𝑛𝑔 =
𝑥𝐷𝑖𝑠𝑡 (31)
10

𝐿𝑆𝑢𝑏
Table 1
Input variables and domains for hydrodynamic interaction reduced order model.

Symbol Description Units Bounds

𝑅𝐿𝑜𝑛𝑔 Longitudinal separation ratio None [−0.7,0.7]
𝑅𝐿𝑎𝑡 Lateral separation ratio None [0.059,0.105]
𝑈 Speed Knots [2,5]
𝜙 Heading angle Degrees [−2,2]
𝐷𝑆𝑢𝑏∕𝐷𝑈𝑈𝑉 Submarine to UUV diameter ratio None [5,50]
𝐿∕𝐷𝑈𝑈𝑉 UUV length to diameter ratio None [4.3,13]

𝑅𝐿𝑎𝑡 =
𝑦𝐷𝑖𝑠𝑡
𝐿𝑆𝑢𝑏

(32)

Likewise, the UUV length and diameter are non-dimensionalized using
ratios. Because the submarine diameter is fixed, the submarine to
UUV diameter ratio is selected as a non-dimensional parameter to
represent various diameters of the UUV. Lastly, the UUV length to
diameter ratio is then used to account for the different lengths of UUV.
Table 1 summarizes each of the six different input variables with their
accompanying units and bounds.

As certain bounds of the domain in Table 1 are increased, the
uncertainty of the high fidelity solutions in some parts of the domain
becomes very large. For example, as the heading angle of the UUV
becomes large, the sway created by the flow incident on the UUV at a
large angle dominates the hydrodynamic interactions due to operating
near the submarine. This reduces the ability to model the hydrody-
namics. This is also an unlike operating condition of the UUV. Hence,
there is a trade-off between exploration and accuracy. The bounds of
this domain are selected to capture the wide range of input variables
necessary to simulate UUV motion while being restrictive enough to
produce accurate results. While this domain considers this trade-off,
additional constraints are established to exclude certain unrealistic
parts of the domain based on input variable interactions. For example,
larger diameter UUVs tend to be shorter while smaller diameter UUVs
tend to be longer. Two constraints are created based on real-world UUV
measurements which ignore the combination of UUV lengths and diam-
eters that are infeasible. Additionally, the relationship between lateral
distance from the submarine and the UUV diameter is constrained. This
enables the center of buoyancy of the small diameter UUVs to get closer
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Fig. 9. Geometry and orientation of the submarine and UUV hydrodynamic interaction experimental setup.
to the submarine. The center of buoyancy of a larger diameter UUV in
this region would result in a collision between the vehicles. Likewise,
UUVs are constrained, based on diameter, to make sure they are not so
far away as to avoid any hydrodynamic interactions. These constraints
are formalized as follows using the input variables defined in Table 1:

1. The following non-dimensional constraint is established to en-
sure that the two vehicles maintain a minimum clearance of 0.05
meters regardless of the UUV size, heading angle, or position.

8.575𝑅𝐿𝑎𝑡 − 0.5
(

𝐷𝑆𝑢𝑏
𝐷𝑈𝑈𝑉

)−1
− 9.425 ⋅ 10−3𝜙

(

𝐷𝑆𝑢𝑏
𝐷𝑈𝑈𝑉

)−1

× (𝐿∕𝐷𝑈𝑈𝑉 ) − 0.5048 ≥ 0 (33)

2. This non-dimensional constraint maintains the distance between
the centers of buoyancy of the two vehicles 𝑦𝐷𝑖𝑠𝑡 to be less than
or equal to 2𝐷𝑈𝑈𝑉 +𝐷𝑆𝑢𝑏∕2 in order to ensure the vehicles are
close enough to experience large hydrodynamic interactions.

− 8.575𝑅𝐿𝑎𝑡 + 2
(

𝐷𝑆𝑢𝑏
𝐷𝑈𝑈𝑉

)−1
+ 0.5 ≥ 0 (34)

3. Not all combinations of UUV lengths and diameters within the
domain are feasible based on the dimensions of 15 commer-
cially available UUVs. The following non-dimensional constraint
eliminates the UUVs that are too short for their given diameter.

65.44
(

𝐷𝑆𝑢𝑏
𝐷𝑈𝑈𝑉

)−1
+ (𝐿∕𝐷𝑈𝑈𝑉 ) − 8 ≥ 0 (35)

4. Likewise, the following non-dimensional constraint eliminates
the UUVs that are too long for their given diameter.

− 58.81
(

𝐷𝑆𝑢𝑏
𝐷𝑈𝑈𝑉

)−1
− (𝐿∕𝐷𝑈𝑈𝑉 ) + 17 ≥ 0 (36)

The NMMF active search algorithm was iterated until 100 high
fidelity simulations were performed. At this point, the model had
converged because each new high fidelity simulation provided little
change to the output of the surrogate model for a set of test input data.

6.2. Computational fluid dynamics

The Defense Advanced Research Projects Agency (DARPA) SUBOFF
model is used as the geometric model for the submarine hull while
the International Submarine Engineering (ISE) Explorer is used for the
UUV hull (Groves et al., 1989; Explorer AUV, 2020). In accordance
with ITTC guidelines, the domain of the CFD simulation has at least
one submarine length of clearance between the domain edges and the
front of the vehicles. The aft end of the vehicles has three submarine
lengths of clearance to the end of the domain (Practical Guidelines,
11
2014). The domain is made symmetrical along the plane that inter-
sects the axes of the two vehicles and a symmetrical boundary layer
condition is applied along this plane. This allows the domain to be
half the size without compromising accuracy which greatly reduces the
computational resources needed for the study.

The CFD simulations use an unstructured polyhedral overset mesh
because it more easily accommodates mesh deformation and restruc-
turing as the UUV is re-positioned between simulations (Leong, 2014).
While the number of cells varies between simulations, the number of
cells is typically between one and two million which is high enough to
provide mesh independence (Moonesun et al., 2015).

According to the ITTC, the 𝑘 − 𝜖 and 𝑘 − 𝜔 turbulence models are
by far the most common models that are applied to ship hydrody-
namics and have consistently provided accurate predictions (Practical
Guidelines, 2014). For this simulation, the 𝑘 − 𝜔 turbulence model
is selected because it is more accurate in adverse pressure gradients
like those experienced on the stern of the model (Practical Guidelines,
2014; Menter, 1994). The total boundary layer thickness is calculated
using the Prandtl’s turbulent boundary layer thickness over a flat plate
or 0.16𝐿∕𝑅𝑒1∕7𝐿 (Leong et al., 2013). This boundary layer mesh uses
prism layers with an expansion ratio of 1.2. The number of prism
layers on the submarine and UUV are large enough to ensure that
the non-dimensional wall distance 𝑦+ values are less than one. This
CFD simulation setup is in accordance with ITTC procedures (Practical
Guidelines, 2014).

Once the CFD simulation setup is established, the next step is to
validate if the CFD simulations are able to accurately predict real-
world results. Submarine and UUV hydrodynamic interactions are very
challenging to capture in experiments using tow tank experiments. This
is because in order to maintain similitude between vehicle sizes, the
UUV models become too small to allow for accurate measurements.
However, Leong performed a series of tow tank experiments with a
UUV that had a diameter of about 44.7% of the diameter of the
submarine (Leong, 2014). While UUVs of this size are much too large
to be considered for actual launch and recovery operations, these real-
world experiments are used to validate the CFD setup. Fig. 10 compares
the surge, sway, and yaw coefficients of the UUV for the CFD and tow
tank experiments performed by Leong.

Fig. 10 shows that the CFD is able to predict all of the surge,
sway, and yaw coefficients within the uncertainty of the tow tank
experiments in all of the possible UUV locations. The UUV experiences
large oscillations in sway and yaw, but the CFD is able to accurately
capture these complex real-world hydrodynamic interactions.

6.3. Results

This experimental setup has six input parameters. There is no
straightforward way to illustrate a six-dimensional parameter space,

but to help visualize the results, a series of two-dimensional plots are
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Fig. 10. Comparison of the CFD simulated surge, sway, and yaw force and moment coefficients at various longitudinal positions against the validated tow tank experiments by
Leong (2014). All CFD simulated results are within the margin of error of the tow tank results.
Fig. 11. Colormaps of the hydrodynamic interaction sway and yaw coefficients 𝑌 ′ and 𝑁 ′ at different lateral and longitudinal positions with respect to the submarine. The dots
represent the locations selected using the NMMF algorithm to perform a high fidelity CFD simulation.
generated while keeping the other four input dimensions constant.
This allows the impact of each dimension to be assessed while also
displaying some interactions between input variables.

Fig. 11 shows how the sway and yaw coefficients for the UUV vary
as the UUV is in different lateral and longitudinal positions from the
submarine. A positive sway coefficient pushes the UUV away from the
submarine and a positive yaw moment causes the bow of the UUV to
be rotated away from the submarine.

Each high fidelity CFD simulation is represented as a dot in Fig. 11.
The domain is constrained such that the UUV will not be positioned
directly in front of or behind the submarine in order to avoid the risk
of a collision. This figure illustrates how there are large sway and
12
yaw oscillations as a UUV changes its position longitudinally along
the submarine. Near the bow of the submarine, the UUV experiences
a sway and yaw force and moment that push the vehicle away and
cause the UUV bow to rotate away from the submarine. However,
near the stern of the submarine, the UUV is pulled toward and the
UUV bow is rotated toward the submarine. The magnitude of these
forces and moments decreases as the UUV is positioned laterally farther
from the submarine. The oscillations in sway and yaw based on UUV
location that are captured by this surrogate model are observed in tow
tank experiments between a model submarine and UUV (Leong, 2014).
However, these tow tank experiments are greatly limited in the size
of the UUV that they can evaluate. In order to have similitude of the
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Fig. 12. UUV hydrodynamic interaction surge coefficient 𝑋′ at various longitudinal separation ratios 𝑅𝐿𝑜𝑛𝑔 from the submarine.
diameter ratios between the real world vehicles, the model UUV would
have to be too small to capture any accurate experimental data of the
hydrodynamic interactions.

These large sway and yaw coefficients with steep gradients near the
bow and stern of the submarine provide an obstacle for the launch and
recovery of UUVs from submarines. Accurately modeling these forces
and moments and incorporating them into the UUV control and auton-
omy systems could enable UUVs to predict these large hydrodynamic
interactions and accurately navigate through these regions. Another
option would be to develop launch and recovery architectures that
avoid these regions altogether. This surrogate model could also be used
to establish operating envelopes. These are regions in which the UUV
should not operate in order to avoid forces or moments large enough
to interfere with launch and recovery operations.

The surge force coefficient also experiences unique hydrodynamic
interactions near the bow and stern of the submarine. Fig. 12 shows
how the surge force coefficient varies along the length of the subma-
rine.

Fig. 12 shows that the UUV experiences a substantial drop in the
surge that opposes forward UUV motion near 𝑅𝐿𝑜𝑛𝑔 ≈ −0.4. This
phenomenon occurs when the UUV is located just aft of the parallel
mid-body at the forward part of the submarine afterbody. In fact, this
hydrodynamic interaction causes the surge force to become positive.
This means that this hydrodynamic interaction overcomes the drag of
the vehicle and would cause it to accelerate forward, even with no
thrust from the UUV propeller. There is a low pressure region and
the end of the parallel mid-body of the submarine as it transitions to
the stern. There is also a high pressure region farther down the stern
of the submarine. The UUV experiences this positive surge when it
encounters the steep pressure gradient between these two regions. Also,
as the fluid flows along the stern of the submarine and passes the bow
of the UUV, it accelerates between the two vehicles due to the flow
restriction. This Bernoulli effect causes an additional drop in pressure.
The drop in pressure near the bow of the UUV also contributes to the
drop in surge and causes the UUV to get pulled forward. Additionally,
the flow around the stern of the submarine meets the UUV at an angle
that causes a large lift. This lift is perpendicular to the flow and causes
the resultant total force vector to have a component in the forward
13

direction of the UUV. Fig. 13 summarizes this complex interaction.
This specific hydrodynamic interaction could make UUV launch
and recovery operations particularly challenging because it is so far
outside of the normal UUV operating window. Fig. 12(b) shows that the
magnitude of this hydrodynamic interaction decreases as the diameter
of the UUV decreases. This means that smaller UUVs would be better
equipped to overcome this hydrodynamic interaction.

A long slender body without control fins experiences a destabi-
lizing effect when in steady translation. This is known as the munk
moment (Newman, 2017). Also, the sway force increases as the head-
ing angle increases, just like lift increases when the angle of attack
increases on an airfoil. Fig. 14 shows how the sway and yaw coefficients
vary based on the heading angle and speed of the UUV.

Fig. 14 shows that if the vehicle is at a non-zero heading angle,
there is a resulting moment that will cause the vehicle to rotate in the
direction in which it is angled. The surrogate model is able to accurately
predict the munk moment of the UUV and the expected behavior of how
it increases nearly linearly with heading angle (Fossen, 2011). The same
relationship between heading angle and sway exists and the reduced
order model accurately captures this phenomenon as well. Addition-
ally, because the sway and yaw coefficients are non-dimensionalized
using the velocity of the vehicle, these non-dimensional coefficients
are expected to be relatively independent of the speed (Newman, 2017;
Fossen, 2011). The surrogate model is also able to capture this effect.

The total drag on a submarine or UUV is a combination of its
pressure (form) drag, caused by wake formation and boundary layer
separation, and its viscous (skin) drag, caused by the fluid friction on
the wetted surface of the vehicle. Vehicles have an optimal length to
diameter ratio that reduces the drag on the vehicle (Burcher and Rydill,
1995). When vehicles are very short, they are more like bluff bodies and
have a lot of pressure drag. As the vehicle becomes longer, the form
drag decreases. However, when they become too long, the increase in
viscous drag outweighs the loss in pressure drag. This means that a UUV
has an optimal length to diameter ratio 𝐿∕𝐷𝑈𝑈𝑉 for reducing drag. The
optimal 𝐿∕𝐷𝑈𝑈𝑉 is dependent on the shape and speed of the vehicle
and is usually in the range of 8 to 12. Fig. 15 shows how the surge
coefficient varies with 𝐿∕𝐷𝑈𝑈𝑉 .

Fig. 15 shows that the minimum drag occurs with a UUV length to
diameter ratio of about 10 to 12. This illustrates how the surrogate
model is able to identify the trade-off between pressure drag and

viscous drag for different UUV lengths. The optimal length to diameter
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Fig. 13. Pressure field of the hydrodynamic interactions near the stern of the submarine with 𝑅𝐿𝑜𝑛𝑔 = −0.3950, 𝑅𝐿𝑎𝑡 = 0.06827, 𝑈 = 4.410 knots, 𝜙 = 1.617◦, 𝐷𝑆𝑢𝑏∕𝐷𝑈𝑈𝑉 = 23.41,
and 𝐿∕𝐷𝑈𝑈𝑉 = 8.329. The steep pressure gradient and flow field result in the UUV experiencing a positive surge.
Fig. 14. Maps of the sway and yaw coefficients 𝑌 ′ and 𝑁 ′ at various heading angles 𝜙 and speeds 𝑈 for a UUV with a fixed 𝑅𝐿𝑜𝑛𝑔 = 0, 𝑅𝐿𝑎𝑡 = 0.08, 𝐷𝑆𝑢𝑏∕𝐷𝑈𝑈𝑉 = 20, and
𝐿∕𝐷𝑈𝑈𝑉 = 8.
ratio of submerged vessels is usually in this range, but varies based on
shape and speed (Burcher and Rydill, 1995; Roddy, 1990). Addition-
ally, the surrogate also found that the surge is relatively independent
of small changes in heading angles. These results are consistent with
real world results (Burcher and Rydill, 1995; Roddy, 1990). The gray
region in Fig. 15(a) represents a constraint within the domain that is
unexplored based on real-world UUV measurements which ignore the
combination of UUV lengths and diameters that are infeasible.

Another benefit of the NMMF active learning GP regression process
is that the process models the difference between the high fidelity
(CFD) and low fidelity (potential flow) simulations. This means that
the results of the model can be used to identify scenarios in which the
low fidelity simulations fail to capture the accuracy of the high fidelity
simulations. Fig. 16 compares the sway and yaw coefficients for the
high fidelity surrogate model with the low fidelity model surrogate.

Fig. 16 shows that the low fidelity potential flow model is quite
accurate at predicting the yaw coefficient, but has major limitations on
predicting the sway coefficient due to the d’Alembert paradox (New-
man, 2017; Fossen, 2011). Recall that the potential flow solver uses an
empirical model to account for viscous effects in the surge direction.
14
However, there are no viscous effects modeled in the sway direction
using the potential flow solver so there results are inaccurate compared
to the high fidelity CFD solver. Another example of this limitation is the
inability of the low fidelity potential flow solver to determine the how
the UUV sway is impacted by the UUV heading angle. Fig. 17 compares
heading angles from the potential flow model with the high fidelity
CFD model. This shows how potential flow is not able to accurately
capture how the sway coefficient varies with changes to the heading
angle. Because the potential flow solver neglects viscosity, it predicts an
almost constant near zero value at any heading angle. This is inaccurate
as seen by the high fidelity CFD solver. However, because the munk
moment is a potential flow phenomenon and is the dominant source of
UUV yaw, the potential flow solver is relatively accurate at determining
the UUV yawing moment.

Because the d’Alembert paradox is a known limitation of potential
solvers, many of them have built-in parametric models that augment
the results. The d’Alembert paradox results in potential flow predicting
zero drag around the UUV in steady state translation. In order to pro-
vide more accurate results, the FS-Flow potential flow solver uses the
ITTC-57 parametric equations to estimate the drag of the UUV (Anon,
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Fig. 15. Maps of the surge coefficient 𝑋′ at various 𝐿∕𝐷𝑈𝑈𝑉 for a UUV with a fixed 𝑅𝐿𝑜𝑛𝑔 = 0, 𝑅𝐿𝑎𝑡 = 0.08, and 𝑈 = 3.5 knots. This demonstrates the prediction of optimal
𝐿∕𝐷𝑈𝑈𝑉 .

Fig. 16. Comparison of sway and yaw coefficients of the high and low fidelity surrogate models of a UUV at various 𝑅𝐿𝑎𝑡 and 𝑅𝐿𝑜𝑛𝑔 for a fixed 𝑈 = 3.5 knots, 𝜙 = 0◦, 𝐷𝑆𝑢𝑏∕𝐷𝑈𝑈𝑉 = 20
and ∕𝐷𝑈𝑈𝑉 = 8. Low fidelity cannot accurately predict sway coefficient 𝑌 ′, but performs well for yaw coefficient 𝑁 ′.



Ocean Engineering 288 (2023) 116016B. Hammond and T.P. Sapsis
Fig. 17. Comparison of sway and yaw coefficients of the high and low fidelity surrogate models of a UUV at various heading angles 𝜙 and speeds 𝑈 with a fixed 𝑅𝐿𝑜𝑛𝑔 = 0,
𝑅𝐿𝑎𝑡 = 0.08, 𝐷𝑆𝑢𝑏∕𝐷𝑈𝑈𝑉 = 20, and 𝐿∕𝐷𝑈𝑈𝑉 = 8. Low fidelity cannot to accurately predict sway coefficient 𝑌 ′ due to the d’Alembert paradox.
Fig. 18. Comparison of surge coefficient 𝑋′ of the high and low fidelity surrogate models of a UUV at various 𝐿∕𝐷𝑈𝑈𝑉 and heading angles 𝜙 with a fixed 𝑅𝐿𝑜𝑛𝑔 = 0, 𝑅𝐿𝑎𝑡 = 0.08,
𝑈 = 3.5 knots, and 𝐷𝑆𝑢𝑏∕𝐷𝑈𝑈𝑉 = 20. The ITTC-57 parametric equations of the low fidelity potential flow simulations are similar to the results of the high fidelity CFD simulations.
2018). Fig. 18 compares the surge coefficients of the high fidelity CFD
surrogate model and the low fidelity potential flow surrogate model at
various UUV length to diameter ratios.

Overall, the built-in ITTC-57 parametric equations of the low fi-
delity potential flow model are very similar to the model trained on
CFD data. This allows the potential flow model to predict the surge
coefficient much better than the sway coefficient.

In order to test the accuracy of the model, a total of 500 Latin
Hypercube samples are used as test data for the GP regression model.
Latin Hypercube sampling is a common method used to divide each
dimension of a multi-dimensional input domain into equally spaced
bins in order to ensure a good distribution of sampling locations within
the domain (Stein, 1987). The mean absolute error (MAE) between the
predicted and actual results of the test data is determined for each
of the three outputs. Because these values are hard to conceptualize,
MAE can be thought of in terms of the control system of the UUV
and how these errors translate into UUV control values. The MAE of
16
Table 2
Mean absolute error and error equivalents of the various model outputs.

Output Mean absolute error Error equivalents

𝑋′ 7.492E–04 10.26% 𝑋𝑝𝑟𝑜𝑝
𝑌 ′ 7.220E–04 𝛥𝛿𝑒𝑞,𝑌 = 1.78 degrees
𝑁 ′ 7.629E–04 𝛥𝛿𝑒𝑞,𝑁 = 3.95 degrees

the sway and yaw coefficients can be represented as an equivalent
rudder angle difference 𝛥𝛿𝑒𝑞,𝑌 or 𝛥𝛿𝑒𝑞,𝑁 . This is how much the rudder
angle would need to change to produce the force or moment equivalent
to the MAE. Likewise, the surge coefficient MAE can be thought of
as a percentage of the propulsive force of the UUV (%𝑋𝑝𝑟𝑜𝑝). The
hydrodynamic coefficients in use to determine these error equivalents
in Table 2 are taken from the Remus 100 (Winey, 2020).
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Overall, the reduced order model is able to predict the complex
surge, sway, and yaw hydrodynamic interactions that are determined
using the CFD simulations and validated against tow tank experiments.
This reduced order model can be used to determine the hydrodynamic
interactions in real time, which is several orders of magnitude faster
than performing a CFD simulation, which usually takes several hours
to complete.

7. Conclusions

We have formulated a new method for active sampling that is
non-myopic and also utilizes models of multiple fidelity. The new
approach allows for efficiently computing reduced-order models with
unprecedented accuracy due to its non-myopic active search properties.
It is ideal for situations where plentiful and accurate training data is not
easy to obtain, e.g. because of high computational cost. We have first
demonstrated the advantages of the new approach in two representa-
tive prototype systems, as well as a more realistic setup involving the
hydrodynamic interactions between a UUV and a submarine.

The non-myopic multi-fidelity active learning GP regression surro-
gate model is able to accurately predict the complex hydrodynamic
interactions between a submarine and UUV. Specifically, the obtained
model is able to mimic the high accuracy of the CFD while being
able to predict these hydrodynamic interactions in real-time. Real-time
modeling of these hydrodynamic interactions is essential to simulate
the motion required to launch and recover UUVs from submarines. To
this end, this surrogate model may be integrated into UUV control and
autonomy systems and motion simulators to predict these hydrody-
namic interactions and further enable UUV launch and recovery from
submarines. We leave this direction as future work.

Other future directions may include increasing the dimensionality
of the input space by considering more parameters, i.e. more complex
and realistic setups. Such a step would require more effective surrogate
models such as those based on neural networks or operators (Pick-
ering et al., 2022). This could include introducing movable control
surfaces on the UUV, modeling transient UUV behavior, accounting
for six degrees of freedom motion by allowing the two vehicle axes
to be non-planar, or simulating the hydrodynamic interactions near a
submarine appendage like the sail or a dry deck shelter. In addition,
the application of this non-myopic multi-fidelity sampling algorithm
is currently formulated for only two levels of fidelity. An extension to
more levels of future work.
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